初一下册几何证明题(多篇)

合集下载

七年级下几何证明题

七年级下几何证明题

几何证明题专项练习1. 已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数.2. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.3.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______4321A CDB4. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数5.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.DEBCAH G21FEDC BA6. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.7.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.8.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。

9.已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数10.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba3412ABCD EEDC BAED BAC21FEDBA C11,如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370,求∠D 的度数.12.AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.13.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.14.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.15.如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.NMG F EDCBAABCDE第18题图ENMCD16.如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE D CB A17.如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.F E21DCBA18.如图5-28,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2 ABECFDH G119如图,CD 是∠ACB 的平分线,∠EDC=025,∠DCE=025, ∠B=070① 证:DE//BC ②求∠BDC 的度数。

七年级数学典型几何证明50题

七年级数学典型几何证明50题

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。

∴ ∠BAF=∠EAF (∠1=∠2)。

3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

初中数学几何证明试题(含答案)

初中数学几何证明试题(含答案)

第 6 页 共 15 页
4.如下图连接 AC 并取其中点 Q,连接 QN 和 QM,所以可得∠QMF=∠F,∠QNM=∠
DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F。
经 典 题(二)
1.(1)延长 AD 到 F 连 BF,做 OG⊥AF,
又∠F=∠ACB=∠BHD, 可得 BH=BF,从而可得 HD=DF, 又 AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
BE AD
= ,即 AD•BC=BE•AC,

BC AC
又∠ACB=∠DCE,可得△ABC∽△DEC,既得
AB = DE ,即 AB•CD=DE•AC,

AC DC
由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。
第 11 页 共 15 页
4.过 D 作 AQ⊥AE
(2)连接 OB,OC,既得∠BOC=1200,
从而可得∠BOM=600, 所以可得 OB=2OM=AH=AO, 得证。
第 7 页 共 15 页
3.作 OF⊥CD,OG⊥BE,连接 OP,OA,OF,AF,OG,AG,OQ。 由于 AD = AC = CD = 2FD = FD , AB AE BE 2BG BG
(2)过 P 点作 BC 的平行线交 AB,AC 与点 D,F。
由于∠APD>∠ATP=∠ADP,
推出 AD>AP

又 BP+DP>BP

和 PF+FC>PC

又 DF=AF

由①②③④可得:最大 L< 2 ;

七年级下几何证明题(精华版)

七年级下几何证明题(精华版)

几何证明题专项练习 1、直接根据图示填空:(1)∠α=_________ (2)∠α=_________ (3)∠α=_________ (4)∠α=_________ (5)∠α=_________ (6)∠α=_________α38°62°20°α°30°25°150°α(1) (2) (3)70°α°70°60°20°α20°135°45°α(4) (5) (6) 2、填空完成推理过程: 如图,∵AB ∥EF ( 已知 )∴∠A + =1800( ) ∵DE ∥BC ( 已知 )∴∠DEF= ( )2. ∠ADE= ( ) 3. 已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数.4. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.3.5.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______5.4321A CDB4.ACD E FBDEB CAHG 2 1 FE DC B A EDBAC21FEDBA Ca34126. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数 6.7.8.7.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.8. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.9.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.12.9.10.10.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。

初中数学的证明题(精选多篇)

初中数学的证明题(精选多篇)

初中数学的证明题(精选多篇)第一篇:初中数学的证明题初中数学的证明题在△abc中,ab=ac,d在ab上,e 在ac的延长线上,且bd=ce,线段de交bc于点f,说明:df=ef。

