简易智能电动车设计1

合集下载

2003年全国大学生电子设计竞赛题目

2003年全国大学生电子设计竞赛题目

参赛注意事项(1)2003年9月15日8:00竞赛正式开始,每支参赛队限定在提供的A、B、C、D、E、F题中任选一题;认真填写《登记表》各栏目内容,填写好的《登记表》由赛场巡视员暂时保存。

(2)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。

(3)每队严格限制3人,开赛后不得中途更换队员。

(4)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。

电压控制LC振荡器(A题)一、任务设计并制作一个电压控制LC振荡器。

二、要求1、基本要求(1)振荡器输出为正弦波,波形无明显失真。

(2)输出频率范围:15MHz~35MHz。

(3)输出频率稳定度:优于10-3。

(4)输出电压峰-峰值:V p-p=1V±0.1V。

(5)实时测量并显示振荡器输出电压峰-峰值,精度优于10%。

(6)可实现输出频率步进,步进间隔为1MHz 100kHz。

2、发挥部分(1)进一步扩大输出频率范围。

(2)采用锁相环进一步提高输出频率稳定度,输出频率步进间隔为100kHz。

(3)实时测量并显示振荡器的输出频率。

(4)制作一个功率放大器,放大LC振荡器输出的30MHz正弦信号,限定使用E=12V 的单直流电源为功率放大器供电,要求在50Ω纯电阻负载上的输出功率≥20mW,尽可能提高功率放大器的效率。

(5)功率放大器负载改为50Ω电阻与20pF电容串联,在此条件下50Ω电阻上的输出功率≥20mW,尽可能提高放大器效率。

(6)其它。

三、评分标准四、说明1、需留出末级功率放大器电源电流I C0(或I D0)的测量端,用于测试功率放大器的效率。

宽带放大器(B 题)一、任务设计并制作一个宽带放大器。

二、要求1、基本要求(1)输入阻抗≥1k Ω;单端输入,单端输出;放大器负载电阻 600。

简易智能电动车的设计与制作

简易智能电动车的设计与制作

简易智能电动车的设计与制作介绍本文档将介绍如何设计和制作一辆简易智能电动车。

智能电动车是一种环保、高效的交通工具,有着越来越广泛的应用。

我们将主要涵盖以下内容: 1. 设计目标与需求 2. 器材与零件的选择 3. 构造与装配过程 4. 控制系统的设计与实现 5. 测试与优化 6. 结论与展望1. 设计目标与需求首先,我们需要明确设计目标与需求,以确保设计满足用户的期望。

以下是一些常见的设计目标和需求: - 轻便:车辆整体重量不超过一定限制,以提高操控性和节能性。

- 高效:电路和电池的设计要尽量提高能量转化和储存效率。

- 安全:车辆需要具备一定的安全措施,如制动系统和防撞装置等。

- 智能化:车辆的控制系统需要具备一定的智能特性,如自动巡航和避障等。

- 成本低廉:设计需要尽量选用经济实惠的材料和零件,以降低生产成本。

2. 器材与零件的选择在设计智能电动车时,我们需要选择适当的器材和零件来满足设计目标和需求。

2.1 电动机选择合适的电动机至关重要,它将提供车辆的动力。

常见的电动机类型包括直流无刷电动机和步进电机。

我们需要根据设计需求选择适合的电动机类型,考虑功率、转速和电流等因素。

2.2 控制系统为了实现智能化功能,我们需要设计一个控制系统。

这个系统将负责监测车辆的状态并做出相应的决策。

控制系统的核心部分是微控制器或单片机。

根据需求选择适合的微控制器,考虑处理能力、接口和编程环境等因素。

2.3 电池和电源管理电池是车辆的能源来源,因此选择适当的电池很重要。

常用的电池类型包括锂电池和铅酸电池。

我们需要根据需求选择适合的电池类型,并设计一个电源管理系统来管理电池的充电和放电过程,以确保电池的寿命和安全。

2.4 传感器与执行器为了实现智能化功能,我们需要选择适当的传感器和执行器。

传感器可以用于检测车辆的状态,如速度、位置和距离等。

执行器可以用于执行某些操作,如制动和转向等。

常用的传感器和执行器包括超声波传感器、红外线传感器和舵机等。

电动小汽车方案

电动小汽车方案

电动小汽车设计本次设计的简易智能电动车,采用AT89c51单片机作为小车的检测和控制核心;采用金属感应器TL-Q5MC来检测路上感应到的铁片,从而把反馈到的信号送单片机,使单片机按照预定的工作模式控制小车在各区域按预定的速度行驶,并且单片机选择的工作模式不同。

采用霍尔元件A44E检测小车行驶速度;行驶后,轮流显示小车采用LED数码管实时显示小车行驶的时间以及速度,小车停止时,显示总的行驶时间、行驶距离、平均速度以及各速度区行驶的时间。

本设计结构简单,较容易实现。

1. 设计任务:设计并制作了一个智能电动车,其行驶路线满足所需的要求。

1.1 要求:1.1.1 基本要求:(1)分区控制:如(图1)所示:(图1)车辆从起跑线出发(出发前,车体不得超出起跑线)。

在第一个路程C~D区(3~6米)以低速行驶,通过时间不低于10s;第二个路程D~E区(2米)以高速行驶,通过时间不得多于4秒;第三个路程E~F区(3~6米)以低速行驶,通过时间不低于10s。

(2)小车能自动记录、显示行驶时间、行驶距离以及行驶速度,还能记录每段所走的时间,从而判断是否符合课程设计要求。

(记录显示装置安装在车上)。

2. 方案(主要有以下几模块)根据设计任务要求,并且根据我们自己的需要而附加的功能,该电路的总体框图可分为几个基本的模块,框图如(图3)所示:(图3)2.1 路面检测模块:采用铁片感应器TL-Q5MC来检测路面上的铁片从而给单片机中断脉冲。

原理图接线如(图4)所示:(图4)2.2 显示模块:采用由七段显示译码器7448配合外围电路来控制LED数码管的显示,当然当数码管驱动电压较小时,可以直接用7448进行驱动,而不用外加电源;LED基本驱动电路如下图所示:2.3 测速模块:2.3.1 方案1:采用采用霍尔开关元器件A44E检测轮子上的小磁铁从而给单片机中断脉冲,达到测量速度的作用。

