中考数学试题分类汇编——四边形
2018-2020年广西中考数学试题分类(9)——四边形
2018-2020年广西中考数学试题分类(9)——四边形一.多边形(共1小题)1.(2019•百色)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.二.多边形内角与外角(共1小题)2.(2019•梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°三.平行四边形的性质(共5小题)3.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5√2B.6√2C.4√5D.5√54.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对5.(2019•梧州)如图,▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.6.(2018•百色)平行四边形ABCD中,∠A=60°,AB=2AD,BD的中垂线分别交AB,CD于点E,F,垂足为O.(1)求证:OE=OF;(2)若AD=6,求tan∠ABD的值.7.(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.四.平行四边形的判定(共3小题)8.(2019•河池)如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF9.(2018•玉林)在四边形ABCD 中:▱AB ∥CD ▱AD ∥BC ▱AB =CD ▱AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有( )A .3种B .4种C .5种D .6种10.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:五.平行四边形的判定与性质(共1小题)11.(2020•玉林)已知:点D ,E 分别是△ABC 的边AB ,AC 的中点,如图所示.求证:DE ∥BC ,且DE =12BC . 证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF ,又AE =EC ,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:▱∴DF ∥=BC ;▱∴CF ∥=AD .即CF ∥=BD ;▱∴四边形DBCF 是平行四边形;▱∴DE ∥BC ,且DE =12BC . 则正确的证明顺序应是:( )A .▱→▱→▱→▱B .▱→▱→▱→▱C .▱→▱→▱→▱D .▱→▱→▱→▱六.菱形的性质(共5小题)12.(2020•河池)如图,菱形ABCD 的周长为16,AC ,BD 交于点O ,点E 在BC 上,OE ∥AB ,则OE 的长是 .13.(2019•广西)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO =4,S菱形ABCD=24,则AH=.14.(2020•桂林)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=√3,∠C=60°,求菱形ABCD的面积.15.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.16.(2018•柳州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.七.菱形的判定(共1小题)17.(2018•河池)如图,要判定▱ABCD是菱形,需要添加的条件是()A.AB=AC B.BC=BD C.AC=BD D.AB=BC18.(2020•玉林)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 菱形(填“是”或“不是”).19.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB 交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=34,求BC的长.20.(2018•南宁)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.九.矩形的性质(共2小题)21.(2019•玉林)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB边的碰撞次数是.22.(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.23.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.一十一.正方形的性质(共5小题)24.(2019•河池)如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A.1B.2C.3D.425.(2019•贵港)如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=35 26.(2018•梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)27.(2018•河池)如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C顺时针旋转90°,则点D旋转后的对应点D′的坐标是.28.(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F 点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2√2,EB=4,tan∠GEH=2√3,求四边形EHFG的周长.2018-2020年广西中考数学试题分类(9)——四边形参考答案与试题解析一.多边形(共1小题)1.【解答】解:∵S平行四边形S′S′S′S′=12S矩形SSSS,∴平行四边形A'B'C'D'的底边A′D′边上的高等于A′B′的一半,∴∠A'=30°.故答案为:30°二.多边形内角与外角(共1小题)2.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°9=140°.故选:D.三.平行四边形的性质(共5小题)3.【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=√SS2+SS2=√42+82=4√5.故选:C.4.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);▱同理可得出△AOB≌△COD(SAS);▱∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);▱同理可得:△ACD≌△CAB(SSS).▱因此本题共有4对全等三角形.故选:C.5.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵∠ADC=119°,DF⊥BC,∴∠ADF=90°,则∠EDH=29°,∵BE⊥DC,∴∠DEH=90°,∴∠DHE=∠BHF=90°﹣29°=61°.故答案为:61.6.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠2,∵EF是BD的中垂线,∴OD =OB ,∠3=∠4=90°,∴△DOF ≌△BOE ,∴OE =OF ;(2)作DG ⊥AB ,垂足为G ,∵∠A =60°,AD =6,∴∠ADG =30°,∴AG =12AD =3,∴DG =√62−32=3√3,∵AB =2AD ,∴AB =2×6=12,BG =AB ﹣AG =12﹣3=9,∴tan ∠ABD =SS SS =3√39=√33 7.【解答】证明:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO ,在△AOE 和△COF 中 {∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOE ≌△COF (ASA ),∴AE =CF .四.平行四边形的判定(共3小题)8.【解答】解:∵在△ABC 中,D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥12AC 且DE =12AC ,A 、根据∠B =∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B 、根据∠B =∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C 、根据AC =CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D 、根据AD =CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误.故选:B .9.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:▱▱、▱▱、▱▱、▱▱. 故选:B .10.【解答】证明:连接AC ,如图所示:在△ABC 和△CDA 中,{SS =SS SS =SS SS =SS ,∴△ABC ≌△CDA (SSS ),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形.五.平行四边形的判定与性质(共1小题)11.【解答】证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF , ∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴AD =BD ,AE =EC ,∴四边形ADCF 是平行四边形,∴CF ∥=AD .即CF ∥=BD ,∴四边形DBCF 是平行四边形,∴DF ∥=BC , ∴DE ∥BC ,且DE =12BC . ∴正确的证明顺序是▱→▱→▱→▱,故选:A .六.菱形的性质(共5小题)12.【解答】解:∵菱形ABCD 的周长为16,∴AB =BC =CD =AD =4,OA =OC ,∵OE ∥AB ,∴BE =CE ,∴OE 是△ABC 的中位线,∴OE =12AB =2,故答案为:2.13.【解答】解:∵四边形ABCD 是菱形,∴BO =DO =4,AO =CO ,AC ⊥BD ,∴BD =8,∵S 菱形ABCD =12AC ×BD =24,∴AC =6,∴OC =12AC =3,∴BC =√SS 2+SS 2=5,∵S 菱形ABCD =BC ×AH =24,∴AH =245; 故答案为:245.14.【解答】(1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∵点E ,F 分别是边AD ,AB 的中点,∴AF =AE ,在△ABE 和△ADF 中,{SS =SSSS =SS SS =SS ,∴△ABE ≌△ADF (SAS );(2)解:连接BD ,如图:∵四边形ABCD 是菱形,∴AB =AD ,∠A =∠C =60°,∴△ABD 是等边三角形,∵点E 是边AD 的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=tan30°BE=√33BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×√3=2√3.15.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=216.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=√SS2−SS2=√22−12=√3,∴BD=2√3七.菱形的判定(共1小题)17.【解答】解:根据邻边相等的平行四边形是菱形,可知选项D正确,故选:D.八.菱形的判定与性质(共3小题)18.【解答】解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两张等宽的长方形纸条交叉叠放在一起,∴AE=AF,∴S平行四边形ABCD=BC•AE=DC•AF,∴BC=DC,∴▱ABCD是菱形.故答案为:是.19.【解答】(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO =∠ECO ,在△AOD 和△COE 中,{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOD ≌△COE (ASA ),∴AD =CE ,∵CE ∥AB ,∴四边形AECD 是平行四边形,又∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD ,∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形,∴AC ⊥ED ,在Rt △AOD 中,tan ∠DAO =SS SS =SSSSSSS =34,设OD =3x ,OA =4x ,则ED =2OD =6x ,AC =2OA =8x ,由题意可得:12×6S ×8S =24,解得:x =1,∴OD =3,∵O ,D 分别是AC ,AB 的中点,∴OD 是△ABC 的中位线,∴BC =2OD =6.20.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∵BE =DF ,∴△AEB ≌△AFD∴AB =AD ,∴四边形ABCD 是菱形.(2)连接BD 交AC 于O .∵四边形ABCD 是菱形,AC =6,∴AC ⊥BD ,AO =OC =12AC =12×6=3,∵AB =5,AO =3,∴BO =√SS 2−SS 2=√52−32=4,∴BD =2BO =8,∴S 平行四边形ABCD =12×AC ×BD =24. 九.矩形的性质(共2小题)21.【解答】解:如图以AB 为x 轴,AD 为y 轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB 边的碰撞有2次,∵2019÷6=336…3,当点P 第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P 的坐标为(6,4)∴它与AB 边的碰撞次数是=336×2+1=673次故答案为67322.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB =CD ,AD =BC ,AD ∥BC ,在Rt △ABE 和Rt △CDF 中,{SS =SS SS =SS , ∴Rt △ABE ≌Rt △CDF (HL );(2)解:当AC ⊥EF 时,四边形AECF 是菱形,理由如下:∵△ABE ≌△CDF ,∴BE =DF ,∵BC =AD ,∴CE =AF ,∵CE ∥AF ,∴四边形AECF 是平行四边形,又∵AC ⊥EF ,∴四边形AECF 是菱形.一十.矩形的判定与性质(共1小题)23.【解答】解:(1)证明:过点E 、F 分别作AD 、BC 的垂线,垂足分别是G 、H .∵∠3=∠4,∠1=∠2,EG ⊥AD ,EM ⊥CD ,EM ′⊥AB∴EG =ME ,EG =EM ′∴EG =ME =M ′E =12MM ′同理可证:FH =NF =N ′F =12NN ′ ∵CD ∥AB ,MM ′⊥CD ,NN ′⊥CD ,∴MM ′=NN ′∴ME =NF =EG =FH又∵MM ′∥NN ′,MM ′⊥CD∴四边形EFNM 是矩形.(2)∵DC ∥AB ,∴∠CDA +∠DAB =180°,∵∠3=12SSSS ,∠2=12∠DAB∴∠3+∠2=90°在Rt △DEA ,∵AE =4,DE =3,∴AD =√3+4=5.∵四边形ABCD 是平行四边形,∴∠DAB =∠DCB ,又∵∠2=12∠DAB ,∠5=12∠DCB ,∴∠2=∠5由(1)知GE =NF在Rt △GEA 和Rt △CNF 中 {∠2=∠5SSSS =SSSS =90°SS =SS∴△GEA ≌△CNF∴AG =CN在Rt △DME 和Rt △DGE 中∵DE =DE ,ME =EG∴△DME ≌△DGE∴DG =DM∴DM +CN =DG +AG =AD =5∴MN =CD ﹣DM ﹣CN =9﹣5=4.∵四边形EFNM 是矩形.∴EF =MN =4一十一.正方形的性质(共5小题)24.【解答】证明:∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,AB =BC ,∠ABE =∠BCF =90°,在△ABE 和△BCF 中,{SS =SS SSSS =SSSS SS =SS ,∴△ABE ≌△BCF (SAS ),∴∠BFC =∠AEB ,∵AD ∥BC ,AB ∥CD ,∴∠DAE =∠AEB ,∠BFC =∠ABF ,故图中与∠AEB 相等的角的个数是3.故选:C .25.