对不起啊我不知道怎么把画的图弄上来所以可能麻烦大家了谢谢1.过d作dh∥ac交bc与h。

∵ab=ac,∴∠b=∠acb.∵dh∥ac,∴∠dhb=∠acb,∴∠b=∠dhb,∴db=dh.∵bd=ce,∴dh=ce.∵dh∥ac,∴∠hdf=∠fec.∵∠dfb=∠cfe,∴△dfh≌△efc,∴df=ef.2.证明:过e作eg∥ab交bc延长线于g则∠b=∠g又ab=ac有∠b=∠acb所以∠acb=∠g因∠acb=∠gce所以∠g=∠gce所以eg=ec因bd=ce所以bd=eg在△bdf和△gef中∠b=∠g,bd=ge,∠bfd=∠gfe则可视gef绕f旋转1800得△bdf故df=ef3.解:过e点作em∥ab,交bc的延长线于点m, 则∠b=∠bme,因为ab=ac,所以∠acb=∠bme因为∠acb=∠mce,所以∠mce=∠bme所以ec=em,因为bd=ec,所以bd=em在△bdf和△mef中∠b=∠bmebd=em∠bfd=∠mfe所以△bdf以点f为旋转中心,旋转180度后与△mef重合,所以df=ef4.已知:a、b、c是正数,且a>b。

求证:b/a要求至少用3种方法证明。

(1)a>b>0;c>01)(a+c)/(b+c)-a/b=/=(ab+ac-ab-bc}/(b^2+bc) =(ac-bc)/(b^2+bc)=c(a-b)/a>b--->a-b>0;a>0;b>0;c>0--->b(b+c)>0-->c(a-b)/>0--->(a+c)/(b+c)>a/b2)a>b>0;c>0--->bc---ab+bc--->a(b+c)--->a(b+c)/--->a/b<(a+c)/(b+c)3)a>b>0--->1/a<1/b;c>0--->c/a--->c/a+1--->(c+a)/a<(c+b)/b--->(a+c)/(b+c)>a/b(2)makeb/a=k<1b=kab+c=ka+c(b+c)/(a+c)=(ka+c)/(a+c)=(ka+kc-c)/(a+c)=k(a+c)/(a+c)-(k-1)c/(a+c)=k+(1-k)c/(a+c)>k=b/a。

初一下册几何证明题(完整版)

初一下册几何证明题(完整版)

初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。

又因为fq=fp,em=en.fq=2dj,en=2hd。

又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。

所以do=hd+jd。

因为x=do,=h,z=dj.所以x=+z。

在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。

bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。

几何法证明不等式(精选多篇)

几何法证明不等式(精选多篇)

几何法证明不等式(精选多篇)^2(a,b∈r,且a≠b)设一个正方形的边为c,有4个直角三角形拼成这个正方形,设三角形的一条直角边为a,另一条直角边为b,(b>a)a=b,刚好构成,若a不等于b时,侧中间会出现一个小正方形,所以小正方形的面积为(b-a)^2,经化简有(b+a)^2=4ab,所以有((a+b)/2)^2=ab,又因为(a^2+b^2)/2>=ab,所以有((a+b)/2)^2<=(a^2+b^2)/2,又因为a不等与b,所以不取等号可以在直角三角形内解决该问题=^2-(a^2+b^2)/2=/4=-(a-b)^2/4<0能不能用几何方法证明不等式,举例一下。

比如证明sinx不大于x(x范围是0到兀/2,闭区间)做出一个单位圆,以o为顶点,x轴为角的一条边任取第一象限一个角x,它所对应的弧长就是1*x=x那个角另一条边与圆有一个交点交点到x轴的距离就是sinx因为点到直线,垂线段长度最小,所以sinx小于等于x,当且尽当x=0时,取等已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;能给出其他方法的就给分(a1+a2+...+an)/n≥(a1a2...an)^(1/n)一个是算术,一个是几何。

人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^搞笑归搞笑,我觉得可以这样做,题目结论相当于证(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。

我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)我们考虑各元偏导都等于0,得到方程组,然后解出a1=a2=……=an再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。