霍尔元件具有体积小,频率响应宽度大,动态特性好,对外围电路要求简单,使用寿命长,价格低廉等特点,电源要求不高,安装也较为方便。

基于80C51控制的智能电动小车系统的设计与实现

基于80C51控制的智能电动小车系统的设计与实现

基于80C51控制的智能电动小车系统的设计与实现摘要:根据智能电动小车的设计要求,提出了基于单片机控制的智能电动小车的设计方案。

在现有玩具电动车的基础上以80C51单片机、光电、红外线、超声波传感器及金属探测器为主要器件,从硬件和软件两方面实现了对电路的设计。

经过实际测试,电路达到了最初的设计要求。

关键词:智能电动小车;80C51;传感器近年来,随着汽车行业的迅猛发展,对智能小车的研究也越来越广泛。

在现实生活中智能小车具有非常重要的意义,它可以代替人类完成一些工作。

由此希望开发一种具有由单片机控制的智能功能的系统[1]。

1 设计要求及方案设计智能电动小车的主要技术要求有:显示时间、速度、里程;具有自动寻迹、寻光、避障功能;可程控行驶速度、准确定位停车。

基于以上要求,在设计思路上考虑以80C51单片机为核心,以现有玩具电动车为基础,加装光电、红外线、超声波传感器及金属探测器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制,从而实现智能化控制的目的。

2 硬件电路设计 2.1 单片机及其外围电路80C51单片机由微处理器、数据存储器、程序存储器、并行I/O口、串行口、定时器/计数器、中断系统及特殊功能寄存器等部分组成[2]。

将它们通过片内单一总线连接,其基本结构与传统结构模式相同,不同之处在于对各种功能部件采用特殊功能寄存器集中控制方式。

由于80C51是片内有ROM/EPROM的单片机,因此,由它构成的最小系统简单﹑可靠。

2.2 检测电路2.2.1 障碍检测电路识别障碍的首要问题是传感器的选择[3],本设计采用T/R-40-12小型超声波传感器作为探测前方障碍物体的检测元件,它通过向目标发射超声波脉冲,计算其往返时间来判定距离。

检测电路图。

2.2.2 行车状态和距离检测电路本系统采用反射式红外线光电传感器用于检测路面的起始、终点,玩具车底盘上沿起始终点线放置一套,以适应起始的记数开始和终点的停车需要。

简易智能电动车的设计毕业设计

简易智能电动车的设计毕业设计

毕业设计题目:简易智能电动车的设计专业机电一体化班级姓名指导教师目录第一部分设计任务与调研 (3)第二部分设计说明 (5)第三部分设计成果 (10)第四部分结束语 (16)第五部分致谢 (17)第六部分参考文献 (18)第一部分设计任务与调研1、毕业设计的主要任务本设计的主要任务为在如图1-1所示的行驶路线图中完成如下任务:①电动车从起跑线出发(车体不得超过起跑线)、沿宽度为2cm的黑色引导线到达B点。

在“直道区”铺设的白纸下沿引导线埋有1~3块宽度为15cm、长度不等的薄铁片。

电动车检测到薄铁片时,立即发出声光指示信息,并实时存储、显示在“直道区”检测到的薄铁片数目。

②电动车到达B点后进入“弯道区”,沿圆弧引导线到达C点(也可脱离圆弧引导线到达C点)。

C点下埋有边长为15cm的正方形薄铁片,要求电动车到达C点检测到薄铁片后在C处停车5秒,停车期间发出断续的声光信息。

③电动车在光源的引导下,通过障碍区进入停车区并到达车库。

电动车必须在两个障碍物之间通过且不得与其接触。

④电动车完成上述任务后立即停车,全程不得超过90秒,行驶时间达到90秒时立即自动停车。

跑图1-1 智能电动车行驶路线示意图2、研究意义智能小车,也就是轮式机器人,最适合在那些人类无法工作的环境中工作,该技术可应用于无人驾驶机动车,无人生产线,仓库,服务机器人等领域。