【解答】解:∵正方形ABCD ,DPMN 的面积分别为S 1,S 2,∴S 1=CD 2,S 2=PD 2,在Rt △PCD 中,PC 2=CD 2+PD 2,∴S 1+S 2=CP 2,故A 结论正确;连接CF ,∵点H 与B 关于CE 对称,∴CH =CB ,∠BCE =∠ECH ,在△BCE 和△HCE 中,{SS =SS SSSS =SSSS SS =SS∴△BCE ≌△HCE (SAS ),∴BE =EH ,∠EHC =∠B =90°,∠BEC =∠HEC ,∴CH =CD ,在Rt △FCH 和Rt △FCD 中{SS =SS SS =SS ∴Rt △FCH ≌Rt △FCD (HL ),∴∠FCH =∠FCD ,FH =FD ,∴∠ECH +∠FCH =12∠BCD =45°,即∠ECF =45°,作FG ⊥EC 于G ,∴△CFG 是等腰直角三角形,∴FG =CG ,∵∠BEC =∠HEC ,∠B =∠FGE =90°,∴△FEG ∽△CEB ,∴SS SS =SS SS =12, ∴FG =2EG ,设EG =x ,则FG =2x ,∴CG =2x ,CF =2√2x ,∴EC =3x ,∵EB 2+BC 2=EC 2,∴54BC 2=9x 2,∴BC 2=365x 2, ∴BC =6√55x , 在Rt △FDC 中,FD =√SS 2−SS 2=√(2√2S )2−365S 2=2√55x , ∴3FD =AD ,∴AF =2FD ,故B 结论正确;∵AB ∥CN ,∴SS SS =SS SS =12, ∵PD =ND ,AE =12CD , ∴CD =4PD ,故C 结论正确;∵EG =x ,FG =2x ,∴EF =√5x ,∵FH =FD =2√55x , ∵BC =6√55x ,∴AE =3√55x ,作HQ ⊥AD 于Q ,HS ⊥CD 于S ,∴HQ ∥AB ,∴SS SS =SS SS ,即3√55S =2√55S √5S ,∴HQ =6√525x , ∴CS =CD ﹣HQ =6√55x −6√525x =24√525x∴cos ∠HCD =SS SS =24√525S 655S=45,故结论D 错误, 故选:D .26.【解答】解:∵在正方形ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D (﹣3,2),∴将正方形ABCD 向右平移3个单位,则平移后点D 的坐标是(0,2),故选:B .27.【解答】解:△CBD 绕点C 顺时针旋转90°得到的图形如上图所示.∵D 的坐标为(3,1),∴OA =3,AD =1∵在正方形OABC 中,OA =AB ,∴AB =3,∴BD =AB ﹣AD =2,∴OD '=BD =2,∴D '的坐标为(﹣2,0),故答案为(﹣2,0).28.【解答】解:(1)∵四边形ABCD 是正方形,∴AB =CD ,AB ∥CD ,∴∠DCA =∠BAC ,∵DF ∥BE ,∴∠CFD =∠BEA ,∵∠BAC =∠BEA +∠ABE ,∠DCA =∠CFD +∠CDF ,∴∠ABE =∠CDF ,在△ABE 和△CDF 中,∵{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∵BH =DG ,∴BE +BH =DF +DG ,即EH =GF ,∵EH ∥GF ,∴四边形EHFG 是平行四边形;(2)如图,连接BD ,交EF 于O ,∵四边形ABCD 是正方形,∴BD ⊥AC ,∴∠AOB =90°,∵AB =2√2,∴OA =OB =2,Rt △BOE 中,EB =4,∴∠OEB =30°,∴EO =2√3,∵OD =OB ,∠EOB =∠DOF ,∵DF ∥EB ,∴∠DFC =∠BEA ,∴△DOF ≌△BOE (AAS ),∴OF =OE =2√3,∴EF =4√3,∴FM =2√3,EM =6,过F 作FM ⊥EH 于M ,交EH 的延长线于M , ∵EG ∥FH ,∴∠FHM =∠GEH ,∵tan ∠GEH =tan ∠FHM =SS SS =2√3, ∴2√3SS =2√3,∴HM =1,∴EH =EM ﹣HM =6﹣1=5,FH =√SS 2+SS 2=√(2√3)2+12=√13, ∴四边形EHFG 的周长=2EH +2FH =2×5+2√13=10+2√13.。
2021年全国中考数学真题分类汇编--四边形:多边形与平行四边形(答案版 )
2021全国中考真题分类汇编(四边形)----多边形与平行四边形一、选择题1. (2021•湖南省常德市)一个多边形的内角和是1800°,则这个多边形是( )边形.A. 9B. 10C. 11D. 12 【答案】D【解析】【分析】根据n 边形的内角和是(n ﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n 的方程,从而求出边数.【详解】根据题意得:(n ﹣2)×180=1800,解得:n =12.故选:D .2. (2021•株洲市)如图所示,在正六边形内,以为边作正五边形,则( )A.B. C. D.【答案】B 3. (2021•江苏省连云港)正五边形的内角和是( )A.B. C. D.【答案】D【解析】【分析】n 边形的内角和是 ,把多边形的边数代入公式,就得到多边形的内角︒︒︒︒ABCDEF AB ABGHI FAI ∠=10︒12︒14︒15︒360︒540︒720︒900︒()2180n -⋅︒和.详解】(7﹣2)×180°=900°.故选D .4. (2021•江苏省南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2 【答案】D【解析】【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误; B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误; C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误; D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .5. (2021•江苏省扬州) 如图,点A 、B 、C 、D 、E 在同一平面内,连接、、、、,若,则( )A.B. C. D.【答案】D【解析】 【分析】连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,【AB BC CD DE EA 100BCD ∠=︒A B D E ∠+∠+∠+∠=220︒240︒260︒280︒故选D .6. (2021•四川省眉山市)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:1【分析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【解答】解:这个八边形的内角和为:(8﹣2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D .7. (2021•四川省自贡市) 如图,AC 是正五边形ABCDE 的对角线,的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】 【分析】根据正五边形的性质可得,,根据等腰三角形的性质可得,利用角的和差即可求解.ACD∠108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒【详解】解:∵ABCDE 是正五边形,∴,,∴,∴,故选:A .8. (2021•北京市)下列多边形中,内角和最大的是( )DA.B .C .D . 9. (2021•福建省)如图,点F 在正ABCDE 五边形的内部,△ABF 为等边三角形,则∠AFC 等于( )CA .108°B .120°C .126°D .132° 10. (2021•云南省)一个10边形的内角和等于( )CA .1800°B .1660°C .1440°D .1200° 11. (2021•山东省济宁市)如图,正五边形ABCDE 中,∠CAD 的度数为( )A .72°B .45°C .36°D .35°【分析】首先可根据五边形内角和公式求出每个内角的度数,然后求出∠CAB 和∠DAE ,108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒1083672ACD ∠=︒-︒=︒即可求出∠CAD.【解答】解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°,故选:C.12.(2021•贵州省铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A. 等边三角形B. 正方形C. 正五边形D. 正六边形【答案】C13.(2021•襄阳市)正多边形的一个外角等于60°,这个多边形的边数是()A. 3B. 6C. 9D. 12【答案】B14.(2021•绥化市)已知一个多边形内角和是外角和的4倍,则这个多边形是()A. 八边形B. 九边形C. 十边形D. 十二边形【答案】C【解析】【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.15. (2021•河北省)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO =2,则S正六边边ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化【分析】正六边形ABCDEF的面积=S矩形AFDC+S△EFD+S△ABC,由正六边形每个边相等,每个角相等可得FD=AF,过E作FD垂线,垂足为M,利用解直角三角形可得△FED 的高,即可求出正六边形的面积.【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO +OD )×AF=FD ×AF=10,∴FD ×AF =20,DM =cos30°DE =x ,DF =2DM =x , EM =sin30°DE =,∴S 正六边形ABCDEF =S 矩形AFDC +S △EFD +S △ABC=AF ×FD +2S △EFD=x •x +2×x •x=x 2+x 2 =20+10=30,故选:B .16.(2021•株洲市) 如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )A. B. C. D.ABCD E BC 132DCE ∠=︒A ∠=38︒48︒58︒66︒【答案】B17.(2021•山东省泰安市)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:①AM=CN;②若MD=AM,∠A=90°,则BM=CM;③若MD=2AM,则S△MNC=S△BNE;④若AB=MN,则△MFN与△DFC全等.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,证明△MDB≌△NBD,从而判断①正确;若MD=AM,∠A=90°,则平行四边形ABCD为矩形,通过证明△BAM≌△CDM可以判断②;过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,通过三角形面积公式可以判断③;若AB=MN则四边形MNCD是等腰梯形,通过证明△MNC≌△DCN和△MFN≌△DFC即可判断④.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵E是BD的中点,∴BE=DE,在△MDB和△NBD中,,∴△MDB≌△NBD(ASA),∴DM=BN,∴AM=CN,故①正确;②若MD=AM,∠A=90°,则平行四边形ABCD为矩形,∴∠D=∠A=90°,在△BAM和△CDM中,,∴△BAM≌△CDM(SAS),∴BM=CM,故②正确;③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,由①可知四边形MBCD是平行四边形,E为BD中点,∴MG=2EH,又∵MD=2AM,BN=MD,AM=NC,∴S△ANC=NC•MG=•BN•2EH=BN•EH=S△BNE,故③正确;④∵AB=MN,AB=DC,∴MN=DC,∴四边形MNCD是等腰梯形,∴∠MNC=∠DCN,在△MNC和△DCN中,,∴△MNC≌△DCN(SAS),∴∠NMC=∠CDN,在△MFN和△DFC中,,∴△MFN≌△DFC(AAS),故④正确.∴正确的个数是4个,故选:D.18.(2021•陕西省)在菱形ABCD中,∠ABC=60°,连接AC、BD,则( )A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,∠ABD=,∵tan∠ABD=,∴,故选:D.19.(2021•河北省)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【分析】方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN⊥B,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.20.(2021•泸州市)如图,在平行四边形ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是()A. 61°B. 109°C. 119°D. 122°【答案】C【解析】 【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出,根据角平分线的性质得:AE 平分∠BAD 求,再根据平行线的性质得,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形∴,∴∵AE 平分∠BAD∴ ∵∴故选C .21. (2021•四川省南充市)如图,点O 是▱ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是( )A .OE =OFB .AE =BFC .∠DOC =∠OCD D .∠CFE =∠DEF【分析】证△AOE ≌△COF (ASA ),得OE =OF ,AE =CF ,∠CFE =∠AEF ,进而得出结论.【解答】解:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,180122BAD D ∠=︒-∠=︒DAE ∠AEC ∠//AB CD //AD BC 180********BAD D ∠=︒-∠=︒-︒=︒111226122DAE BAD ∠=∠=⨯︒=︒//AD BC 180********AEC DAE ∠=︒-∠=︒-︒=︒∴∠EAO =∠FCO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确,故选:A .22. (2021•天津市)如图,的顶点A ,B ,C 的坐标分别是,则顶点D 的坐标是( )A.B. C. D.【答案】C【解析】 【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .23. (2021•湖北省恩施州)如图,在▱ABCD 中,AB =13,AD =5,AC ⊥BC ,则▱ABCD ABCD Y ()()()2,0,1,2,2,2---()4,1-()4,2-()4,1()2,1是的面积为( )A.30B.60C.65D.【分析】根据平行四边形的性质以及勾股定理求出四边形ABCD的底边BC和其对角线AC的值,然后根据平行四边形的面积计算公式求解.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD=5.∵AC⊥BC,∴△ACB是直角三角形.∴AC===12.∴S▱ABCD=BC•AC=5×12=60.故选:B.24.(2021•湖北省荆门市)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.65°C.75°D.85°【分析】根据等腰直角三角形的性质求出∠FHE=45°,求出∠NHB=∠FHE=45°,根据三角形内角和定理求出∠HNB=105°,根据平行四边形的性质得出CD∥AB,根据平行线的性质得出∠2+∠HNB=180°,带哦求出答案即可.【解答】解:延长EH交AB于N,∵△EFH 是等腰直角三角形,∴∠FHE =45°,∴∠NHB =∠FHE =45°,∵∠1=30°,∴∠HNB =180°﹣∠1﹣∠NHB =105°,∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠2+∠HNB =180°,∴∠2=75°,故选:C .25.(2021•山东省威海市) 如图,在平行四边形ABCD 中,AD-3,CD=2.连接AC ,过点B 作BE ∥AC ,交DC 的延长线于点E ,连接AE ,交BC 于点F .若∠AFC=2∠D ,则四边形ABEC 的面积为( )B.C. 6D.【答案】B【解析】 【分析】先证明四边形ABEC 为矩形,再求出AC ,即可求出四边形ABEC 的面积.【详解】解:∵四边形ABCD 平行四边形,∴AB ∥CD ,AB =CD =2,BC =AD =3,∠D =∠ABC ,∵,是//BE AC∴四边形ABEC 为平行四边形,∵,∴,∵∠AFC =∠ABF +∠BAF ,∴∠ABF =∠BAF ,∴AF =BF ,∴2AF =2BF ,即BC =AE ,∴平行四边形ABEC 是矩形,∴∠BAC =90°,∴,∴矩形ABEC 的面积为故选:B26.(2021•浙江省衢州卷)如图,在中,,,,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A. 6B. 9C. 12D. 15【答案】B27.(2021•贵州省贵阳市)如图,在▱ABCD 中,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,若AB =3,AD =4,则EF 的长是( )2AFC D ∠=∠2AFC ABC ∠=∠AC ===AB AC =g ABC V 4AB =5AC =6BC =A .1B .2C .2.5D .3【分析】根据平行四边形的性质证明DF =CD ,AE =AB ,进而可得AF 和ED 的长,然后可得答案.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB =CD =3,AD =BC =5,∴∠DFC =∠FCB ,又∵CF 平分∠BCD ,∴∠DCF =∠FCB ,∴∠DFC =∠DCF ,∴DF =DC =3,同理可证:AE =AB =3,∵AD =4,∴AF =5﹣4=1,DE =4﹣3=1,∴EF =4﹣1﹣1=2.故选:B .28.(2021•湖南省娄底市)如图,点在矩形的对角线所在的直线上,,则四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形 【答案】A【解析】【分析】利用三角形全等的性质得,对应边相等及对应角相等,得出一组对边平行且相等,即可判断出形状. ,E F ABCD BD BE DFAECF【详解】解:由题意:,,又,,,,四边形为平行四边形,故选:A .