初一数学(七下)几何证明题

初一数学(七下)几何证明题

第3题填空完成推理过程: 1、 如图,∵AB ∥EF 〔〕∴∠A +=1800〔 〕 ∵DE ∥BC 〔 〕∴∠DEF=〔 〕 ∠ADE=〔 〕 2、:如图,∠ADE =∠B ,∠DEC =115°.求∠C 的度数.3、:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.4、AB ∥CD ,∠1=70°如此∠2=_______,∠3=______,∠4=______ _5、:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数6、直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD =1:4,求∠EOB 的度数.7、如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.ACD E FBH G21FEDC BA8、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.9、如图,:21∠∠=, 50=D ∠,求B ∠的度数。

10、:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数11、如如下图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ABCDE第19题12、等腰三角形的周长是16cm.〔1〕假设其中一边长为4cm,求另外两边的长;〔2〕假设其中一边长为6cm,求另外两边长;〔3〕假设三边长都是整数,求三角形各边的长.14、如图,AB//CD,EF⊥AB于点E,EF交CD于点F,∠1=600.求∠2的度数.15、如如下图,把一长方形纸片ABCD沿EF折叠,假设∠EFG=50°,求∠DEG的度数.16、如如下图,AB∥CD,分别探索如下四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.(1) (2) (3) (4)17、如图,AB∥CD,BF∥CE,如此∠B与∠C有什么关系?请说明理由.第17题图18、如图,:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.AD EB C第18题图19、如图AB∥CD,∠NCM=90°,∠NCB=30°,CM平分∠BCE,求∠B的大小.第19题图20、如图5-24,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.〔1〕判断CD与AB的位置关系;〔2〕BE与DE平行吗?为什么?21、如图5-25,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.〔1〕AE与FC会平行吗?说明理由.〔2〕AD与BC的位置关系如何?为什么?〔3〕BC平分∠DBE吗?为什么.图5-2422、如图5-26,:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .BC23、如图5-27,:AB ∥CD ,AB =CD ,求证:AC 与BD 互相平分.24、如图5-27,:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2ABECFD H G125、如图5-28,:在∆A B C 中,∠=︒C 90,AC=BC ,BD 平分∠CBA ,D EA B⊥于E ,求证:AD+DE=BE .26、如图5-29,:AB ∥CD ,求证:∠B +∠D +∠BED =360︒〔至少用三种方法〕图5-26图5-26A BEC D27、直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.28、如图,EF∥AD,∠1 =∠2,∠BAC = 70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2 = .又因为∠1 = ∠2,所以∠1 = ∠3.所以AB∥.所以∠BAC + = 180°.又因为∠BAC = 70°,所以∠AGD =.29、如图,:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.AD EB C30、AD∥BC,AB∥DC,∠1=100º,求∠2,∠3的度数31、∠ECF=900,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CBA的外角平分线AG所在的直线交于一点D,〔1〕∠D与∠C有怎样的数量关系?〔直接写出关系与大小〕〔2〕点A在射线CE上运动,〔不与点C重合〕时,其它条件不变,〔1〕中结论还成立吗?说说你的理由。

七年级下册数学期末考试几何大题证明必考题精选

七年级下册数学期末考试几何大题证明必考题精选

图①DA EC B Fl图②ABEF C lD 七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。

如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。

(1)如图1, 连结DF 、BF ,说明:DF =BF ;(2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。

A EB 图1D CG FA BD C GFE 图2练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE 交点记为点F . (1)BD 与CE 相等吗?请说明理由.(2)你能求出BD 与CE 的夹角∠BFC 的度数吗?(3)若将已知条件改为:四边形ABCD 与四边形AEFG 都是正方形,连结BE 、DG 交点记为点M (如图).请直接写出线段BE 和DG 之间的关系?例3、正方形四边条边都相等,四个角都是90.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由;②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由;(2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;A BC FDE GP32M F G A B C DE F EAB C D②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度α,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C图 2H FG D A NM B C E 图 1H F G D A MN B C E外.(1)请探究:图(2)--(5)中,h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论. (4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为:;图(4)与图(6)中的等式有何关系?练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中,点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又 F A B C D EP M (4) A B C DE P M (3) A B C D EP M (2) A B C D EM (P )(1) A B C D E P M (5) FAB C DEP M (6) R SC B APDEFC B HGADE 因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中,h1、h2、h3、h之间的关系;(直接写出结论)⑵⑶⑷⑸(2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.例2、已知△ABC 是等边三角形,将一块含30角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.(B)ACDE F图1F ABC DEP M (4)ABCDEPM(3)ABCDE P M (2)ABCDEM (P ) (1)ABCDEP M(5)练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是。