以下列举了机器人的一些应用,所有这些用途正逐步渗入到工业和社会的各个层面。

在产品检测方面,对零部件、线路板及其它类似产品的检测是机器人比较常见的应用。

一般来说,监测系统中还集成有其它一些设备,他们是视觉系统、X 射线装置、超声波探测仪或其它类似仪器。

在瓦斯、地压检测方面,瓦斯和冲击地压是井下作业中的两个不安全的自然因素,一旦发生突然事故,是相当危险和严重的。

但瓦斯和冲击地压在形成突发事故前,都会表现出种种迹象,如岩石破裂等。

采用带有专用新型传感器的移动式机器人连续监视采矿状态,以便及早发现事故突发先兆,采取相应的预防措施。

智能两轮电动车VCU中控系统设计

智能两轮电动车VCU中控系统设计

第17期2023年9月无线互联科技Wireless Internet TechnologyNo.17September,2023作者简介:祝必梁(1988 ),男,浙江金华人,工程师,硕士;研究方向:物联网,两轮电动车智能化㊂智能两轮电动车VCU 中控系统设计祝必梁(浙江利尔达物联网技术有限公司,浙江杭州311121)摘要:VCU 是实现车辆控制决策的核心电子控制单元㊂文章介绍的两轮电动车VCU 在防盗器功能上结合了GPS 定位㊁GPRS 网络通信㊁BLE 蓝牙通信控制系统㊂VCU 配合云服务器㊁手机终端可以实现数据实时查看,GPRS 网络通道可以实现远程控制车辆,近场无网络时可以用BLE 蓝牙通道控制车辆㊂关键词:智能中控;VCU ;电动车中图分类号:TP319㊀㊀文献标志码:A0㊀引言㊀㊀电动车智能化已慢慢从新能源汽车衍生到两轮电动车上[1]㊂传统两轮电动车智能化体验弱,随着客户对两轮电动车智能化的接受程度越来越高,智能改造升级也跟随新能源汽车的脚步不断升级㊂据中国自行车协会数据,2021年电动两轮车保有量为3.4亿辆,市场规模达800亿元㊂但整个行业智能化渗透率不足5%,市场前景广阔,智能化转型升级正处于风口中㊂1㊀系统整体设计概述㊀㊀VCU 中控系统主控由BLE 芯片FR8018HA 和CAT1模组NT26U 组成㊂FR8018HA 芯片支持Open 开发,负责BLE 通道的通信和VCU 控车全部逻辑㊂NT26U 是一款适用于TDD -LTE/FDD -LTE 多网络制式CAT1模组㊂NT26U 也支持Open 开发,主要负责GPRS 网络通道通信和GPS 数据采集㊂除了BLE 通道和GPRS 通道通信外,VCU 还有和电机控制器通信的485通道㊂2㊀主控模块2.1㊀CAT1模组NT26U㊀㊀NT26U 是利尔达的CAT1模组,供电电压为3.3~3.8V,采用FreeRtos 系统㊂CAT1和BLE 芯片通过UART 串口交互,CAT1串口接收的BLE 数据并通过GPRS 网络通道上传服务器,服务器数据下发CAT1数据透传给BLE 芯片,这样就间接实现了BLE 主控芯片和服务器网络通信㊂服务器原始定位信息是由定位模组L76K 通过NMEA 数据输出给NT26U,NT26U 对数据解析后上报给服务器㊂2.2㊀BLE 芯片FR8018HA㊀㊀FR8018HA 是富瑞坤的BLE 芯片,支持蓝牙V5.1㊂VCU 中控所有的控车主逻辑都由FR8018HA 芯片控制完成㊂BLE 芯片的外部通信部件有:手机㊁电机控制器㊁433钥匙㊂手机无网络状态可以选择BLE 通道和VCU 通信㊂电机控制器接收VCU 485查询指令,返回包括速度㊁里程等信息,485模块由FR8018HA 主控㊂433无线钥匙的解码信号是输出给BLE 芯片解析识别㊂VCU 中控基本控车功能有:电门ACC 控制㊁锁电机㊁轮动检测㊁一键启动按键㊁超速报警㊁震动检测㊁语音播放㊂FR8018HA 主控功能,如图1所示㊂图1㊀FR8018HA 主控功能3㊀GPS定位模块㊀㊀GPS定位模块采用L76K模组,模组电压范围为2.7~3.4V,典型值为3.3V㊂L76K可实现高灵敏度㊁高精度定位以及对定位信号的快速跟踪和捕获㊂L76K启动后定时1s输出NMEA0183数据㊂NMEA 0183是美国国家海洋电子协会为全球定位系统制定的一套标准通信协议㊂4㊀外设通信模块㊀4.1㊀433M无线模块4.1.1㊀发送模块㊀㊀电动汽车的遥控钥匙大多采用433M小无线通信㊂小无线通信需要一个发送端,一个接收端,一发一收实现数据传输通信[2]㊂发送端以遥控钥匙形式存在,采用专用的编码芯片设计,以HS5130为例:按键输入引脚K0~K3,供电引脚Vin/Vss,编码输出脚TXD㊂4.1.2㊀接收模块㊀㊀接收端接收433无线信号输出解码信号㊂解码信号输入给BLE芯片软件解析㊂中控接收模块采用集成YRB45超外差无线接收模块㊂按照发送的编码数据,字码波形有3种位码:(1)同步位syn码㊂高电平8.8a,低电平272.8a㊂(2)数据位 0 码㊂高8.8a,低26.4a㊂(3)数据位 1 码㊂高26.4a,低8.8a㊂a=35μs(可调)位码先发高电平后发低电平㊂每一帧信号字码有25位,其中有20位地址位,4位数据位和一个同步位组成㊂应用中接收端有很多无序干扰信号,BLE芯片须经过软件滤波提取正确的433信号㊂首先,需要滤除干扰信号查找syn码㊂观察有效波形和干扰波形得知有效波形syn码两个上升沿之间的脉宽是T=281.6a,a=35μs,T=9.8ms㊂干扰波形杂乱无序上升沿和上升沿的间隔大都没达到9ms,查找syn时有效条件T1上升沿间隔9~11ms,它可滤除基本干扰波形,识别到正确的syn㊂其次,需要识别data位㊂data位的位宽都是35.2a, 1 码在上升沿后17.6a的电平是高电平, 0 码在17.6a的电平是低电平,通过上升沿中断间隔17.6a采样电平就可以判断出当前数据位码㊂正常检测到一帧24位码后存储数据重新开始syn检测,采集数据时如果存在干扰信号超时70.4a没有检测到上升沿就认为异常,重新开始检测syn㊂433解码软件流程如图2所示㊂4.2㊀BLE通信㊀㊀BLE和App的交互包括3部分:BLE连接㊁鉴权㊁应用数据收发㊂BLE建立连接包含5个步骤:(1)从机广播发送ADV_IND PDU(包含了从机蓝牙地址)㊂(2)主机发送扫描请求SCAN_REQ PDU(包含了从机和主机蓝牙地址)㊂(3)从机收到扫描请求后同一个信道上回复SCAN_RSP PDU㊂(4)主机接收到扫描回复信息后发送CONNECT_REQ PDU信息㊂图2㊀433解码流程(5)广播者接收到CONNECT_REQ PDU后确认建立连接㊂系统层连接后App和BLE要进行鉴权确认双方身份合法㊂鉴权流程通过AES等对称加密方式实现消息认证㊂通信双方共享一个对称密钥,由发送方生成一个MAC值,附在消息后面,接收方计算收到消息的MAC㊂如果和收到的MAC一致,则说明没有被篡改,并且能确认发送方一定拥有相同的密钥,即认证身份㊂鉴权成功App就可以和BLE进行应用数据的交互控制车辆㊂4.3㊀GPRS通信㊀㊀GPRS通道和服务器的交互也包含3个过程: (1)智能设备主动向IoT平台发起TCP连接,与Slot 服务器建立TCP Socket连接㊂(2)连接IoT平台后,发送认证平台请求,上传OpenID㊁ProductID以及ProductKey认证平台的身份㊂成功认证平台身份后,向平台发起入网请求㊂(3)成功入网后,设备与应用便可以进行数据交互㊂4.4㊀485通信㊀㊀骑行数据行驶总里程㊁单次里程㊁行驶的速度以及电机控制器状态等信息需要VCU中控通过485定时查询电机控制器信息获取㊂485属于半双工差分信号,可实现多机通信,VCU目前只连接了电机控制器,按照不同需求可以扩展连接实现多机通信[3]㊂5㊀基本控车㊀㊀ACC控车电路用于对整车启动㊁熄火控制㊂检测ACC电路用于确认车辆的电源实际开关状态[4]㊂ACC控车原理如图3所示㊂ACC_Ctrl连接BLE芯片IO输出脚,输出高电平VBAT_ADC(电源电压)通过MOS管Q9导通到ACC 给整车供电,输出低电平Q9管断开,熄火㊂ACC_Det图3㊀ACC控车及检测原理连接BLE芯片IO输入脚,当ACC上有电源电压时,检测到低电平,ACC没有输出时检测到高电平㊂项目中ACC控制的命令入口有433钥匙㊁App㊁一键启动㊁机械钥匙㊂前3种都是通过VCU控制ACC_Ctrl来实现,机械钥匙是通过电池电源直接接入ACC打开整车电源㊂这里需要注意少数车型熄火时由于有较大车载电容而放电较慢,这时无论ACC_ctrl 还是机械钥匙关闭电源,到ACC_Det识别从低电平到高会有一个延时时间,从而影响关机音效和LED 熄火指示㊂实际测试中车载电容大熄火时ACC也会马上掉到12V以下,然后放电变缓最终掉电到0.5V 以下需要1s的时间㊂如果需要兼容这种车型ACC 检测电路可以调节电阻R67㊁R71把Q11的导通电压控制在ACC18V以上㊂如Q11VGSon>1V导通则R67可选51k,R71选3k,ACC=18V时VGSon=18ˑ3/54=1V㊂电压掉到18V以下ACC_Det就会立刻识别到车辆熄火状态,中控工作电压是24~90V也㊀㊀不会对正常的ACC输出有影响㊂VCU其它控车还有一键启动,包含两部分:按键读取和LED驱动㊂按键读取就是普通开关检测,检测到低电平认为开关按下㊂LED驱动原理和ACC控制输出原理一致,设防LED熄灭,撤防1s慢闪,启动常亮㊂轮动信号检测:检测到下降沿是认为处于骑行状态,如果规定时间内没有检测到下降沿则认为是处于静止状态㊂超速报警检测:新国标电动车需要有超速报警提示功能[5],中控只需要检测电机控制器输出超速提示IO电平即可,高电平输出报警声㊂震动检测:震动时内部弹簧会不断地将传感器两个接口像开关一样导通断开,VCU中控通过检测IO电平边沿变化判断车辆的震动状态㊂6㊀结语㊀㊀VCU中控不仅含有传统控车,还有GPRS网络通道和BLE蓝牙通道控车功能,可提高用户智能化体验㊂参考文献[1]黄晓东,许丰,邱亚楠,等.电动自行车智能化现状发展与未来[J].新能源科技,2015(6):18-22. [2]王志霞.基于MSP430的433MHz无线收发模块设计[J].办公自动化,2020(24):29-30.[3]石飞,王甲,阮颐.一种实现无极性RS-485通信的探讨[J].集成电路应用,2018(6):18-20. [4]李亚勇,蔡英凤,陈龙,等.考虑前后方车辆行驶状态的ACC系统控制方法[J].汽车工程,2019(8): 865-871.[5]黄鑫.电动自行车新国标出台有望减少超标车引发的事故[J].新能源科技,2018(2):12-13.(编辑㊀姚㊀鑫)Design of VCU central control system for intelligent two wheel electric vehiclesZhu BiliangZhejiang Lierda Internet of Things Technology Co. Ltd. Hangzhou311121 ChinaAbstract VCU is the core electronic control unit that implements vehicle control decisions.The two wheeled electric vehicle VCU introduced in this article combines GPS positioning GPRS network communication and BLE Bluetooth communication control system in terms of anti-theft function.VCU in conjunction with cloud servers and mobile terminals can achieve real-time data viewing GPRS network channels can achieve remote control of vehicles and BLE Bluetooth channels can be used to control vehicles when there is no network in the near field.Key words intelligent central control VCU electric vehicle。