二.填空题1. (2021•湖北省黄冈市)正五边形的一个内角是 108 度.【分析】因为n 边形的内角和是(n ﹣2)•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.【解答】解:(5﹣2)•180=540°,540÷4=108°.2. (2021•陕西省)正九边形一个内角的度数为 140° .【分析】先根据多边形内角和定理:180°•(n ﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.3. (2021•上海市)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.//,AD BC ADB CBD ∴∠=∠ FDA EBC ∴∠=∠,AD BC BE DF == ()ADF CBE SAS ∴V V ≌AF EC ∴=,//AFD CEB AF EC ∴∠=∠∴∴AECF 30°【解析】【分析】由六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF 中,∵直角三角板的最短边为1,∴正六边形ABCDEF 为1,∴△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形, ∵∠ABC =∠CDE =∠EFA =120︒,AB =BC = CD =DE = EF =FA =1,∴∠BAG =∠BCG =∠DCE =∠DEC =∠FAE =∠FEA =30︒,∴BG =DI = FH =, ∴由勾股定理得:AG =CG = CI = EI = EH = AH ∴AC =AE =,∴由勾股定理得:AI=, ∴S = 30°1232111332222⨯+=4. (2021•新疆) 四边形的外角和等于_______.【答案】360°.5. (2021•浙江省湖州市)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A ,B ,C,D ,E 是正五边形的五个顶点),则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式,求出每个内角的度数为108°,即∠ABC =∠BAE =108°,那么等腰△ABC 的底角∠BAC =36°,同理可求得∠DAE =36°,故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°,可以作为一个常识直接记住.6. (2021•江苏省盐城市)若一个多边形的每个外角均为40°,则这个多边形的边数为 9 .【分析】一个多边形的外角和为360°,而每个外角为40°,进而求出外角的个数,即为多边形的边数.【解答】解:360°÷40°=9,故答案为:9.7. (2021•广西玉林市)如图、在正六边形中,连接线,,,,,与交于点,与交于点为,与交于点,分别延长,于点,设.有以下结论:①;②;③重心、内心及外心均是点;④四边形绕点逆时针旋转与四边形重合.则所有正确结论的序号是______.ABCDEF AD AE AC DF DB AC BD M AE DF N MN AD O AB DC G 3AB =MN AD ⊥MN =DAG △的M FACD O 30°ABDE【答案】①②③8. (2021•浙江省衢州卷)如图,在正五边形ABCDE 中,连结AC ,BD 交于点F ,则的度数为________.【答案】9. (2021•江苏省扬州)如图,在中,点E 在上,且平分,若,,则的面积为________.【答案】50【解析】【分析】过点E 作EF ⊥BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∠BCE =∠BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ⊥BC ,垂足为F ,∵∠EBC =30°,BE =10,AFB∠72︒ABCD Y AD EC BED ∠30EBC ∠=︒10BE =ABCDY∴EF =BE =5, ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DEC =∠BCE ,又EC 平分∠BED ,即∠BEC =∠DEC ,∴∠BCE =∠BEC ,∴BE =BC =10,∴四边形ABCD 的面积===50,故答案为:50.10.(2021•山东省临沂市)在平面直角坐标系中,平行四边形ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是 (4,﹣1) .【分析】由题意A ,C 关于原点对称,求出点C 的坐标,再利用平移的性质求出点C 1的坐标可得结论.【解答】解:∵平行四边形ABCD 的对称中心是坐标原点,∴点A ,点C 关于原点对称,∵A (﹣1,1),∴C (1,﹣1),∴将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是(4,﹣1),故答案为:(4,﹣1).11.(2021•山东省菏泽市)如图,在Rt △ABC 中,∠C =30°,D 、E 分别为AC 、BC 的中点,DE =2,过点B 作BF ∥AC ,交DE 的延长线于点F ,则四边形ABFD 的面积为 8 .12BC EF ⨯105⨯【分析】由三角形的中位线定理证得DE∥AB,AB=2DE=4,进而证得四边形ABFD是平行四边形,在Rt△ABC中,根据勾股定理求出BC=4,得到BE=2,根据平行四边形的面积公式即可求出四边形ABFD的面积.【解答】解:∵D、E分别为AC、BC的中点,∵DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.12. 6.(2021•浙江省丽水市)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是__________.【答案】6或7【解析】【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.13.(2021•青海省)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AD与BC之间的距离为 6cm .【分析】设AB与CD之间的距离为h,由条件可知▱ABCD的面积是△ABD的面积的2倍,可求得▱ABCD的面积,再S四边形ABCD=BC•h,可求得h的长.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,在△ABD和△BCD中∴△ABD≌△BCD(SSS),∵AE⊥BD,AE=3cm,BD=8cm,∴S△ABD=BD•AE=×8×3=12(cm2),∴S四边形ABCD=2S△ABD=24cm2,设AD与BC之间的距离为h,∵BC=4cm,∴S四边形ABCD=AD•h=4h,∴4h=24,解得h=6cm,故答案为:6cm.14.(2021•浙江省嘉兴市)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .【分析】在Rt△ABC和Rt△OAB中,分别利用勾股定理可求出BC和OB的长,又AH⊥OB ,可利用等面积法求出AH 的长.【解答】解:如图,∵AB ⊥AC ,AB =2,BC =2, ∴AC ==2,在▱ABCD 中,OA =OC ,OB =OD ,∴OA =OC =,在Rt △OAB 中,OB ==,又AH ⊥BD ,∴OB •AH =OA •AB ,即=, 解得AH =. 故答案为:. 15.(2021•黑龙江省龙东地区)如图,在平行四边形中,对角线、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形是矩形..【答案】【解析】【分析】根据矩形的判定方法即可得出答案.【详解】解:∵四边形ABCD 为平行四边形,∴当时,四边形ABCD 为矩形.故答案为:.三、解答题1.(2021•湖北省武汉市)如图,AB ∥CD ,∠B =∠D ,BC 的延长线分别交于点E ,F,求ABCD AC BDABCD 90ABC ∠=︒90ABC ∠=︒90ABC ∠=︒证:∠DEF=∠F.【分析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD∥BC,根据平行线的性质即可得到结论.【解答】证明:∵AB∥CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD∥BC,∴∠DEF=∠F.2.(2021•怀化市)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.【分析】(1)根据平行四边形的性质,可以得到DA=BC,DA∥BC,然后即可得到∠EAD =∠FCB,再根据SAS即可证明△ADE≌△CBF;(2)根据(1)中的结论和全等三角形的性质,可以得到∠E=∠F,从而可以得到ED∥BF.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DA=BC,DA∥BC,∴∠DAC=∠BCA,∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB,在△ADE和△CBF中,,∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF ,∴∠E =∠F ,∴ED ∥BF .3. 如(2021•岳阳市)图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.【答案】(1)(答案不唯一,符合题意即可);(2)见解析4. (2021•宿迁市)在①AE=CF ;②OE=OF ;③BE ∥DF 这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,点E 、F 在AC 上,(填写序号).求证:BE=DF .注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【解析】ABCD AE BD ⊥CF BD ⊥EF AECF AECF //AFCE【分析】若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF 后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.【详解】解:若选②,即OE=OF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选①,即AE=CF;证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴OE=OF,又∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选③,即BE∥DF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵BE∥DF;∴∠BEO=∠DFO,又∠BOE=∠DOF,∴△BOE≌△DOF(AAS),∴BE =DF ;5. (2021•山东省聊城市) 如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明,得到OD =OE ,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB =BC ,AO =CO ,可证明BD 为AC 的中垂线,从而推出四边形AECD 为菱形,然后根据条件求出DE 的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE 和△COD 中,∴.∴OD =OE .又∵AO =CO ,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴BO 为AC 的垂直平分线,.∴平行四边形 AECD 是菱形.∵AC =8,.AOE COD V V ≌EAO DCO AO COAOE COD ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COD ASA V V ≌BO AC ⊥142CO AC ∴==在 Rt △COD 中,CD =5,,∴,, ∴四边形 AECD 的面积为24.6. (2021•湖南省永州市)如图,已知点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,AE ∥BF .(1)求证:△AEC ≌△BFD .(2)判断四边形DECF 的形状,并证明.7.(2021•四川省广元市)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:BC=CF ;(2)连接AC 和相交于点为G ,若△GEC 的面积为2,求平行四边形ABCD 的面积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)根据E 是边DC 的中点,可以得到,再根据四边形ABCD 是平行四边形,可以得到,再根据,即可得到,则答案可证;3OD ∴===26DE OD ==11682422AECD S DE AC ∴=⋅=⨯⨯=菱形BE DE CE =ADE ECF ∠∠=AED CEF ∠=∠ADE ECF V V ≌(2)先证明,根据相似三角形的性质得出,,进而得出,由得,则答案可解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,,∴,∵点E 为DC 的中点,∴,在和中∴,∴,∴;(2)∵四边形ABCD 是平行四边形,点E 为DC 的中点,∴,,∴,,∴,∵的面积为2, ∴,即, ∵ ∴, ∴, ∴,∴.CEG ABG V :V 8ABG S =V 12AG AB GC CE ==4BGC S =V ABC ABG BCG S S S =+V V V 12ABC S =△//B AD C AD BC =ADE ECF ∠∠=DE CE =ADE V ECF △ADE ECF DE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ADE ECF ASA V V ≌AD CF =BC CF =//AB DC 2AB EC =GEC ABG ∠=∠GCE GAB ∠=∠CEG ABG V :V GEC V 221124ABG CEG S AB S CE ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V 4428ABG CEG S S ==⨯=V V CEG ABG V :V 12AG AB GC CE ==118422BGC ABG S S ==⨯=V V 8412ABC ABG BCG S S S =+=+=V V V 221224ABCD ABC S S ==⨯=Y V8. (2021•新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且.求证:(1);(2)四边形AEFD 是平行四边形.【答案】(1)证明过程见解析;(2)证明过程见解析.9.(2021•浙江省绍兴市)问题:如图,在▱ABCD 中,AB =8,∠DAB ,∠ABC 的平分线AE ,F ,求EF 的长.答案:EF =2.探究:(1)把“问题”中的条件“AB =8”去掉,其余条件不变.①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“AB =8,AD =5”去掉,其余条件不变,D ,E ,F 相邻两点间的距离相等时,求的值.【分析】(1)①证∠DEA =∠DAE ,得DE =AD =5,同理BC =CF =5,即可求解; ②由题意得DE =DC =5,再由CF =BC =5,即可求解;(2)分三种情况,由(1)的结果结合点C ,D ,E ,F 相邻两点间的距离相等,分别求解即可.【解答】解:(1)①如图1所示:BE CF ABE DCF △≌△∵四边形ABCD是平行四边形,∴CD=AB=8,BC=AD=5,∴∠DEA=∠BAE,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD=5,同理:BC=CF=5,∵点E与点F重合,∴AB=CD=DE+CF=10;②如图3所示:∵点E与点C重合,∴DE=DC=5,∵CF=BC=5,∴点F与点D重合,∴EF=DC=5;(2)分三种情况:①如图3所示:同(1)得:AD=DE,∵点C,D,E,F相邻两点间的距离相等,∴AD=DE=EF=CF,∴=;②如图4所示:同(1)得:AD=DE=CF,∵DF=FE=CE,∴=;③如图5所示:同(1)得:AD=DE=CF,∵DF=DC=CE,∴=2;综上所述,的值为或.。
2023年山东省中考数学模拟题知识点分类汇编:四边形(附答案解析)
等于( )
第 1页(共 58页)
A.75°
B.72°
C.60°
D.45°
5.(2022•槐荫区二模)如图,在平面直角坐标系中,四边形 ABCD 是边长为 2 的正方形,
点 A 在 y 轴上运动,点 B 在 x 轴上运动,点 E 为对角线的交点,在运动过程中点 E 到 y
轴的最大距离是( )
A.
B.1
A.
B.
C.3
D.
3.(2022•烟台模拟)如图,点 M 是正方形 ABCD 边 CD 上一点,连接 AM,过 D 作 DE⊥ AM 于点 E,过 B 作 BF⊥AM 于点 F,连接 BE.若 AF=1,四边形 ABED 的面积为 10, 则 BF 的长为( )
A.10
B.
C.4
D.3
4.(2022•沂水县二模)如图,在正六边形 ABCDEF 内作正方形 BCGH,连接 AH,则∠FAH
角线 BD 相交于点 N,F 是线段 CE 的中点,则下列结论中正确的有( )个.
①OF= ;②ON= ;③S△CON= ;④sin∠ACE= .