初中几何证明题(精选多篇)

初中几何证明题(精选多篇)

初中几何证明题(精选多篇)第一篇:初中几何证明题初中几何证明题己知m是△abc边bc上的中点,,d,e分别为ab,ac上的点,且dm⊥em。

求证:bd+ce≥de。

1.延长em至f,使mf=em,连bf.∵bm=cm,∠bmf=∠cme,∴△bfm≌△cem(sas),∴bf=ce,又dm⊥em,mf=em,∴de=df而∠dbf=∠abc+∠mbf=∠abc+∠acb<180°,∴bd+bf>df,∴bd+ce>de。

2.己知m是△abc边bc上的中点,,d,e分别为ab,ac上的点,且dm⊥em。

求证:bd+ce≥de如图过点c作ab的平行线,交dm的延长线于点f;连接ef因为cf//ab所以,∠b=∠fcm已知m为bc中点,所以bm=cm又,∠bmd=∠cmf所以,△bmd≌△cmf(asa)所以,bd=cf那么,bd+ce=cf+ce (1)且,dm=fm而,em⊥dm所以,em为线段df的中垂线所以,de=ef在△cef中,很明显有ce+cf>ef (2)所以,bd+ce>de当点d与点b重合,或者点e与点c重合时,仍然采用上述方法,可以得到bd+ce=de综上就有:bd+ce≥de。

3.证明因为∠dme=90°,∠bmd<90°,过m作∠bmd=∠fmd,则∠cme=∠fme。

截取bf=bc/2=bm=cm。

连结df,ef。

易证△bmd≌△fmd,△cme≌△fme所以bd=df,ce=ef。

在△dfe中,df+ef≥de,即bd+ce≥de。

当f点落在de时取等号。

另证延长em到f使mf=me,连结df,bf。

∵mb=mc,∠bmf=∠cme,∴△mbf≌△mce,∴bf=ce,df=de,在三角形bdf中,bd+bf≥df,即bd+ce≥de。

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:(1)正向思维。

初一几何证明题及答案

初一几何证明题及答案

初一几何证明题及答案【篇一:七年级数学几何证明题(典型)】3.已知,如图,在△ abc中,ad,ae分别是△ abc的高和角平分线,若∠b=30dc4、一个零件的形状如图,按规定∠a=90o ,∠c=25o,∠b=25o,检验已量得∠bdc=150o,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

db5、如图,已知df∥ac,∠c=∠d,你能否判断ce∥bd?试说明你的理由 aebc8、如图,ad⊥bc于d,eg⊥bc于g,∠e =∠1,求证ad平分∠bac。

e3gdc10、如图,将一副三角板叠放在一起,使直角的顶点重合于o,则∠aoc+∠dob11、如图,将两块直角三角尺的直角顶点c叠放在一起. (1)若∠dce=35,求∠acb的度数;(2)若∠acb=140,求∠dce的度数;(3)猜想:∠acb与∠dce有怎样的数量关系,并说明理由12、已知:直线ab与直线cd相交于点o,∠boc=45,(1)如图1,若eo⊥ab,求∠doe的度数;(2)如图2,若eo平分∠aoc,求∠doe的度数.13、已知?aob,p为oa上一点.(1)过点p画一条直线pq,使pq∥ob;(2)过点p画一条直线pm,使pm⊥oa交ob于点m;(3)若?aob?40?,则?pmo? ?adecodbad cob16、已知:线段ab=5cm,延长ab到c,使ac=7cm,在ab的反向延长线上取点d,使bd=4bc,设线段cd的中点为e,问线段ae 是线段cd的几分之一?【篇二:初中数学几何证明经典试题(含答案)】题(一)1、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二).如下图做gh⊥ab,连接eo。