小车实验报告

小车实验报告

用于基本功能测试的任意封闭曲线
P3接光电对管,P12接运放集成芯片,P6接20K的滑动变阻器。

四号管和三号管脚之间是光电
反应式步进机结构图
单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图
AT89C52单片机的复位是有外部复位电路来实现的。

本系统的复位电路可同时实现上电自动复位和按键手动复位。

上电瞬间电容C4导通完成对AT89C52的自动复位,在程序运行过程中如需复位则通过按下按键S1即可实现手动加电复位。

单片机的时钟信号用来提供单片机内各种操作的时间基准。

AT89C52单片机的时钟信号可以用
电源电路采用7805来进行稳压,把电压从12伏变为5伏。

供AT89C52以及光电检测电路使用。

C9用于滤波,滤除电路中的高频分量,使得频率得到稳定。

12伏直接用于步进电机和电机驱动供电,5V用于其他模块的供电
4.2印刷电路板布局图
4.3电路板实物图
4.4小车实物图。

x循迹小车+电路+程序

x循迹小车+电路+程序

x循迹小车+电路+程序部门: xxx时间: xxx制作人:xxx整理范文,仅供参考,可下载自行修改摘要<关键词:智能车 AT89S52 单片机金属感应器霍尔元件1602LCD)智能作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。

智能电动车就是其中的一个体现。

本次设计的简易智能电动车,采用AT89S52单片机作为小车的检测和控制核心;采用金属感应器TL-Q5MC来检测路上感应到的铁片,从而把反馈到的信号送单片机,使单片机按照预定的工作模式控制小车在各区域按预定的速度行驶,并且单片机选择的工作模式不同也可控制小车顺着S形铁片行驶;采用霍尔元件A44E检测小车行驶速度;采用1602LCD实时显示小车行驶的时间,小车停止行驶后,轮流显示小车行驶时间、行驶距离、平均速度以及各速度区行驶的时间。

本设计结构简单,较容易实现,但具有高度的智能化、人性化,一定程度体现了智能。

b5E2RGbCAP目录1 设计任务 (3)1.1 要求 (3)2 方案比较与选择 (4)2.1路面检测模块 (4)2.2 LCD显示模块 (5)2.3测速模块 (5)2.4控速模块 (6)2.5模式选择模块 (7)3 程序框图 (7)4 系统的具体设计与实现 (9)4.1路面检测模块 (9)4.2 LCD显示模块 (9)4.3测速模块 (9)4.4控速模块 (9)4.5复位电路模块 (9)4.6模式选择模块 (9)5 最小系统图 (10)6 最终PCB板图 (12)7 系统程序 (13)8 致谢 (46)9 参考文献 (47)10 附录 (48)1. 设计任务:设计并制作了一个智能电动车,其行驶路线满足所需的要求。

1.1 要求:1.1.1 基本要求:<1)分区控制:如<图1)所示:<图1)车辆从起跑线出发<出发前,车体不得超出起跑线)。

电磁智能小车设计报告

电磁智能小车设计报告

标题:电磁感应智能电动车摘要:本系统以AVR单片机MEGAl6为核心器件,实现对驱动电路的控制,使电动小车自动行驶。

利用电磁原理,在车模前上方水平方向固定两个相距为L的电感,通过比较两个电感中产生的感应电动势大小即可判断小车相对于导线的位置,进而做出调整,引导小车大致循线行驶。