A.1
B.2
C.3
D.4
19.(2020•聊城一模)如图,在菱形 ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线
AC 于点 F,垂足为 E.连接 DF,则∠DFE 等于( )
A.2
B.3
C.4
D.5
17.(2020•乳山市模拟)如图,▱ ABCD 的周长为 36,对角线 AC、BD 相交于点 O,点 E
是 CD 的中点,BD=12,则△DOE 的周长为( )
A.15
B.18
C.21
D.24
18.(2020•市北区二模)如图,在矩形 ABCD 中,AB=3,AD=4,CE 平分∠ACB,与对
中考数学复习《四边形》经典题型及测试题(含答案)
中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
2022年全国中考数学真题分类汇编专题12:四边形
2022年全国中考数学真题分类汇编专题12:四边形一.选择题(共18小题)1.如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4 ,则OE=()A.4B.2 C.2D.2.如图,四边形ABCD的内角和等于()A.180°B.270°C.360°D.540°3.如图,正方形ABCD的面积为3,点E在边CD上,且CE=1,∠ABE的平分线交AD 于点F,点M,N分别是BE,BF的中点,则MN的长为()A. B. C.2 D.4.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC 5.正多边形的每个内角为108°,则它的边数是()A.4B.6C.7D.56.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A.正方形B.正六边形C.正八边形D.正十边形7.如图,在边长为1的菱形ABCD中,∠ABC=60°,动点E在AB边上(与点A,B均不重合),点F在对角线AC上,CE与BF相交于点G,连接AG,DF,若AF=BE,则下列结论错误的是()A.DF=CE B.∠BGC=120°C.AF2=EG•EC D.AG的最小值为8.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.169.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE 的长度为()A. B. C. D.10.要检验一个四边形的桌面是否为矩形,可行的测量方案是()A.测量两条对角线是否相等B.度量两个角是否是90°C.测量两条对角线的交点到四个顶点的距离是否相等D.测量两组对边是否分别相等11.如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°12.如图,四边形ABCD是菱形,∠DAB=60°,点E是DA中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是()A.3B. 1C.2 1D.213.如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2B.4C.6D.814.如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是()A.900°B.720°C.540°D.360°15.如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC.若BF=2CF,则OC与EF之间的数量关系正确的是()A.2OC EF B. OC=2EF C.2OC EF D.OC=EF 16.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形ABCD周长不变B.AD=CDC.四边形ABCD面积不变D.AD=BC17.如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4s时,四边形ABMP为矩形B.当t=5s时,四边形CDPM为平行四边形C.当CD=PM时,t=4sD.当CD=PM时,t=4s或6s18.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为()A.108°B.109°C.110°D.111°二.填空题(共19小题)19.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB =3,BC=4,则图中阴影部分的面积为.20.如图,在▱ABCD中,AD=10,对角线AC与BD相交于点O,AC+BD=22,则△BOC 的周长为.21.如图所示,在▱ABCD中,AC,BD交于点O, R , ,则 .22.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是°.23.如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED 是菱形,这个条件可以是.(写出一个即可)24.如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射钱CM,使得∠ECM=30°,过点D作DF⊥CM,垂足为F.若DF ,则BD的长为(结果保留根号).25.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4 ,则四边形CEDF的周长是.26.如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).27.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF AC,连接EF.若AC=10,则EF=.28.如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为.29.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=°;若△AEF的面积等于1,则AB的值是.30.在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE=4,点P是直线BC上的一个动点.若△APE是直角三角形,则BP的长为.31.正六边形的一个外角的度数为°.32.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为.33.如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是.34.如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD=3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE的最小值是.35.如图,折叠边长为4cm的正方形纸片ABCD,折痕是DM,点C落在点E处,分别延长ME、DE交AB于点F、G,若点M是BC边的中点,则FG=cm.36.如图,在正方形ABCD中,AB=4 ,对角线AC,BD相交于点O.点E是对角线AC 上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F 为CD的中点,则△EGH′的周长是.37.四边形的外角和度数是.三.解答题(共7小题)38.如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC 的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y (k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.39.如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.40.【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形ABCD 为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中AD AB.他先将A4纸沿过点A的直线折叠,使点B落在AD上,点B的对应点为点E,折痕为AF;再沿过点F的直线折叠,使点C落在EF上,点C的对应点为点H,折痕为FG;然后连结AG,沿AG所在的直线再次折叠,发现点D与点F重合,进而猜想△ADG≌△AFG.【问题解决】小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF ∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF AB=AD请你补全余下的证明过程.【结论应用】(1)∠DAG的度数为度, 的值为;(2)在图①的条件下,点P在线段AF上,且AP AB,点Q在线段AG上,连结FQ、PQ,如图②.设AB=a,则FQ+PQ的最小值为.(用含a的代数式表示)41.如图,在▱ABCD中,AB=4,AD=BD ,点M为边AB的中点.动点P从点A 出发,沿折线AD﹣DB以每秒 个单位长度的速度向终点B运动,连结PM.作点A 关于直线PM的对称点A',连结A'P、A'M.设点P的运动时间为t秒,(1)点D到边AB的距离为;(2)用含t的代数式表示线段DP的长;(3)连结AD,当线段A'D最短时,求△DPA'的面积;(4)当M、A'、C三点共线时,直接写出t的值.42.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求 的值为多少;(3)AB=8 ,AG ,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.43.如图,在▱ABCD中,DF平分∠ADC,交AB于点F,BE∥DF,交AD的延长线于点E.若∠A=40°,求∠ABE的度数.44.(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点.求证:△BFG≌△BCG;(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB 沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE的长.(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE沿AE翻折得到△AFE,直线EF交BC于点P,求PC的长.。
中考数学真题四边形分类汇编
全国中考数学真题四边形分类汇编1.如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.2.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.3.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.4.如图,在矩形ABCD中,AD=5,CD=4,点E是BC边上的点,BE=3,连接AE,DF⊥AE交于点F.(1)求证:△ABE≌△DF A;(2)连接CF,求sin∠DCF的值;(3)连接AC交DF于点G,求的值.5.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.6.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.7.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.8.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC 的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.9.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.10.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.11.如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG.(2)若AB=4,求四边形AGCD的对角线GD的长.12.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.13.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.14.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG 的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.16.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.17.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.18.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.19.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.20.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.21.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.22.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.23.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.24.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.25.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.26.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.27.如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.28.如图,将矩形ABCD沿AF折叠,使点D落在BC边上的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.29.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.30.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.31.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.32.如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.33.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.34.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.35.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.36.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值.37.如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.38.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.39.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.40.如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF=时,求⊙O的半径.41.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=,求AD的长.42.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO 并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.43.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC 于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.44.如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.45.如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.46.如图,点D是等边三角形ABC外接圆的上一点(与点B,C不重合),BE∥DC交AD于点E.(1)求证:△BDE是等边三角形;(2)求证:△ABE≌△CBD;(3)如果BD=2,CD=1,求△ABC的边长.47.如图所示,AB是⊙O的直径,P为AB延长线上的一点,PC切⊙O于点C,AD⊥PC,垂足为D,弦CE平分∠ACB,交AB于点F,连接AE.(1)求证:∠CAB=∠CAD;(2)求证:PC=PF;(3)若tan∠ABC=,AE=5,求线段PC的长.48.如图,在△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,点E在BC边上,且满足EB =ED.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,AB=10,求sin∠CAE的值.49.如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB 延长线于点E,垂足为点F.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径R=5,tan C=,求EF的长.50.如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.全国中考数学真题四边形分类汇编参考答案与试题解析一.解答题(共50小题)1.如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.【分析】(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;(2)根据菱形的判定定理得到▱ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG和△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,AD=CD,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=6,∴DG==4.【点评】本题考查了平行四边形的性质,菱形的判断和性质,全等三角形的判定和性质,平行线的性质,熟练掌握平行四边形的性质是解题的关键.2.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.【点评】本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.3.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.【分析】(1)只要证明AD=BC,∠ADP=∠BCQ,DP=CQ即可解决问题;(2)首先证明四边形ABQP是平行四边形,再证明AB=AP即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.【点评】本题考查菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在矩形ABCD中,AD=5,CD=4,点E是BC边上的点,BE=3,连接AE,DF⊥AE交于点F.(1)求证:△ABE≌△DF A;(2)连接CF,求sin∠DCF的值;(3)连接AC交DF于点G,求的值.【分析】(1)根据勾股定理求出AE,矩形的性质、全等三角形的判定定理证明;(2)连接DE交CF于点H,根据全等三角形的性质得到DF=AB=CD=4,AF=BE=3,证明∠DCH =∠DEC,求出sin∠DEC,得到答案;(3)过点C作CK⊥AE交AE的延长线于点K,根据平行线分线段成比例定理得到=,根据余弦的概念求出EK,计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴=5,∠AEB=∠DAF,在△ABE和△AFD中,,∴△ABE≌△AFD;(2)连接DE交CF于点H.∵△ABE≌△DF A,∴DF=AB=CD=4,AF=BE=3,∴EF=CE=2.∴DE⊥CF.∴∠DCH+∠HDC=∠DEC+∠HDC=90°.∴∠DCH=∠DEC.在Rt△DCE中,CD=4,CE=2,∴DE=2,∴sin∠DCF=sin∠DEC==.(3)过点C作CK⊥AE交AE的延长线于点K.∴=.在Rt△CEK中,EK=CE•cos∠CEK=CE•cos∠AEB=2×=.∴FK=FE+EK=.∴==.【点评】本题考查的是矩形的性质、全等三角形的判定和性质以及三角形中位线定理的应用,掌握矩形的性质定理、全等三角形的判定定理和性质定理是解题的关键.5.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.6.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.【点评】此题考查菱形的判定和性质,关键是根据平行四边形和菱形的判定和性质解答.7.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.【分析】(1)根据SAS即可证明.(2)解直角三角形求出DF、OE、OF即可解决问题;【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.【点评】本题考查全等三角形的判定和性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC 的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.【分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25﹣AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.9.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.10.