由于gofe四点共圆,所以∠gfh=∠oeg, 即△ghf∽△oge,可得eogf=gogh=cocd,又co=eo,所以cd=gf得证。

eadofb2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二) a.如下图做gh⊥ab,连接eo。

七年级下几何证明题(精选)

七年级下几何证明题(精选)

七年级下几何证明题(精选)第一篇:七年级下几何证明题(精选)七年级下几何证明题学了三角形的外角吗?(三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角) 角ACD>角BAC>角AFE角ACD+角ACB=180度角BAC+角ABC+角ACB=180度所以角ACD=角BAC+角ABC所以角角ACD>角BAC同理:角BAC>角AFE所以角ACD>角BAC>角AFE解∶﹙1﹚连接AC∴五边形ACDEB的内角和为540°又∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴AB∥CD﹙2﹚过点D作AB的垂线DE∵∠CAD=∠BAD,∠C=∠AEDAD为公共边∴Rt△ACD≌Rt△AED∴AC=AE,CD=DE∵∠B=45°∠DEB=90°∴∠EDB=45°∴DE=BEAB=AE+BE=AC+CD﹙3﹚∵腰相等,顶角为120°∴两个底角为30°根据直角三角形中30°的角所对的边为斜边的一半∴腰长=2高=16﹙4﹚根据一条线段垂直平分线上的点到线段两个端点的距离相等∴该交点到三角形三个顶点的距离相等解∶﹙1﹚先连接AC∴五边形ACDEB的内角和为540°∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴就证明AB∥CD♂等鴏♀栐薳2010-05-3017:33(1)解:过E作FG∥AB∵FG∥AB∴∠ABE+∠FEB=180°又∵∠ABE+∠CDE+∠BED=360°∴∠FED+∠CDE=180°∴FG∥CD∴AB∥CD(2)解:作DE⊥AB于E∵AD平分∠CAB,CD垂直AC,DE垂直AB∴CD=DE,AC=AE又∵AC=CB,DE=EB,AC⊥CB,DE⊥EB∴∠ABC=∠EDB=45°∴DE=EB∴AB=AE+EB=AC+CD(3)16CM(4)3个顶点如图已知在四边形ABCD中,∠BAD为直角,AB=AD,G为AD 上一点,DE⊥BG交BG的延长线于E,DE的延长线与BA的延长线相交于点F。

初一几何证明题

初一几何证明题

初一几何证明题1.已知AB∥CD,∠1=∠2,证明:∠XXX∠XXX。

根据平行线内角相等的性质,可得∠1=∠2=∠XXX。

同时,因为AB∥CD,所以∠BEF+∠EFC=180°,即∠BEF=180°-∠XXX。

代入前面的等式,可得∠XXX∠XXX。

2.如图2,AB∥CD,∠3∶∠2=3∶1,求∠1的度数。

根据平行线内角相等的性质,可得∠1=180°-∠2.又因为∠3∶∠2=3∶1,所以∠3=3x,∠2=x。

代入前面的等式,可得∠1=180°-x。

因此,∠1+∠2+∠3=180°,即4x=180°,x=45°。

代入前面的等式,可得∠1=135°。

3.如图3,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,求∠XXX的度数。

根据直角三角形的性质,可得∠CEA=90°。

又因为CE⊥AF,所以∠EAF=90°-∠F=50°。

根据三角形内角和为180°的性质,可得∠EFA=180°-∠F-∠EAF=90°。

因为AB∥CD,所以∠XXX∠EFA=90°。

4.如图4,EF∥AD,∠1=∠2,∠BAC=80°。

求证:∠AGD=100°。

因为EF∥AD,所以∠AGD=∠AGE。

又因为∠BAC=80°,所以∠XXX°-∠BAC/2=50°。

因为∠1=∠2,所以∠DGE=∠AGE=180°-∠1-∠GAC=50°。

因此,∠AGD=∠AGE=50°+∠DGE=100°。

5.如图5,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的XXX°方向。

求∠C的度数。

根据题意,可画出如图6所示的图形。

七年级几何证明题训练(含答案)