用PWM技术控制小车的直流电动机转动,完成小车位置、速度、时间等的控制。

利用干簧管来检测跑道的起始和终点位置从而完成小车的起步及停车。

系统总体设计:基于电磁感应的智能寻迹车模系统以AVR单片机MEGAl6(该芯片能够不需要外围晶振和复位电路而独立工作,非常适合智能寻迹车模的要求。

)为核心,由单片机模块、路径识别模块、直流电机驱动模块、舵机驱动模块等组成,如下图所示。

直流电动机为车辆的驱动装置,转向电动机用于控制车辆行驶方向。

智能寻迹车模利用电磁感应在跑道上自主寻迹前进,转向。

单片机模块(控制模块):寻迹车模采用AVR内核的ATMEGAl6。

该芯片能够不需要外围晶振和复位电路而独立工作,非常适合智能寻迹车模的要求。

路径识别模块:本方案就是在车模前上方水平方向固定两个相距为L的电感。

左边的线圈的坐标为(x,h,z),右边的线圈的位置(x-L,h,z)。

由于磁场分布是以z轴为中心的同心圆,所以在计算磁场强度的时候我们仅仅考虑坐标(x,y)。

由于线圈的轴线是水平的,所以感应电动势反映了磁场的水平分量。

计算感应电动势:图 1 线圈中感应电动势与它距导线水平位置x 的函数如果只使用一个线圈,感应电动势E 是位置x 的偶函数,只能够反映到水平位置的绝对值x 的大小,无法分辨左右。

为此,我们可以使用相距长度为L 的两个感应线圈,计算两个线圈感应电动势的差值:对于直导线,当装有小车的中轴线对称的两个线圈的小车沿其直线行驶,即两个线圈的位置关于导线对称时,则两个线圈中感应出来的电动势大小应相同、且方向亦相同。

若小车偏离直导线,即两个线圈关于导线不对称时,则通过两个线圈的磁通量是不一样的。

arm智能小车设计方案

arm智能小车设计方案

摘要随着汽车工业的迅速发展,关于汽车的研究也就越来越受人们的关注,而汽车的智能化已成为科技发展的新方向。

本设计就是在这样的背景下提出来的。

此次设计的简易智能小车是基于arm11控制及传感器技术的,实现的功能是小汽车可自动识别目标(比如一个小球),,利用电两个电机的差动调节,控制电动小汽车的自动避障、寻光及自动停车。

通过摄像头采集视野范围图像并对图像处理进行目标识别,并由arm系统来控制智能车的行驶状态.。

11。

1智能小车的意义和作用自第一台工业机器人诞生以来,机器人的发展已经遍及机械,电子,冶金,交通,宇航,国防等领域。

近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式.人们在不断探讨,改造,认识自然的过程中,由此发展起来的智能小车引起了众多学者的广泛关注和极大的兴趣.智能小车,也就是轮式机器人,最适合在那些人类无法工作的环境中工作,该技术可以应用于无人驾驶机动车,无人生产线,仓库,服务机器人,航空航天等领域。

作为20世纪自动化领域的重大成就,机器人已经和人类社会的生产、生活密不可分。

因此为了使智能小车工作在最佳状态,进一步研究及完善其速度和方向的控制是非常有必要的.智能小车要实现自动寻迹功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能.避障控制系统是基于自动导引小车(avg—auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线.使用传感器感知路线和障碍并作出判断和相应的执行动作.该智能小车可以作为机器人的典型代表.它可以分为三大组成部分:传感器检测部分,执行部分,cpu。

机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。

可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。

考虑使用价廉物美的红外反射式传感器来充当。

智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。

简易智能电动车控制系统设计方案

简易智能电动车控制系统设计方案

简易智能电动车控制系统设计摘要AT89S52单片机是一款八位单片机,它的易用性和多功能性受到了广大使用者的好评。

现在,单片机已广泛地应用在智能仪器仪表、机电设备过程控制、自动检测、家用电器和数据处理等各个方面。

随着单片机的发展以及它在各种复杂的控制系统、智能化系统中的广泛应用,它将渗透到生产和生活的各个领域。

本设计的理论设计方案、调试方法、测试数据分析方法及设计中的特色与创新.点等对自动运输机器人、家用清洁机器人、灭火机器人等自主及半自主机器人的设计与实现有一定的参考意义。

本文介绍了基于AT89S52单片机,利用红外传感器检测道路上的障碍,控制电动小车的自动避障,用PMW调速方式控制车子快慢速行驶,以及自动停车,并可以自动记录和显示时间、里程和速度,自动寻迹、检测铁片、发出声光信息和寻光功能。

整个系统的电路逻辑结构简单,可靠性能高,实现功能强大。

本文着重介绍了该系统的组成、硬件配置、软件设计、工作原理、功能以及技术性能。

本设计的特色就在于它利用AT89S52作为中心芯片对外部进行控制,在外部信号采集后经LM324电压比较器后能够给单片机输入稳定的高低电平,在小车行驶动力采用L293芯片具有足够的驱动力,选LCD1602做为显示器增加了本设计的显示功能,改变了传统的LED显示信息量小的局限性。

关键词:AT89S52单片机电动小车 PMW调速红外传感器自动避障 LM324 L293 LCD1602目录1 前言 (1)1.1 本论文的主要工作 (1)1.2 预期目标 (2)2 系统设计可行性分析 (2)2.1 总体方案 (2)2.2 电源模块方案 (2)2.3 智能车驱动方案 (3)2.4 直流调速方案 (3)2.5 检测放大器方案 (4)2.6 检测黑线方案 (6)2.7 检测铁片方案 (6)2.8 避障方案 (6)2.9 寻光方案 (6)2.10 停车方案 (7)2.11 行车距离检测方案 (7)2.12 声音提示方案 (8)2.13 显示部分 (8)2.14 系统工作原理 (8)2.15 本章小结 (9)3 系统硬件电路 (9)3.1 电源电路 (9)3.2 驱动电路 (10)3.3 检测电路 (11)3.3.1 黑线检测 (11)3.3.2 铁片检测 (11)3.3.3 障碍物检测 (12)3.4 单片机最小电路 (12)3.5 声光电路 (13)3.6 显示电路 (13)3.7 系统总电路图 (16)3.7 本章小结 (17)4 系统软件电路 (17)4.1 系统软件设计说明 (17)4.2 软件流程图 (17)4.3 本章小结 (29)5 硬件电路的制作与调试 (30)5.1 电路板的制作 (30)5.1.1 电路图的绘制 (30)5.1.2 制作电路板 (30)5.2 电路板的焊接 (31)5.2.1 手工焊锡要点 (31)5.2.2 焊锡操作要领 (31)5.3 电路的调试 (31)5.3.1 测试方法与仪器 (31)5.3.2 电源模块调试 (32)5.3.3 单片机模块调试 (32)5.3.4 检测模块调试 (32)5.4 本章小结 (34)6 结论 (34)致谢 (35)参考文献 (36)英文摘要 (37)附录成绩评定表1 前言随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。