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE =CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG =90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.【点评】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.11.如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG.(2)若AB=4,求四边形AGCD的对角线GD的长.【分析】(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;(2)根据菱形的判断对了得到▱ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG和△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=4,∴DG==.【点评】本题考查了平行四边形的性质,菱形的判断和性质,全等三角形的判定和性质,平行线的性质,熟练掌握平行四边形的性质是解题的关键.12.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.【点评】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.13.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG 的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠F AG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.【分析】(1)由等腰三角形的性质得出∠ABC=∠C,证出∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,得出∠DEG=∠C,证出∠F=∠DEG,得出BF∥DE,即可得出结论;(2)证出△BDE、△BEF是等腰直角三角形,由勾股定理得出BF=BE=BD=,作FM⊥BD 于M,连接DF,则△BFM是等腰直角三角形,由勾股定理得出FM=BM=BF=1,得出DM=3,在Rt△DFM中,由勾股定理求出DF即可.【解答】(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,∴∠DEG=∠C,∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC,∴∠F=∠DEG,∴BF∥DE,∴四边形BDEF为平行四边形;(2)解:∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°,∴△BDE、△BEF是等腰直角三角形,∴BF=BE=BD=,作FM⊥BD于M,连接DF,如图所示:则△BFM是等腰直角三角形,∴FM=BM=BF=1,∴DM=3,在Rt△DFM中,由勾股定理得:DF==,即D,F两点间的距离为.【点评】本题考查了平行四边形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质和勾股定理是解决问题的关键.16.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.【分析】(1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.【解答】(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即BF=,∴FO===,∴FG=2FO=.【点评】此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.17.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2××(x+1)×1+×x×(x+1)=6,整理得:x2+3x﹣10=0,解得x=2或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.18.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.【分析】根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得结论.【解答】证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE.【点评】此题主要考查了菱形的性质以及全等三角形的判定与性质,熟练掌握菱形的性质,证明三角形全等是解决问题的关键.19.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF 是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=4,AG=AE=2,∠BAF=2∠BAE,AE ⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根据平行四边形的对角相等即可求出∠C=∠BAF=60°.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,解直角三角形,属于中考常考题型.20.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO 即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,。
2021年全国中考数学真题分类汇编6---四边形
2021年全国中考数学真题分类汇编四边形一、选择题(共20小题)1.(2021•资阳)下列命题正确的是()A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1:2两部分2.(2021•株洲)如图所示,在正六边形ABCDEF 内,以AB 为边作正五边形ABGHI ,则(FAI ∠=)A .10︒B .12︒C .14︒D .15︒3.(2021•株洲)如图所示,四边形ABCD 是平行四边形,点E 在线段BC 的延长线上,若132DCE ∠=︒,则(A ∠=)A .38︒B .48︒C .58︒D .66︒4.(2021•扬州)如图,点A 、B 、C 、D 、E 在同一平面内连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则(A B D E ∠+∠+∠+∠=)A .220︒B .240︒C .260︒D .280︒5.(2021•湘西州)如图,在菱形ABCD 中,E 是AC 的中点,//EF CD ,交AD 于点F ,如果 5.5EF =,那么菱形ABCD 的周长是()A .11B .22C .33D .446.(2021•无锡)如图,D 、E 、F 分别是ABC ∆各边中点,则以下说法错误的是()A .BDE ∆和DCF ∆的面积相等B .四边形AEDF 是平行四边形C .若AB BC =,则四边形AEDF 是菱形D .若90A ∠=︒,则四边形AEDF 是矩形7.(2021•铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形8.(2021•苏州)如图,在平行四边形ABCD中,将ABC∆沿着AC所在的直线折叠得到△AC=,则B D'的长是() AB C',B C'交AD于点E,连接B D',若60B∠=︒,45∠=︒,6ACBA.1B.2C.3D.629.(2021•绍兴)如图,菱形ABCD中,60-方向∠=︒,点P从点B出发,沿折线BC CDB移动,移动到点D停止.在ABP∆形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形10.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A .用3个相同的菱形放置,最多能得到6个菱形B .用4个相同的菱形放置,最多能得到16个菱形C .用5个相同的菱形放置,最多能得到27个菱形D .用6个相同的菱形放置,最多能得到41个菱形11.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当AEO ∆,BFO ∆,CGO ∆,DHO ∆的面积相等时,下列结论一定成立的是()A .12S S =B .13S S =C .AB AD =D .EH GH =12.(2021•南充)如图,点O 是ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是()A .OE OF =B .AE BF =C .DOC OCD ∠=∠D .CFE DEF ∠=∠13.(2021•眉山)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,6AB =,60DAC ∠=︒,点F 在线段AO 上从点A 至点O 运动,连接DF ,以DF 为边作等边三角形DFE ,点E 和点A 分别位于DF 两侧,下列结论:①BDE EFC ∠=∠;②ED EC =;③ADF ECF ∠=∠;④点E 运动的路程是23,其中正确结论的序号为()A .①④B .①②③C .②③④D .①②③④14.(2021•泸州)下列命题是真命题的是()A .对角线相等的四边形是平行四边形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形15.(2021•乐山)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为()A .32B 3.2D .5216.(2021•河北)如图1,ABCD 中,AD AB >,ABC ∠为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是17.(2021•广元)下列命题中,真命题是()A .1122x x-= B .对角线互相垂直的四边形是菱形C .顺次连接矩形各边中点的四边形是正方形D .已知抛物线245y x x =--,当15x -<<时,0y <18.(2021•成都)如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定ABE ADF ∆≅∆的是()A .BE DF =B .BAE DAF ∠=∠C .AE AD =D .AEB AFD ∠=∠19.(2021•包头)如图,在平面直角坐标系中,矩形OABC 的OA 边在x 轴的正半轴上,OC边在y 轴的正半轴上,点B 的坐标为(4,2),反比例函数2(0)y x x =>的图象与BC 交于点D ,与对角线OB 交于点E ,与AB 交于点F ,连接OD ,DE ,EF ,DF .下列结论: ①sin cos DOC BOC ∠=∠;②OE BE =;③DOE BEF S S ∆∆=;④:2:3OD DF =.其中正确的结论有()A .4个B .3个C .2个D .1个20.(2021•包头)如图,在ABC ∆中,AB AC =,DBC ∆和ABC ∆关于直线BC 对称,连接AD ,与BC 相交于点O ,过点C 作CE CD ⊥,垂足为C ,AD 相交于点E ,若8AD =,6BC =,则2OE AE BD+的值为()A .43B .34C .53D .54二、填空题(共20小题)21.(2021•淄博)两张宽为3cm 的纸条交叉重叠成四边形ABCD ,如图所示.若30α∠=︒,则对角线BD 上的动点P 到A ,B ,C 三点距离之和的最小值是.22.(2021•株洲)如图所示,线段BC为等腰ABC∆的底边,矩形ADBE的对角线AB与DE 交于点O,若2OD=,则AC=.23.(2021•长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若6OE=,则BC的长为.24.(2021•枣庄)如图,45=,点A在OB上,四边形ABCD是矩形,∠=︒,BO DOBOD连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE BDADB∠=︒;⊥;②30③2=;④若点G是线段OF的中点,则AEGDF AF∆为等腰直角三角形,其中,判断正确的是.(填序号)25.(2021•云南)已知ABC∆的三个顶点都是同一个正方形的顶点,ABC∠的平分线与线段AC交于点D.若ABC∆的一条边长为6,则点D到直线AB的距离为.26.(2021•益阳)如图,已知四边形ABCD是平行四边形,从①AB AD=,②AC BD=,③ABC ADC∠=∠中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).27.(2021•新疆)四边形的外角和等于︒.28.(2021•湘潭)如图,在ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知10BC=,则OE=.29.(2021•绍兴)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若30=,则BC长为cm(结AB cm果保留根号).30.(2021•黔东南州)如图,BD是菱形ABCD的一条对角线,点E在BC的延长线上,若∠的度数为度.∠=︒,则DCE32ADB31.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,BEC∆关于直线EC对∆与FEC称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM BE=,1∠的值为.MG=,则BN的长为,sin AFE32.(2021•牡丹江)如图,在四边形ABCD中,AB DC=,请添加一个条件,使四边形ABCD 成为平行四边形,你所添加的条件为.33.(2021•连云港)如图,菱形ABCD的对角线AC、BD相交于点O,OE AD⊥,垂足为E,8BD=,则OE的长为.AC=,634.(2021•黄冈)正五边形的一个内角是度.35.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件,使平行四边形ABCD是矩形.36.(2021•黑龙江)如图,在ABC∆中,D,E,F分别是AB,BC和AC边的中点,请添加一个条件,使四边形BEFD为矩形.(填一个即可)37.(2021•黑龙江)如图,在矩形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件,使矩形ABCD是正方形.38.(2021•贺州)如图,在边长为6的正方形ABCD中,点E,F分别在BC,CD上,3=BC BE 且BE CF⊥,垂足为G,O是对角线BD的中点,连接OG,则OG的长为.=,AE BF39.(2021•哈尔滨)四边形ABCD是平行四边形,6∠的平分线交直线BC于点AB=,BADE,若2CE=,则ABCD的周长为.40.(2021•北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF EC=.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).三、解答题(共20小题)41.(2021•长沙)如图,ABCD的对角线AC,BD相交于点O,OABAB=.∆是等边三角形,4(1)求证:ABCD是矩形;(2)求AD的长.42.(2021•岳阳)如图,在四边形ABCD中,AE BD⊥,CF BD⊥,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是;(2)添加了条件后,证明四边形AECF为平行四边形.43.(2021•玉林)如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,已知OA OC =,OB OD =,过点O 作EF BD ⊥,分别交AB 、DC 于点E ,F ,连接DE ,BF .(1)求证:四边形DEBF 是菱形:(2)设//AD EF ,12AD AB +=,43BD =,求AF 的长.44.(2021•益阳)如图,在矩形ABCD 中,已知6AB =,30DBC ∠=︒,求AC 的长.45.(2021•梧州)如图,在正方形ABCD 中,点E ,F 分别为边BC ,CD 上的点,且AE BF ⊥于点P ,G 为AD 的中点,连接GP ,过点P 作PH GP ⊥交AB 于点H ,连接GH .(1)求证:BE CF =;(2)若6AB =,13BE BC =,求GH 的长.46.(2021•遂宁)如图,在ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.(1)求证:AE CF=;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.47.(2021•随州)如图,在菱形ABCD中,E,F是对角线AC上的两点,且AE CF=.(1)求证:ABE CDF∆≅∆;(2)求证:四边形BEDF是菱形.48.(2021•十堰)如图,已知ABC∆中,D是AC的中点,过点D作DE AC⊥交BC于点E,过点A作//AF BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若2∠=︒,求AB的长.B∠=︒,45FACCF=,3049.(2021•绍兴)问题:如图,在ABCD 中,8AB =,5AD =,DAB ∠,ABC ∠的平分线AE ,BF 分别与直线CD 交于点E ,F ,求EF 的长.答案:2EF =.探究:(1)把“问题”中的条件“8AB =”去掉,其余条件不变. ①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“8AB =,5AD =”去掉,其余条件不变,当点C ,D ,E ,F 相邻两点间的距离相等时,求AD AB的值.50.(2021•邵阳)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE CF =.连接DE ,DF ,BE ,BF .(1)证明:ADE CBF ∆≅∆.(2)若42AB =,2AE =,求四边形BEDF 的周长.51.(2021•聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO CO=,点E在BD上,满足EAO DCO∠=∠.(1)求证:四边形AECD是平行四边形;(2)若AB BC=,5AC=,求四边形AECD的面积.CD=,852.(2021•连云港)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB AE=,求证:四边形ACED是矩形.53.(2021•荆门)如图,点E是正方形ABCD的边BC上的动点,90=,AEF∠=︒,且EF AE ⊥.FH BH(1)求证:BE CH=;(2)若3=,用x表示DF的长.AB=,BE x54.(2021•呼和浩特)如图,四边形ABCD是平行四边形,//BE DF且分别交对角线AC于点E,F.(1)求证:ABE CDF∆≅∆;(2)当四边形ABCD分别是矩形和菱形时,请分别说出四边形BEDF的形状.(无需说明理由)55.(2021•菏泽)如图,在菱形ABCD中,点M、N分别在AB、CB上,且ADM CDN∠=∠,求证:BM BN=.56.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B 作BM CE⊥,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE BH=;(2)如图2,若AE AB=,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEG∆除外),使写出的每个三角形都与AEG∆全等.57.(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:12∠=∠;(2)求证:DOF BOE∆≅∆.58.(2021•广安)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE DF=,连接CE、CF.求证:CE CF=.59.(2021•丹东)如图,在平行四边形ABCD中,点O是AD的中点,连接CO并延长交BA 的延长线于点E,连接AC、DE.(1)求证:四边形ACDE是平行四边形;(2)若AB AC=,判断四边形ACDE的形状,并说明理由.60.(2021•郴州)如图,四边形ABCD中,AB DC=,将对角线AC向两端分别延长至点E,=.证明:四边形ABCD是平行四边形.F,使AE CF=.连接BE,DF,若BE DF。
2020年中考数学中考真题分类专题解析汇编:专题10:四边形
2020年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2019广东佛山3分)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【】A.平行四边形B.矩形C.菱形D.梯形【答案】A。
【考点】三角形中位线定理,平行四边形的判定。
【分析】根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC。
∴EF=GH,EF∥GH。
∴四边形EFGH是平行四边形。
由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断。
故选A。
2.(2019广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.20【答案】C。
【考点】等腰梯形的性质,平行四边形的判定和性质。
【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。
∴BE=AD=5。
∵EC=3,∴BC=BE+EC=8。
∵四边形ABCD是等腰梯形,∴AB=DC=4。
∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。
故选C。
3. (2019广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形【答案】C。
【考点】命题与定理,正方形的判定,菱形的判定,矩形的判定,平行四边形的判定。
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例排除:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如铮形(如图),故此选项错误。
2021年中考数学真题分类汇编--四边形:命题、四边形中的计算与证明(压轴题)(学生版)