七年级几何证明题训练(含答案)

1. 已知:如图11所示,∆ABC 中,∠=C 90于E ,且有AC AD CE ==。

求证:DE =122. 已知:如图 求证:BC =3. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。

设M 为BC 的中点。

求证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++14【试题答案】1. 证明:取AC ADAF CDAFC =∴⊥∴∠= 又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。

“截长”即将长的线段截CB CE BCD ECD CD CD CBD CEDB EBAC B BAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==ADE E AD AEBC CE ,3. 证明:延长PM CQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线AD BC AD AEBC AE AD⊥∴<∴=>,22()AB AC BCBC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++2414。

初一下册数学证明(精选多篇)

初一下册数学证明(精选多篇)

初一下册数学证明(精选多篇)第一篇:初一下册数学证明初一下册数学证明应该还有这两个条件吧:点e是cd的中点,点g 是bf的中点。

如果有,证明如下:证明:连接be、fe,因为db⊥ac,点e是cd的中点,所以在rt△cbd中,be=ce=de,又因为cf⊥ad,点e是cd的中点,所以在rt△cfd中,ef=ce=de,则be=ef,则△bef为等腰三角形,又因为点g为bf的中点,所以eg⊥bf,即eg是bf上的垂线。

2∠a+10=∠1,∠b=42,∵∠a+∠b+1=180∴∠a+42+∠a+10=180∴∠a=64∠1=74又∵∠acd=64∴延长dc到e,∴∠bce=180-∠acd-∠1=42=∠abc∴ab‖cd3学校将若干个宿舍分别配给七年级一班的女生宿舍,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满,有多少间宿舍,多少名女生?设有x间宿舍,y名女生。

5x+5=y①8(x-1)>y②把y=5x+5代入②中,8(x-1)>5x+5即3x>13x>4.3当x=5时,y=30,符合题意。

当x=6时,y=35,已知该班女生少于35人,不符合题意。

x>5都不符合题意。

所以有5间宿舍,6名女生4一.选择题(本大题共24分)1.以下列各组数为三角形的三条边,其中能构成直角三角形的是()(a)17,15,8(b)1/3,1/4,1/5(c)4,5,6(d)3,7,112.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()(a)锐角三角形(b)直角三角形(c)钝角三角形(d)等腰三角形3.下列给出的各组线段中,能构成三角形的是()(a)5,12,13(b)5,12,7(c)8,18,7(d)3,4,84.如图已知:rt△abc中,∠c=90°,ad平分∠bac,ae=ac,连接de,则下列结论中,不正确的是()(a)dc=de(b)∠adc=∠ade(c)∠deb=90°(d)∠bde=∠dae5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()(a)12(b)10(c)8(d)56.下列说法不正确的是()(a)全等三角形的对应角相等(b)全等三角形的对应角的平分线相等(c)角平分线相等的三角形一定全等(d)角平分线是到角的两边距离相等的所有点的集合7.两条边长分别为2和8,第三边长是整数的三角形一共有()(a)3个(b)4个(c)5个(d)无数个8.下列图形中,不是轴对称图形的是()(a)线段mn(b)等边三角形(c)直角三角形(d)钝角∠aob9.如图已知:△abc中,ab=ac,be=cf,ad⊥bc于d,此图中全等的三角形共有()(a)2对(b)3对(c)4对(d)5对10.直角三角形两锐角的平分线相交所夹的钝角为()(a)125°(b)135°(c)145°(d)150°11.直角三角形两锐角的平分线相交所夹的钝角为()(a)125°(b)135°(c)145°(d)150°12.如图已知:∠a=∠d,∠c=∠f,如果△abc≌△def,那么还应给出的条件是()(a)ac=de(b)ab=df(c)bf=ce(d)∠abc=∠def二.填空题(本大题共40分)1.在rt△abc中,∠c=90°,如果ab=13,bc=12,那么ac=;如果ab=10,ac:bc=3:4,那么bc=2.如果三角形的两边长分别为5和9,那么第三边x的取值范围是。