简易智能电动车课程设计

简易智能电动车课程设计

简易智能电动车课程设计一、课程目标知识目标:1. 让学生理解简易智能电动车的基本构造与工作原理,掌握相关电子元件的功能与连接方式。

2. 使学生掌握简易智能电动车控制程序的设计与编写,了解编程语言在智能硬件中的应用。

3. 帮助学生了解智能电动车在实际生活中的应用,提高对科技产品的认识。

技能目标:1. 培养学生动手操作能力,能够独立完成简易智能电动车的组装与调试。

2. 培养学生编程思维,提高解决问题的能力,能够根据实际需求设计相应的控制程序。

3. 培养学生团队协作能力,学会在小组合作中共同解决问题,提高沟通与表达能力。

情感态度价值观目标:1. 激发学生对简易智能电动车及科技创新的兴趣,培养探索精神和创新意识。

2. 培养学生环保意识,让学生认识到智能电动车在节能减排方面的重要性。

3. 引导学生关注社会热点问题,培养社会责任感和使命感。

本课程针对中学生设计,结合学生年龄特点和知识背景,注重理论与实践相结合,以培养学生的动手能力、编程思维和创新能力为核心。

通过本课程的学习,学生能够掌握简易智能电动车的相关知识,提高实际问题解决能力,同时培养良好的团队合作精神和价值观。

二、教学内容1. 简易智能电动车基本原理:介绍电动车的工作原理、电池、电机、控制器等核心部件及其功能。

- 课本章节:第一章 电动车基础知识- 内容列举:电动车发展历程、基本构造、工作原理、电池类型与选择、电机特点。

2. 电子元件与电路连接:讲解常用电子元件的作用、电路连接方法及安全操作注意事项。

- 课本章节:第二章 电子元件与电路- 内容列举:电阻、电容、二极管、三极管、传感器等元件功能;电路图识读与连接。

3. 编程语言与控制程序设计:学习编程基础知识,以Arduino为例,设计智能电动车控制程序。

- 课本章节:第三章 编程语言与控制程序设计- 内容列举:编程语言基础、Arduino编程环境、程序结构、函数、逻辑控制、传感器数据读取与处理。

4. 简易智能电动车组装与调试:分组进行电动车组装,编写并测试控制程序,实现基本功能。

基于单片机的电动自行车智能控制系统设计及实现

基于单片机的电动自行车智能控制系统设计及实现

基于单片机的电动自行车智能控制系统设计及实现近年来,随着社会的不断发展进步,人们的生活水平不断提高,对于交通工具的需求也更加迫切。

而电动自行车作为一种环保、经济、便利的出行工具,得到了越来越多人的青睐。

然而,普通的电动自行车还存在着一些问题,如续航能力、车速限制等,这时候电动自行车智能控制系统的出现便能够有效地解决这些问题。

一、控制系统的设计电动自行车智能控制系统主要由控制器、驱动器、传感器和人机交互界面四部分组成。

1.控制器控制器是电动自行车智能控制系统的核心部件,它主要负责控制电动自行车的电机转速和方向,以及通过接收传感器信息来监测电动车的状态。

通常情况下,我们会选择一款高性价比的单片机,如ATmega328P等,它的性能稳定、功耗低,且能够很好地支持各种外设的连接,非常适合作为电动自行车控制器的芯片。

2.驱动器驱动器是控制器和电动机之间的接口,它的主要任务是根据控制器的指令,控制电动机的工作状态。

驱动器使用高功率MOS管作为开关元件,能够支持电压和电流较大的电动机,在使用时需要特别注意安全问题。

3.传感器传感器是智能控制系统中的重要组成部分,它通过感知各种物理量的变化,并将其转换成可信的电信号,提供给控制器进行处理。

常用的传感器有速度传感器、电机温度传感器、电压传感器等,可以有效地监测电动自行车的状态,提高驾驶安全性。

4.人机交互界面人机交互界面包括显示器、按键等部分,它能够让车主实时了解电动车的状态,同时也可以通过按键来设置不同的工作模式。

智能控制系统的人机交互界面需要设计简洁易用、界面友好的界面,提高用户的体验感。

二、控制系统的实现在控制系统的实现过程中,需要注意以下几个问题:1.电路设计电动自行车智能控制系统的电路设计需要考虑到电源、开关、传感器等各个方面,保证整个系统的可靠性和安全性。

2.程序编写单片机程序的编写需要有一定的编程基础,同时需要结合控制器和驱动器的控制要求,编写出一套完整的控制程序,并对程序进行调试和优化,保证系统的稳定运行和高效性能。