中考真题分类汇编(四边形)----命题、四边形中的计算与证明(压轴题)一、选择题1. (2021•湖南省衡阳市)下列命题是真命题的是( ) A .正六边形的外角和大于正五边形的外角和 B .正六边形的每一个内角为120°C .有一个角是60°的三角形是等边三角形D .对角线相等的四边形是矩形2. (2021•怀化市)以下说法错误的是( ) A .多边形的内角大于任何一个外角 B .任意多边形的外角和是360° C .正六边形是中心对称图形 D .圆内接四边形的对角互补3. (2021•岳阳市) 下列命题是真命题的是( ) A. 五边形内角和是720︒ B. 三角形的任意两边之和大于第三边 C. 内错角相等 D. 三角形的重心是这个三角形的三条角平分线的交点4. (2021•四川省达州市)以下命题是假命题的是( ) A .的算术平方根是2B .有两边相等的三角形是等腰三角形C .一组数据:3,﹣1,1,1,2,4的中位数是1.5D .过直线外一点有且只有一条直线与已知直线平行 5. (2021•四川省广元市)下列命题中,真命题是( ) A. 1122xx-=B. 对角线互相垂直的四边形是菱形C. 顺次连接矩形各边中点的四边形是正方形D. 已知抛物线245y x x =--,当15x -<<时,0y < 6. (2021•四川省凉山州)下列命题中,假命题是( ) A. 直角三角形斜边上的中线等于斜边的一半B. 等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C. 若AB BC =,则点B 是线段AC 的中点D. 三角形三条边的垂直平分线的交点叫做这个三角形的外心 7. (2021•泸州市)下列命题是真命题的是( ) A. 对角线相等的四边形是平行四边形 B. 对角线互相平分且相等的四边形是矩形 C. 对角线互相垂直的四边形是菱形 D. 对角线互相垂直平分的四边形是正方形 8. (2021•遂宁市)下列说法正确的是( ) A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式D. 若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4 9. (2021•绥化市)下列命题是假命题的是( ) A. 任意一个三角形中,三角形两边的差小于第三边B. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半C. 如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D. 一组对边平行且相等的四边形是平行四边形10. (2021•呼和浩特市)以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分②A ,B ,C ,D ,E ,F 六个足球队进行单循环赛,若A ,B ,C ,D ,E 分别赛了5,4,3,2,1场,则由此可知,还没有与B 队比赛的球队可能是D 队③两个正六边形一定位似④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有( ) A .1个B .2个C .3个D .4个11. (2021•内蒙古包头市)下列命题正确的是( ) A. 在函数12y x=-中,当0x >时,y 随x 的增大而减小 B. 若0a <,则11a a +>- C. 垂直于半径的直线是圆的切线 D. 各边相等的圆内接四边形是正方形12. (2021•黑龙江省龙东地区)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在BC 的延长线上,连接DE ,点F 是DE 的中点,连接OF 交CD 于点G ,连接CF ,若4CE =,6OF =.则下列结论:①2GF =;②2OD OG =;③1tan 2CDE ∠=;④90ODF OCF ∠=∠=︒;⑤点D 到CF 的距离为855.其中正确的结论是( )A. ①②③④B. ①③④C. ①②③⑤D. ①②④⑤13.(2021•山东省泰安市)如图,在矩形ABCD 中,AB =5,BC =5,点P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .B .C .D .314. (2021•四川省南充市)如图,在矩形ABCD 中,AB =15,BC =20,把边AB 沿对角线BD 平移,点A ′,B ′分别对应点A ,B 给出下列结论: ①顺次连接点A ′,B ′,C ,D 的图形是平行四边形; ②点C 到它关于直线AA ′的对称点的距离为48; ③A ′C ﹣B ′C 的最大值为15; ④A ′C +B ′C 的最小值为9.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二.填空题1. (2021•江苏省无锡市)下列命题中,正确命题的个数为 . ①所有的正方形都相似 ②所有的菱形都相似 ③边长相等的两个菱形都相似 ④对角线相等的两个矩形都相似2.(2021•四川省广元市)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:①AP PF =;②DE BF EF +=;③2PB PD BF -=;④AEFS为定值;⑤APGPEFG S S=四边形.以上结论正确的有________(填入正确的序号即可).3. (2021•遂宁市)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF DBE ∠=∠;②ABF DBE ∽;③AF BD ⊥;④22BG BH BD =;⑤若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)4. (2021•天津市)如图,正方形ABCD 的边长为4,对角线,AC BD 相交于点O ,点E ,F 分别在,BC CD 的延长线上,且2,1CE DF ==,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为________.5. (2021•湖南省张家界市) 如图,在正方形ABCD 外取一点E ,连接DE ,AE ,CE ,过点D 作DE 的垂线交AE 于点P ,若1==DP DE ,6=PC .下列结论:①CED APD ∆≅∆;②CE AE ⊥;③点C 到直线DE 的距离为3;④225ABCD +=正方形S ,其中正确结论的序号为 .6. (2021•福建省)如图,在矩形ABCD 中,AB =4,AD =5,点E ,F 分别是边AB ,BC 上的动点,点E 不与A ,B 重合,且EF =AB ,G 是五边形AEFCD 内满足GE =GF 且∠EGF =90°的点.现给出以下结论: ①∠GEB 与∠GFB 一定互补; ②点G 到边AB ,BC 的距离一定相等; ③点G 到边AD ,DC 的距离可能相等; ④点G 到边AB 的距离的最大值为2.其中正确的是 .(写出所有正确结论的序号)D AB CEF7. (2021•广西贺州市)如图.在边长为6的正方形ABCD 中,点E ,F 分别在BC ,CD 上,3BC BE =且BE CF =,AE BF ⊥,垂足为G ,O 是对角线BD 的中点,连接OG 、则OG 的长为________.8.(2021•湖北省黄石市) 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,AE 交BD 于M 点,AF 交BD 于N 点. (1)若正方形的边长为2,则CEF △的周长是______.(2)下列结论:①222BM DN MN +=;②若F 是CD 的中点,则tan 2AEF ∠=;③连接MF ,则AMF 为等腰直角三角形.其中正确结论的序号是______(把你认为所有正确的都填上).三、解答题1. (2021•辽宁省本溪市)在▱ABCD 中,=BAD α,DE 平分ADC ∠,交对角线AC 于点G ,交射线AB 于点E ,将线段EB 绕点E 顺时针旋转12α得线段EP .(1)如图1,当=120α︒时,连接AP ,请直接写出线段AP 和线段AC 的数量关系; (2)如图2,当=90α︒时,过点B 作BF EP ⊥于点,连接AF ,请写出线段AF ,AB ,AD 之间的数量关系,并说明理由;(3)当=120α︒时,连接AP ,若1=2BE AB ,请直接写出APE 与CDG 面积的比值.2. (2021•宿迁市)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周. (1)如图①,连接BG 、CF ,求CFBG的值; (2)当正方形AEFG 旋转至图②位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE =6,请直接写出线段QN 扫过的面积.3. (2021•山东省临沂市)如图,已知正方形ABCD ,点E 是BC 边上一点,将△ABE 沿直线AE 折叠,点B 落在F 处,连接BF 并延长,与∠DAF 的平分线相交于点H ,与AE ,CD 分别相交于点G ,M ,连接HC . (1)求证:AG =GH ;(2)若AB =3,BE =1,求点D 到直线BH 的距离;(3)当点E 在BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?4.(2021•陕西省)问题提出(1)如图1,在▱ABCD中,∠A=45°,AD=6,E是AD的中点,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,∠A=∠B=∠C=90°,AB=800m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离,请说明理由.5.(2021•湖北省宜昌市)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC 是正方形; (2)如图2,当点Q 和点D 重合时. ①求证:GC =DC ;②若OK =1,CO =2,求线段GP 的长;(3)如图3,若BM ∥F ′B ′交GP 于点M ,tan ∠G =,求的值.6. (2021•广东省)如题24图,在四边形ABCD 中,AB CD ∥,AB CD ≠,90ABC ∠=︒,点E 、F 分别在线段BC 、AD 上,且EF CD ∥,AB AF =,CD DE =. (1)求证:CF FB ⊥;(2)求证:以AD 为直径的圆与BC 相切;(3)若2EF =,120DFE ∠=︒,求ADE △的面积.7. (2021•四川省广元市)如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE∽;(2)如图2,连接AE,点P、M、N分别为线段AC、AE、EF的中点,连接PM、MN、PN.求PMN∠的度数及MNPM的值;(3)在(2)的条件下,若2BC=,直接写出PMN面积的最大值.8.(2021•浙江省嘉兴市)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.9.(2021•浙江省绍兴市)如图,矩形ABCD中,AB=4,点F是对角线BD上一动点,∠ADB=30°.连结EF(1)若EF⊥BD,求DF的长;(2)若PE⊥BD,求DF的长;(3)直线PE交BD于点Q,若△DEQ是锐角三角形,求DF长的取值范围.10.(2021•浙江省温州市)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧)(1)求证:四边形AECF是平行四边形;(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时11.(2021•湖北省荆门市)如图,点E是正方形ABCD的边BC上的动点,∠AEF=90°,且EF=AE,FH⊥BH.(1)求证:BE=CH;(2)若AB=3,BE=x,用x表示DF的长.12.(2021•海南省)如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF 于点G,连接HB,HC.①求证:HD=HB;②若DK•HC=,求HE的长.13.(2021•广西玉林市)如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF.(1)求证:四边形DEBF是菱形:(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.14. (2021•广西贺州市)如图,在四边形ABCD 中,//AD BC ,90C ∠=︒,12ADB ABD BDC ∠=∠=∠,DE 交BC 于点E ,过点E 作EF BD ⊥,垂足为F ,且EF EC =.(1)求证:四边形ABED 是菱形; (2)若4=AD ,求BED 的面积.15. (2021•江苏省无锡市)已知四边形ABCD 是边长为1的正方形,点E 是射线BC 上的动点,以AE 为直角边在直线BC 的上方作等腰直角三角形AEF ,∠AEF =90°,设BE =m .(1)如图,若点E 在线段BC 上运动,EF 交CD 于点P ,AF 交CD 于点Q ,连结CF , ①当m =时,求线段CF 的长;②在△PQE 中,设边QE 上的高为h ,请用含m 的代数式表示h ,并求h 的最大值;(2)设过BC 的中点且垂直于BC 的直线被等腰直角三角形AEF 截得的线段长为y ,请直接写出y 与m 的关系式.16. (2021•齐齐哈尔市)综合与实践数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD 折叠,使边AB 、AD 都落在对角线AC 上,展开得折痕AE 、AF ,连接EF ,如图1.(1)EAF ∠=_________︒,写出图中两个等腰三角形:_________(不需要添加字母); 转一转:将图1中的EAF ∠绕点A 旋转,使它的两边分别交边BC 、CD 于点P 、Q ,连接PQ ,如图2.(2)线段BP 、PQ 、DQ 之间的数量关系为_________;(3)连接正方形对角线BD ,若图2中的PAQ ∠的边AP 、AQ 分别交对角线BD 于点M 、点N .如图3,则CQ BM=________; 剪一剪:将图3中的正方形纸片沿对角线BD 剪开,如图4.(4)求证:222BM DN MN +=.17. (2021•深圳)在正方形ABCD 中,等腰直角AEF △,90AFE ∠=︒,连接CE ,H 为CE 中点,连接BH 、BF 、HF ,发现BF BH和HBF ∠为定值.(1)①BF BH =__________;②HBF ∠=__________. ③小明为了证明①②,连接AC 交BD 于O ,连接OH ,证明了OH AF 和BA BO的关系,请你按他的思路证明①②. (2)小明又用三个相似三角形(两个大三角形全等)摆出如图2,BD EA k AD FA ==,BDA EAF θ∠=∠=(090θ︒<<︒)求①FD HD=__________(用k 的代数式表示) ②FH HD=__________(用k 、θ的代数式表示) 18. (2021•浙江省衢州卷)【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).。
2020年全国中考数学试题精选分类(9)——四边形(含解析)
2020年全国中考数学试题精选分类(9)——四边形一.选择题(共30小题)1.(2020•西藏)如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC 2.(2020•锦州)如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4B.C.6D.3.(2020•大庆)如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A 运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH的公共部分的面积为y.则当y=时,x的值为()A.或2+B.或2﹣C.2±D.或4.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED =4.则CE的长是()A.5B.6C.4D.5 5.(2020•绵阳)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条6.(2020•鄂尔多斯)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A.B.22018C.22018+D.1010 7.(2020•十堰)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD=120°,则||=()A.B.3C.D.8.(2020•宁夏)如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13B.10C.12D.5 9.(2020•毕节市)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm 10.(2020•玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④11.(2020•十堰)已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC ⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④12.(2020•烟台)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为()A.60°B.70°C.80°D.85°13.(2020•宜昌)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长14.(2020•通辽)如图,AD是△ABC的中线,四边形ADCE是平行四边形,增加下列条件,能判断▱ADCE是菱形的是()A.∠BAC=90°B.∠DAE=90°C.AB=AC D.AB=AE 15.(2020•威海)如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.16.(2020•荆门)如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.50 17.(2020•牡丹江)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD ∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2)B.(2,﹣4)C.(2,0)D.(0,2)或(0,﹣2)18.(2020•盐城)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3D.5 19.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD =6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()A.2B.C.3D.4 20.(2020•扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米21.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.6 22.(2020•绥化)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个23.(2020•临沂)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC 的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关24.(2020•黑龙江)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B 重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤25.(2020•衡阳)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD26.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF =BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4B.3C.2D.1 27.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.96 28.(2020•泰安)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC =6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A.1cm B.cm C.(2﹣3)cm D.(2﹣)cm 29.(2020•泰安)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个30.(2020•连云港)如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°二.填空题(共4小题)31.(2020•德阳)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G 是AB的中点,连接GF,若AE=4,则GF=.32.(2020•鞍山)如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为.33.(2020•鄂尔多斯)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A 重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).34.(2020•河池)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE ∥AB,则OE的长是.三.解答题(共16小题)35.(2020•济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.36.(2020•阜新)如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.37.(2020•盘锦)如图,四边形ABCD是正方形,点F是射线AD上的动点,连接CF,以CF为对角线作正方形CGFE(C,G,F,E按逆时针排列),连接BE,DG.(1)当点F在线段AD上时.①求证:BE=DG;②求证:CD﹣FD=BE;(2)设正方形ABCD的面积为S1,正方形CGFE的面积为S2,以C,G,D,F为顶点的四边形的面积为S3,当时,请直接写出的值.38.(2020•鞍山)在矩形ABCD中,点E是射线BC上一动点,连接AE,过点B作BF⊥AE于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是,位置关系是;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作平行四边形BEHF,M是BH 中点,连接GM,AB=3,BC=2,求GM的最小值.39.(2020•朝阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC,M是AC边上的一点,连接BM,作AP⊥BM于点P,过点C作AC的垂线交AP的延长线于点E.(1)如图1,求证:AM=CE;(2)如图2,以AM,BM为邻边作平行四边形AMBG,连接GE交BC于点N,连接AN,求的值;(3)如图3,若M是AC的中点,以AB,BM为邻边作平行四边形AGMB,连接GE交BC于点M,连接AN,经探究发现,请直接写出的值.40.(2020•赤峰)如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊥PD,交直线AB于点E,过点P作MN⊥AB,交直线CD于点M,交直线AB于点N.AB=4,AD=4.(1)如图1,①当点P在线段AC上时,∠PDM和∠EPN的数量关系为:∠PDM∠EPN;②的值是;(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.41.(2020•长春)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P 重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.42.(2020•丹东)已知:菱形ABCD和菱形A′B′C′D′,∠BAD=∠B′A′D′,起始位置点A在边A′B′上,点B在A′B′所在直线上,点B在点A的右侧,点B′在点A′的右侧,连接AC和A′C′,将菱形ABCD以A为旋转中心逆时针旋转α角(0°<α<180°).(1)如图1,若点A与A′重合,且∠BAD=∠B′A′D′=90°,求证:BB′=DD′.(2)若点A与A′不重合,M是A′C′上一点,当MA′=MA时,连接BM和A′C,BM和A′C所在直线相交于点P.①如图2,当∠BAD=∠B′A′D′=90°时,请猜想线段BM和线段A′C的数量关系及∠BPC的度数.②如图3,当∠BAD=∠B′A′D′=60°时,请求出线段BM和线段A′C的数量关系及∠BPC的度数.③在②的条件下,若点A与A′B′的中点重合,A′B′=4,AB=2,在整个旋转过程中,当点P与点M重合时,请直接写出线段BM的长.43.(2020•长春)如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.44.(2020•盐城)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.45.(2020•永州)某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为6cm,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.如图1所示,一张纸条水平放置不动,另一张纸条与它成45°的角,将该纸条从右往左平移.(1)写出在平移过程中,重叠部分可能出现的形状.(2)当重叠部分的形状为如图2所示的四边形ABCD时,求证:四边形ABCD是菱形.(3)设平移的距离为xcm(0<x≤6+6),两张纸条重叠部分的面积为scm2.求s与x 的函数关系式,并求s的最大值.46.(2020•吉林)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.47.(2020•云南)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,垂足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.48.(2020•湖北)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD 上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.49.(2020•宜昌)菱形ABCD的对角线AC,BD相交于点O,0°<∠ABO≤60°,点G是射线OD上一个动点,过点G作GE∥DC交射线OC于点E,以OE,OG为邻边作矩形EOGF.(1)如图1,当点F在线段DC上时,求证:DF=FC;(2)若延长AD与边GF交于点H,将△GDH沿直线AD翻折180°得到△MDH.①如图2,当点M在EG上时,求证:四边形EOGF为正方形;②如图3,当tan∠ABO为定值m时,设DG=k•DO,k为大于0的常数,当且仅当k>2时,点M在矩形EOGF的外部,求m的值.50.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA 重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.2020年全国中考数学试题精选分类(9)——四边形参考答案与试题解析一.选择题(共30小题)1.(2020•西藏)如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC【答案】D【解答】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC,不能判定四边形ABCD为菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.2.(2020•锦州)如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4B.C.6D.【答案】B【解答】解:连结BP,如图,∵四边形ABCD为菱形,菱形ABCD的周长为20,∴BA=BC=5,S△ABC=S菱形ABCD=12,∵S△ABC=S△P AB+S△PBC,∴×5×PE+×5×PF=12,∴PE+PF=,故选:B.3.(2020•大庆)如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A 运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH的公共部分的面积为y.则当y=时,x的值为()A.或2+B.或2﹣C.2±D.或【答案】A【解答】解:如图1中,当过A在正方形内部时,连接EG交MN于O,连接OF,设AB交EH于Q,AC交FG于P.由题意,△ABC是等腰直角三角形,AQ=OE=OG=AP=OF,S△OEF=1,∵y=,∴S四边形AOEQ+S四边形AOFP=1.5,∴OA•2=1.5,∴OA=,∴AM=1+=.如图2中,当点A在正方形外部时,由题意,重叠部分是六边形WQRJPT,S重叠=S△ABC﹣2S△BQR﹣S△AWT,∴2.5=××﹣1﹣×2AN×AN,解得AN=,∴AM=2+,综上所述,满足条件的AM的值为或2+,故选:A.4.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED =4.则CE的长是()A.5B.6C.4D.5【答案】C【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE===4.故选:C.5.(2020•绵阳)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【答案】B【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.6.(2020•鄂尔多斯)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A.B.22018C.22018+D.1010【答案】B【解答】解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=1×1=,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=2×1=1,同理可求:S3=2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.7.(2020•十堰)如图,菱形ABCD的顶点分别在反比例函数y=和y=的图象上,若∠BAD=120°,则||=()A.B.3C.D.【答案】B【解答】解:根据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O,OD⊥OC,如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠COM+∠DON=90°,∠DON+∠ODN=90°,∴∠COM=∠ODN,∵∠CMO=∠DNO=90°,∴△COM∽△ODN,∴,∵菱形ABCD的对角线AC与BD的交点即为原点O,∠BAD=120°,∴∠OCD=60°,∠COD=90°,∴,∴,∴,∴.故选:B.8.(2020•宁夏)如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13B.10C.12D.5【答案】B【解答】解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB∥CD,AB=BC=CD=DA=13,EF∥BD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴OB=OD==5,∴BD=2OD=10,∴EG=BD=10;故选:B.9.(2020•毕节市)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm【答案】D【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:AC===10(cm),∴BD=10cm,DO=5cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF=OD=2.5cm,故选:D.10.(2020•玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④【答案】A【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故选:A.11.(2020•十堰)已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC ⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④【答案】B【解答】解:A.AB=BC,邻边相等的平行四边形是菱形,故A不符合题意;B.AC=BD,对角线相等的平行四边形是矩形,故B符合题意;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C不符合题意;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D不符合题意.故选:B.12.(2020•烟台)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为()A.60°B.70°C.80°D.85°【答案】C【解答】解:∵OA=OB,∠AOB=140°,∴∠A=∠B=(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.13.(2020•宜昌)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【解答】解:∵从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,∴=72°,∴每走完一段直路后沿向右偏72°方向行走.故选:A.14.(2020•通辽)如图,AD是△ABC的中线,四边形ADCE是平行四边形,增加下列条件,能判断▱ADCE是菱形的是()A.∠BAC=90°B.∠DAE=90°C.AB=AC D.AB=AE【答案】A【解答】解:添加∠BAC=90°时,∵AD是△ABC的中线,∴AD=BC=CD,∴四边形ADCE是菱形,选项A正确;添加∠DAE=90°,∵四边形ADCE是平行四边形∴四边形ADCE是矩形,选项B错误;添加AB=AC,可得到AD⊥BC,∴∠ADC=90°,∴四边形ADCE是矩形,选项C错误;添加AB=AE,∵AE=AB,AB>AD,∴AE>AD,故不能选项D不能判定四边形ADCE是菱形;故选:A.15.(2020•威海)如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.【答案】A【解答】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE∥BF,CE=EF,∴△CEG∽△CFB,∴,∵,∴,∵BC=3,∴GB=,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG==,∴tanα的值为,故选:A.16.(2020•荆门)如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.50【答案】C【解答】解:∵E,F分别是AD,BD的中点,∴EF是△ABD的中位线,∴EF=AB=5,∴AB=10,∵四边形ABD是菱形,∴AB=BC=CD=AD=10,∴菱形ABCD的周长=4AB=40;故选:C.17.(2020•牡丹江)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD ∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2)B.(2,﹣4)C.(2,0)D.(0,2)或(0,﹣2)【答案】D【解答】解:根据菱形的对称性可得:当点C旋转到y轴负半轴时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO===OC,∴点C的坐标为(0,),同理:当点C旋转到y轴正半轴时,点C的坐标为(0,),∴点C的坐标为(0,)或(0,),故选:D.18.(2020•盐城)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3D.5【答案】B【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=4,OC=OA=AC=3,在Rt△BOC中,BC===5,∵H为BC中点,∴OH=BC=.故选:B.19.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD =6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()A.2B.C.3D.4【答案】B【解答】解:∵菱形ABCD的对角线AC、BD相交于点O,∴OD=BD=×6=3,OA=AC=×8=4,AC⊥BD,由勾股定理得,AD==5,∵OE=CE,∴∠DCA=∠EOC,∵四边形ABCD是菱形,∴AD=CD,∴∠DCA=∠DAC,∴∠DAC=∠EOC,∴OE∥AD,∵AO=OC,∴OE是△ADC的中位线,∴OE=AD=×5=2.5,故选:B.20.(2020•扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【解答】解:∵小明每次都是沿直线前进10米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×10=80(m).故选:B.21.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.6【答案】A【解答】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=BD,∵菱形ABCD的面积=×AC×BD=×12×BD=48,∴BD=8,∴OH=BD=4;故选:A.22.(2020•绥化)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】D【解答】解;∵CD为斜边AB的中线,∴AD=BD,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴DE是△ABC的中位线,∴AE=CE,DE=BC;①正确;∵EF=DE,∴DF=BC,∴四边形DBCF是平行四边形;②正确;∴CF∥BD,CF=BD,∵∠ACB=90°,CD为斜边AB的中线,∴CD=AB=BD,∴CF=CD,∴∠CFE=∠CDE,∵∠CDE+∠EGC=180°,∠EGF+∠EGC=180°,∴∠CDE=∠EGF,∴∠CFE=∠EGF,∴EF=EG,③正确;作EH⊥FG于H,如图所示:则∠EHF=∠CHE=90°,∠HEF+∠EFH=∠HEF+∠CEH=90°,FH=GH=FG=1,∴∠EFH=∠CEH,CH=GC+GH=3+1=4,∴△EFH∽△CEH,∴=,∴EH2=CH×FH=4×1=4,∴EH=2,∴EF===,∴BC=2DE=2EF=2,④正确;故选:D.23.(2020•临沂)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC 的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关【答案】C【解答】解:过点P作EF⊥AD交AD于点E,交BC的延长线于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,,,∵EF=PE+PF,AD=BC,∴S1+S2=,故选:C.24.(2020•黑龙江)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B 重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤【答案】D【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠F AE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△F AE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,当BE=a时,设DG=x,则EG=x+a,在Rt△AEG中,则有(x+a)2=(a﹣x)2+(a)2,解得x=,∴AG=GD,故⑤正确,故选:D.25.(2020•衡阳)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OB=OD【答案】C【解答】解:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形;故选:C.26.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF =BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4B.3C.2D.1【答案】A【解答】解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE平分∠BOD,故①正确;②∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,故②正确;③∵△AOF≌△ABD,∴AF=AB,连接BF,如图1,∴BF=,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5°,∴∠F AG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE=AG,∴△AEG为等腰直角三角形,故④正确;故选:A.27.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB 于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.96【答案】C【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积=.故选:C.28.(2020•泰安)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC =6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A.1cm B.cm C.(2﹣3)cm D.(2﹣)cm 【答案】D【解答】解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,。
2020年中考数学试题分类汇编:四边形(含答案解析)