电动车设计规范范文

电动车设计规范范文

电动车设计规范范文一、外观设计1.外观美观,符合人体工学原理,便于操作和驾驶。

2.车身结构坚固,具有良好的抗冲击能力。

3.车身表面涂层耐磨、防腐蚀,具有较长的使用寿命。

二、电池系统1.电池容量和输出功率要满足车辆的行驶里程和性能需求。

2.电池采用高能量密度、低自放电率、长循环寿命的锂离子电池。

3.电池系统具备过充、过放、过流、过温等保护功能,确保电池的安全性和稳定性。

三、电机系统1.电机功率和扭矩要满足车辆的加速和爬坡需求。

2.电机具有较高的效率和较低的噪音。

3.电机具备过热、过载等保护功能,确保电机的安全和可靠性。

四、控制系统1.控制系统具备智能化、自适应和故障自诊断等功能。

2.控制系统的响应速度和精度要满足车辆的操控需求。

3.控制系统具有多种驾驶模式和能量回收功能,提高能源利用效率。

五、安全系统1.车辆具备强制性的刹车系统,确保车辆能够在紧急情况下迅速停车。

2.车辆具备照明和信号系统,确保在夜间和恶劣天气条件下的行驶安全。

3.车辆具备防盗和防抱轮系统,提高车辆的安全性和稳定性。

六、人机工程学1.驾驶座椅和脚踏板位置合理,符合不同身高和体型的驾驶员需求。

2.操纵杆、按钮和显示屏位置合理,易于操作和观察。

3.仪表盘和控制面板的设计简洁明了,易于理解和操作。

七、环保要求1.车辆的排放要符合国家和地方的环保标准。

2.车辆的材料和制造工艺要符合环保要求,尽量降低对环境的污染。

3.车辆的废弃物和废液处理要符合环保要求,尽量实现资源的循环利用。

总之,电动车设计规范旨在确保电动车的安全性、性能和质量,同时考虑到人机工程学和环保要求,为用户提供更好的驾驶体验,并促进电动车产业的可持续发展。

简易智能电动车毕业论文

简易智能电动车毕业论文

目录摘要 (I)关键词 (I)Abstract (I)Key words (II)1 前言 (1)1.1 研究背景 (1)1.2 研究意义 (1)1.2 智能小车的现状 (3)1.3 本次设计任务与要求 (3)2 方案设计与论证 (4)2.1 主控系统 (4)2.2 电源模块 (5)2.3 电机驱动模块 (5)2.4 电机选择 (5)2.5 避障模块 (6)2.6 循迹模块 (6)2.7 寻光模块 (7)2.8 声光报警系统 (7)3 硬件设计 (8)3.1 总体设计 (8)3.2 电源模块 (8)3.3 单片机最小系统 (9)3.3.1 单片机电源 (9)3.3.2 复位电路 (10)3.3.3 时钟电路 (11)3.4 电机驱动模块 (11)3.5 循迹模块 (13)3.6 寻光模块 (13)3.7 避障模块 (14)3.8 声光报警系统 (14)4 软件设计 (15)4.1 循迹算法设计 (15)4.2 避障算法设计 (16)4.3 寻光算法设计 (17)4.4 主程序设计 (18)5 结论 (19)参考文献 (20)致谢 (21)附录A 程序 (22)附录B 图片 (29)简易智能电动车摘要本设计中的简易智能电动车是以单片机AT89S52为核心,以两个直流电机作为小车动力(电机的驱动采用L298集成H桥芯片),用三对反射式红外传感器作为小车的“眼睛”来避障,用五对TCRT5000(反射式一体化光电探测器)来循迹,用光敏电阻的光敏特性来寻光,用高亮度发光二极管和和蜂鸣器发出声光警报。

通过控制两个电机的转速及正反转来实现小车的:前进,后退,左前转,右前转,左后退,右后退,减速,停止。

而实现小车的循迹、避障、寻光则是通过传感器采集信号后经LM324放大处理后传输到单片机,通过编程处理采集到的信号来控制小车做出智能反应,达到智能电动车的设计要求。

关键词光敏电阻;避障;循迹;寻光;报警Simple Intelligent Electric CarsAbstractThe simple intelligence electric motor cars in this design with single chip AT89S52 as core, driven by two DC motors (the driving of motors adopted L298 integrated H bridge chip), used three pairs of reflective infrared sensors to avoid obstacles as “eyes” of the cars, five pairs of TCRT5000 (reflex integrated optoelectronic detector) to vault, photosensitivity of photo resistor to find light, HB LED and buzzer to sound audio and video warning. Achieve goals of forward,backward, left forward steering, right forward steering, left backward, right backward, decelerate and stop by controlling the revolving speed and reverse of these two motors. As for vault, avoid obstacles, and find light, are realized by amplification processing after transmission to microcontroller through the sensors to collect signal after LM324. at last used the collective signal through the programming design to let the car make intelligent reaction, for meeting the requirements of intelligence electric motor cars.Key wordsPhotoconductive resistance; Obstacle avoidance; Follow the mark; Search light; alarm1 前言1.1 研究背景自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防、探索等领域。

电子大赛-设计--电赛智能小车

电子大赛-设计--电赛智能小车

简易智能小车作品类别:第五类引言本系统采用 AT89S52 作为主控制芯片,整合控制器模块,金属探测模块,障碍物探测模块,路面检测模块,光源探测模块,电机驱动模块,实现小车自动寻路,金属探测,避障和寻光入库。

电路结构简单,可靠性能高,无论在结构和技术上都具有较好的科学性,在无人区引导探测金属矿源方面具有一定的应用前景。

方案设计一、设计要求:1.电动车从起跑线出发,沿引导线到达 B 点。

在“直道区”铺设的白纸下沿引导线埋有 1~3 块薄铁片。

电动车检测到薄铁片时需立即发出声光指示信息,并实时存储、显示在“直道区”检测到的薄铁片数目。

2.电动车到达 B 点以后进入“弯道区”,沿圆弧引导线到达 C 点要求电动车到达 C 点检处停车 5 秒,停车期间发出断续的声光信息。

3.电动车通过障碍区,在光源的引导下,进入车库。

简易路程图二、方案选择:1.电机驱动方案的选择与论证方案一:使用继电器对电机进行开关控制和调制。

但缺点很明显,这种电路不能和单片机直接连接,因为它返回“0”时,并没有接到地上,所以单片机并不能识别,反而都会的还是0,其次继电器响应慢而且机械结构容易坏。

方案二:使用三极管或者达林顿管,结合单片机输出 PWM 信号实现调速的目的,此方案易于实施,但若控制电机转动方向较为困难工作不是很稳定。

方案三:使用PWM控制芯片来实现对电机的控制,控制就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形。