一.选择题1. (2019安徽)在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有 A .∠ADE =20° B .∠ADE =30°C .∠ADE =1 2∠ADCD .∠ADE = 1 3∠ADC2. (2019安徽)如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形, 则AE 的长是 A .2 5 B .35 C .5D .63. (2019兰州)下列命题错误..的是 A. 对角线互相垂直平分的四边形是菱形 B. 平行四边形的对角线互相平分C. 矩形的对角线相等D. 对角线相等的四边形是矩形4. 如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥A EBCFD GH第9题图CD,垂足分别为E,F,连结EF,则△AEF的面积是A. 33 C. 324 B. 3D. 35.(2019广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.(2019梅州)下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平等的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形考点:命题与定理..分析:根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.解答:解:A、对角线互相垂直的四边形不一定是菱形,故本选项错误;B、一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D、对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.点评:本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.6.(广东汕尾)下列命题正确的是A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.(湖北滨州)顺次连接矩形ABCD各边的中点,所得四边形必定是A.邻边不等的平行四边形B.矩形C.正方形D.菱形8.(湖北襄阳)如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( ). A .AF =AE B .△ABE ≌△AGF C .EF =2 5 D .AF =EF9.(湖北孝感)已知一个正多边形的每个外角等于 60,则这个正多边形是 A .正五边形 B .正六边形C .正七边形D .正八边形10. (湖北孝感)下列命题: ①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形; ④一条对角线平分一组对角的平行四边形是菱形. 其中真命题的个数是 A .1B .2C .3D .411.(衡阳)下列命题是真命题的是( A ).GFE DCB AA .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形12. (2019•益阳)如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错误的是( )A . ∠ABC=90°B .AC=BD C .OA=OB D .OA=AD考点:矩形的性质. 分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论. 解答: 解:∵四边形ABCD 是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD ,OA=AC ,OB=BD , ∴OA=OB,∴A、B 、C 正确,D 错误,故选:D .点评: 本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.13.(株洲)下列几何图形中,既是轴对称图形,又是中心对称图形的是A 、等腰三角形B 、正三角形C 、平行四边形D 、正方形 【试题分析】本题考点为:轴对称图形与中心对称图形的理解 答案为:D14.(无锡)下列图形中,是轴对称图形但不是中心对称图形的是 ( )A .等边三角形B .平行四边形C .矩形D .圆15.(江西)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化.下面判断错误..的是( ) A .四边形ABCD 由矩形变为平行四边形B .BD 的长度增大C .四边形ABCD 的面积不变D.四边形ABCD的周长不变16.(呼和浩特)下列图形中,既是轴对称图形,又是中心对称图形的是A.B. C.D.17.(呼和浩特).如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为A. 12B.98C. 2D. 418.二.填空题1. (2019广东)正五边形的外角和等于(度).【答案】360.【解析】n边形的外角和都等于360度。
2024年四川中考数学真题分类汇编——三角形及平行四边形
2024年四川中考数学真题分类汇编——三角形及平行四边形一广安如图,菱形ABCD中,点E,F分别是AB,BC边上的点,BE=BF,求证:∠DEF=∠DFE.如图,线段AC,BD相交于点O,且AB∥CD,AE⊥BD于点E.(1)尺规作图:过点C作BD的垂线,垂足为点F,连接AF,CE;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB=CD,请判断四边形AECF的形状,并说明理由.(若前问未完成,可画草图完成此问)如图,在菱形ABCD中,∠ABC=60°,对角线AC与BD相交于点O,点F为BC的中点,连接AF与BD相交于点E,连接CE并延长交AB于点G.(1)证明:△BEF∽△BCO;(2)证明:△BEG≌△AEG.如图,在菱形ABCD中,∠ABC=60°,AB=2,E是BC边上一个动点,连接AE,AE的垂直平分线MN交AE于点M,交BD于点N,连接EN、CN.(1)求证:EN=CN;(2)求2EN+BN的最小值.如图,在▱ABCD中,E,F是对角线BD上的点,且DE=BF.求证:∠1=∠2.如图,在△ABC中,DE∥BC,∠EDF=∠C.(1)求证:∠BDF=∠A;(2)若∠A=45°,DF平分∠BDE,请直接写出△ABC的形状.如图,在△ABC中,点D为BC边的中点,过点B作BE∥AC交AD的延长线于点E.(1)求证:△BDE≌△CDA.(2)若AD⊥BC,求证:BA=BE.如图,点A、D、B、E在同一条直线上,AD=BE,AC=DF,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠E=45°,求∠F的度数.康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O;②以点O为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA、OB、OC、OD;③顺次连结所得的四点得到四边形ABCD.于是可以直接判定四边形ABCD是平行四边形,则该则定定理是:.(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD是平行四边形,AC=BD.求证:四边形ABCD是矩形.如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.。
2023年湖北省中考数学模拟题知识点分类汇编:四边形(附答案解析)
2023年湖北省中考数学模拟题知识点分类汇编:四边形一.选择题(共19小题)
1.(2022•武汉模拟)如图,在平行四边形ABCD中,∠BAD=45°,AD=4,CD=2,若用半径为r的圆形纸片完全覆盖平行四边形ABCD,则r的最小值是()
A .B.2C.2D .
2.(2022•南漳县模拟)如图,在菱形ABCD中,M,N分别为AB,AC的中点,若MN=2,则菱形ABCD的周长为()
A.8B.12C.16D.24 3.(2022•老河口市模拟)如图,四边形ABCD是矩形,E,F,G,H分别为各边的中点,则四边形EFGH一定是()
A.菱形B.矩形
C.正方形D.对角线相等的四边形
4.(2022•谷城县模拟)如图,已知点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到四边形EFGH,我们把四边形EFGH叫做四边形ABCD的“中点四边形”.若四边形ABCD是矩形,则矩形ABCD的“中点四边形”
一定是()
第1页(共50页)。
初中数学四边形真题汇编及解析
初中数学四边形真题汇编及解析一、选择题1.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.15【答案】B【解析】【分析】根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO12=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积12=⨯6×8=24,故选:B.【点睛】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.2.如图,把矩形ABCD沿EF对折后使两部分重合,若150∠=o,则AEF∠=()A.110°B.115°C.120°D.130°【答案】B【解析】【分析】根据翻折的性质可得∠2=∠3,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形ABCD沿EF对折后两部分重合,150∠=o,∴∠3=∠2=180-502︒︒=65°,∵矩形对边AD∥BC,∴∠AEF=180°-∠3=180°-65°=115°.故选:B.【点睛】本题考查了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的关键.3.如图,小莹用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,BC长为10cm.当小莹折叠时,顶点D落在BC边上的点F处(折痕为AE).则此时EC=()cmA.4 B2C.22D.3【答案】D【解析】【分析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到:42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF=226-=AF AB∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.故选:D【点睛】本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.4.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.5.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.6.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.245【答案】D【解析】【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,继而利用面积法求出NQ长即可得答案.【详解】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,∵四边形ABCD是菱形,AC=6,DB=8,∴OA=3,OB=4,AC⊥BD,在Rt△AOB中,22OA OB+,∵S菱形ABCD=12AC BD AB NQ=g g,∴18652NQ ⨯⨯=,∴NQ=245,∴PM+PN的最小值为245,【点睛】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.7.四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,∠DHO=20°,则∠CAD的度数是().A.25°B.20°C.30°D.40°【答案】B【解析】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∵DH⊥AB,∴OH=OB=12BD,∵∠DHO=20°,∴∠OHB=90°-∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠CAD=∠CAB=90°-∠ABD=20°.故选A.8.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.解:连接AD∵AB=AC ,D 为BC 的中点,BC=12,∴AD ⊥BC ,BD=DC=6,在Rt △ADB 中,由勾股定理得:AD=22221068AB BD =+=, ∵S △ADB=12×AD×BD =12×AB×DE , ∴DE=8624105AD BD AB ⨯⨯==, 故选D .【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解此题的关键.9.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.10.如图,在菱形ABCD 中,AB =10,两条对角线相交于点O ,若OB =6,则菱形面积是( )A .60B .48C .24D .96【答案】D【解析】【分析】 由菱形的性质可得AC ⊥BD ,AO =CO ,BO =DO =6,由勾股定理可求AO 的长,即可求解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO =6,∴AO 22100368AB OB -=-=,∴AC=16,BD=12,∴菱形面积=12162⨯=96,故选:D.【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.11.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.12.如图,点E是正方形ABCD的边DC上一点,把ADE∆绕点A顺时针旋转90︒到ABF∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE ∆Q 绕点A 顺时针旋转90︒到ABF ∆的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20, 25AD DC ∴==,2DE =Q ,Rt ADE ∴∆中,2226AE AD DE =+=故选:D .【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应 边关系是解题关键.13.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE ,∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点,∴12 EFBD=,∴14EFCBCDDSS=VV,∴18EFCABCDSS=V四边形,∴1176824AGH EFCABCDS SS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.如图,点E F G H、、、分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC BD=,则四边形EFGH为矩形;②若AC BD⊥,则四边形EFGH 为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【答案】A【解析】【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选A.【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC ⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.15.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()A.1 B.34C.23D.12【答案】D【解析】【分析】由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.【详解】∵AD是△ABC角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EF=12BG=12,故选:D.【点睛】此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.16.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有().A.1个B.2个C.3个D.4个【答案】D【解析】分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.18.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.19.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G .下列结论中:①DE =DF ;②AG =GF ;③AF =DF ;④BG =GC ;⑤BF =EF ,其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由AAS 证明△ABF ≌△DEF ,得出对应边相等AF=DF ,BF=EF ,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,即AB ∥CE ,∴∠ABF=∠E ,∵DE=CD ,∴AB=DE ,在△ABF 和△DEF 中,∵===ABF E AFB DFE AB DE ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABF ≌△DEF (AAS ),∴AF=DF ,BF=EF ;可得③⑤正确,故选:B .【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.20.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A.12 B.15 C.18 D.2【答案】C【解析】【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
部编版2020年中考数学真题汇编 四边形(填空+选择40题)
四边形(填空+选择40题)一、选择题1.已知正多边形的一个外角等于40°,那么这个正多边形的边数为( ) A.6 B.7 C.8 D.9 【答案】D2.下列命题正确的是( )A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等 D. 正方形的对角线互相垂直平分 【答案】D 3.如图,将矩形 沿对角线折叠,点 落在 处,交于点 ,已知,则的度为( )A. B.C.D.【答案】D4.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 为边CD 的中点,若菱形ABCD 的周长为16,∠BAD =60°,则△OCE 的面积是( )。
A. B . 2 C.D. 4【答案】A5.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B.C.D.【答案】C6.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B.C.D.【答案】C7.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC 等于()A. 112°B. 110°C. 108°D. 106°【答案】D8.下列命题,其中是真命题的为()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形 D. 一组邻边相等的矩形是正方形【答案】D9.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为()A. 5B.C. 7D.【答案】D10.□ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B11.在中,若与的角平分线交于点,则的形状是()A. 锐角三角形B. 直角三角形 C. 钝角三角形 D. 不能确定【答案】B12.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°【答案】B13.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东各地区中考数学试题分类汇编——四边形
1、(佛山)7. 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意
直线与圆相交于点M 、N . 则线段BM 、DN 的大小关系是( ). A . B . C . D . 无法确定
2、(茂名)7.正方形内有一点A ,到各边的距离从小到大依次是1、2、
3、4,则正方形的周长是( )
A.10 B.20 C.24 D.25
3、(茂名)10.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( ) A.
B. C. D. 4、(肇庆)4.一个正方形的对称轴共有( )
A .1条
B .2条
C .4条
D .无数条 5、(肇庆)14.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 (佛山)12.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .
6、(湛江)23. 如图7所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相
交于点O .请在图中找出一对全等的三角形,并加以证明.
DN BM >DN BM <DN BM =9192319
4
A B
C
D
P
N
M
第7题图
E
H
F
G
C
B
A (第10题图) 图7 D
B A O C
7、(佛山)23. 如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形.
(1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形;
(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构
成图形的类型和相应的条件.
8、(肇庆)21.(本小题满分7分)如图5,在等腰Rt △ABC 中,∠C =90°,正方形DEFG 的顶点D 在边AC 上,点E 、F 在边AB 上,点G 在边BC 上. (1)求证AE =BF ;
(2)若BC =cm ,求正方形DEFG 的边长.
2第23题图
E
F
D
A
B
C
图8 如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .
(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分) (2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说
明理由.(5分)
10、(梅州)18.本题满分8分.如图8,四边形是平行四边形.O 是对角线的
中点,过点的直线分别交AB 、DC 于点、,与CB 、AD 的延长线分别交于点G 、H .
(1)写出图中不全等的两个相似三角形(不要求证明);
(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.
ABCD AC O EF E F F E
D
C
B
A (第23题图)
如图10所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证: ADE∽BEF;
(2)设正方形的边长为4,AE=,BF=.当取什么值时,有最大值?并求出这个最大值.
12、(东莞)18.(本题满分7分)如图5,在△ABC中,BC>AC,点D在BC上,且DC=
AC,∠ACB的平分线CF交AD于F,点E是AB的中点,连结EF.
(1)求证:EF∥BC.
(2)若四边形BDFE的面积为6,求△ABD的面积.
∆∆
x y x
y
13、(东莞)21.(本题满分9分)(1)如图7,点O 是线段AD 的中点,分别以AO 和DO
为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . 求∠AEB 的大小;
(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O
旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.
C B O
D 图7 A B A O D C E
图8。