2.路面寻线模块方案一:采用光敏传感器,根据白色背景和黑线反光程度的不同来判断传感器是否位于黑线上。

方案二:采用反射式红外传感器来进行探测。

只要选择数量和探测距离合适的红外传感器,可以准确的判断出黑线的位置。

方案选择:采用方案二。

方案一受环境光的影响太大,效果不佳。

而红外光不易受到环境光的干扰。

3.金属检测模块采用金属接近开关来检测铁片,当金属接近时,高频磁场在金属中产生了涡流,使得LC 谐振回路的震荡幅度下降到阈值电压,开关输出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
入库等功能。 二、任务
(1)循线行进,包括直行和圆弧 (2)检测线下安装的金属块 (3)避障,障碍物的摆设不固定 (4)寻光入库 (5)路程计算 三、指标 (1)检测出所有的金属块,以及它们的位置 (2)顺利避障,不应该碰撞障碍物,尽可能不刮擦障碍物 (3)顺利入库,车体停放于车库黑线内 (4)总耗时不超过90S,并尽可能减小耗时
2.3 硬件设计
• 2.3.2 金属传感电路及安装
金属传感器使用集成金属传感器。 集成金属 传感器只有三根引线,两根为电源和地线,一根 为输出。 传感器安放在车的前部,离地1CM,这样有利于可靠地检 测金属片。
电感式接近开关由三大部分组成:振荡器、开关电路及放大 输出电路。
振荡器产生一个交变磁场。当金属物体接近这一磁场, 并达到感应距离时,在金属物体内产生涡流,从而导致振 荡衰减,以至停振。振荡器振荡及停振的变化被后级放大 电路处理并转换成开磁信号,触发驱动控制器件,从而达 到非接触式检测目的。 物体离传感器越近,线圈内的阻尼 就越大,阻尼越大,传感器振荡器的电流越小。
2.3 硬件设计
2.3.1 循线检测电路 (1) 调节RP1可以改变检测的灵敏度 可以设计6个传感器,组成传感器阵列。
ST178:单光束反射取样式光电传感器
1.采用高发射功率红外光电二极管和高灵敏度光电 晶体管组成。
2.检测距离可调整范围大,4-10mm可用。 3.采用非接触检测方式。
(2)当检测到黑线时电压比较器LM393的同相输入Ⅴin拉低, 输出为低电平。当检测到黑线时,接收管截止,同相输入 Ⅴin为高,比较器输出为高电平。
2. 系统方案选择和论证
2.1 系统基本方案
金属探测 模块
路面探测 模块
光源探测 模块
障碍物探测 模块
控制器模态标志 模块
2.2 各模块方案的选择和论证
2.2.1循线检测
作用:实现小车跟踪黑色轨道行使。
方案1:采用发光二极管与光敏电阻构成检测电路; 缺点:易受外界干扰。由于外界光亮条件不定,一旦
LJ18A3-8-Z/BX 金属探测传感器/
2.3 硬件设计
• 2.3.3 光源检测
光源检测采用光敏二极管
在光敏管的外面加上一个遮光罩,使得一个光敏 管只对一个小角度内的强光源敏感。
光敏管阵列实物照
2.3 硬件设计
• 2.3.4 障碍检测电路
可以采用超声波测距模块
可以选择红外检测电路的成品模块
简易智能电动车设计
2003年全国大学生电子设计竞赛E题
1. 设计任务和要求
1.2 设计要求
1.2.1 基本要求
(1)电动车从起跑线出发(车体不得超过起跑线),沿引 导线到达B点。在“直道区”铺设的白纸下沿引导线埋有1~3 块宽度为15cm、长度不等的薄铁片。电动车检测到薄铁片 时需立即发出声光指示信息,并实时存储、显示在“直道区” 检测到的薄铁片数目。
与磁场的大小有关)并在车轮上安装磁片,利用位置固定 的开关型霍尔元器件来检测车轮的转动,通过单位时间内 的脉冲数进行车速测量。 方案二:光反射式
采用反射式红外器件。在车轮轮辐面板上均匀画出黑 底白线或白底黑线,通过正对线条的反射式红外器件,产 生脉冲。通过对脉冲的计数测速。 方案三:光对射式
采用对射式红外传感器。在轮辐面板上均匀刻出孔, 在轮子两侧固定相对的红外发射、接收器件。在过孔处接 收器可以接收到信号。从而轮子转动时可以产生连续脉冲 信号,通过对脉冲的计数进行车速测量。
采用红外检测的方式。检测前方7-8CM的障碍物。 采用红外一体接收头和555电路来制作检测电路
• 2.3.4 障碍检测电路
采用红外一体接收头和555电路来制作检测电路,图中RP1用于调整红外光的 载波频率,应调整为40KHZ,RP2用于调整发光管的强度,可以达到调整检 测距离的目的。
红外测障发射电路
1.2.2 发挥部分 (1)电动车在“直道区”行驶过程中,存储并显示每个薄 铁片(中心线)至起跑线间的距离。 (2)电动车进入停车区域后,能进一步准确驶入车库中, 要求电动车的车身完全进入车库。 (3)停车后,能准确显示电动车全程行驶时间。 (4)其它。
1.3 题目分析
一、目标 设计制作一个智能小车、具有循线、金属检测、避障、寻光
(2)电动车到达B点以后进入“弯道区”,沿圆弧引导线到 达C点(也可脱离圆弧引导线到达C点)。C点下埋有边长为 15cm的正方形薄铁片,要求电动车到达C点检测到薄铁片后 在C点处停车5秒,停车期间发出断续的声光信息。
(3)电动车在光源的引导下,通过障碍区进入停车区并 到达车库。电动车必须在两个障碍物之间通过且不得与其 接触。 (4)电动车完成上述任务后应立即停车,但全程行驶时 间不能大于90秒,行驶时间达到90秒时必须立即自动停车。
红外测障接收电路
2.3 硬件设计
• 2.3.5 电机驱动 采用L298集成H桥驱动芯片。在循线、避
• 2.2.5 光源检测
光敏器件:光敏电阻、光敏二极管、光敏
晶体管
检测光源方位:
光源
光源
双光敏管差 值检测
光敏管阵列 检测
2.2 各模块方案的选择和论证
• 2.2.6小车车体选择
2.2 各模块方案的选择和论证
2.2.7 车轮检速及路程计算
方案一:磁感应式 采用霍尔元器件(霍尔元器件应用霍尔效应,输出量
2.2 各模块方案的选择和论证
• 2.2.3 障碍物探测模块 • 作用:判断前进方向是否有障碍物,并确
定小车与障碍物的距离。 方案1:超声波测距技术 方案2:红外检测电路
2.2 各模块方案的选择和论证
• 2.2.4 驱动方式 电机:小型直流电机 驱动控制方式:PWM+H桥驱动
2.2 各模块方案的选择和论证
光线条件改变很可能造成误判和漏判。 方案2:采用红外发光管和红外光敏管构成检测电路;
此方案可以降低可见光的干扰,灵敏度高
2.2 各模块方案的选择和论证
• 2.2.2 金属探测模块 作用:跑道中金属块的探测。
金属探测原理:采用电涡流式传感器,利用电涡流对L、 Q、Z的影响探测金属。
可以自制金属传感器、也可以选用集成金属传感器。 集成金属传感器性能可靠,直接输出数字信号,可以简 化电路
相关文档
最新文档