七年级数学证明题目5则范文

七年级数学证明题目5则范文

七年级数学证明题目5则范文第一篇:七年级数学证明题目七年级数学证明题目1、如图,EF//AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.解:∵EF//AD,(已知)∴∠2=_____.(_____________________________).又∵∠1=∠2,(______)∴∠1=∠3,(________________________).∴AB//______,(____________________________)∴∠DGA+∠BAC=180°.(_____________________________)2、如图,AD为△ABC的中线,BE为△ABD的中线。

(8)(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;A3、在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.14、在△ABC中,∠A=(∠B+∠C)、∠B-∠C=20°,求∠A、∠B、∠C的度数。

25、如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠CB=95°(1)求∠DCA的度数;(2)求∠DCE的度数。

6、如图所示,请填写下列证明中的推理依据证明:∵∠A=∠C (已知),∴AB∥CD(___________________)∴∠ABO=∠CDO (_________________________)又∵DF平分∠CDO,BE平分∠ABO(已知)1∴∠1=∠CDO,∠2=∠ABO(_________________________)2∴∠1=∠2,∴DF∥BE (_____________________________________________)7、如图∆ABC中,AD是BC上的中线,BE是∆ABD中AD边上的中线,若∆ABC的面积是24,则∆ABE的面积是__?B8、完成下列推理,并填写理由如图4,∵ ∠ACE=∠D(已知),∴∥().∴ ∠ACE=∠FEC(已知),∴∥().∵ ∠AEC=∠BOC(已知),∴∥().∵ ∠BFD+∠FOC=180°(已知),∴∥().AECD图49、已知,如图5,∠1+∠2=180°,∠3=108°,则∠4的度数是多少?10、如图6,AB∥CD,∠BAE=∠DCE=45°,求∠ED图411、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数12、已知:AE平分△ABC的外角,且AE//BC,试判断∠B、∠C的大小关系,并说明理由13、已知:△ABC,射线BE、CF分别平分∠ABC和∠ACB,且BE、CF相交于点O。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一下册几何证明题(精选多篇)初一下册几何证明题1.已知在三角形abc中,be,cf分别是角平分线,d是ef中点,若d到三角形三边bc,ab,ac的距离分别为x,y,z,求证:x=y+z 证明;过e点分别作ab,bc上的高交ab,bc于m,n点.过f点分别作ac,bc上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做bc上的高交bc于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交ac于j点.则( )x=do,y=hy,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。

又因为fq=fp,em=en.fq=2dj,en=2hd。

又因为角fqc,doc,enc都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。

所以do=hd+jd。

因为x=do,y=hy,z=dj.所以x=y+z。

2.在正五边形abcde中,m、n分别是de、ea上的点,bm与相交于点o,若∠bon=108°,请问结论bm=是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。

bm=还成立证明;如图5连结bd、ce.在△bci)和△cde中∵bc=cd,∠bcd=∠cde=108°,cd=de∴δbcd≌δcde∴bd=ce,∠bdc=∠ced,∠dbc=∠cen∵∠cde=∠dec=108°,∴∠bdm=∠cen∵∠obc+∠ecd=108°,∠ocb+∠ocd=108°∴∠mbc=∠ncd又∵∠dbc=∠ecd=36°,∴∠dbm=∠e∴δbdm≌δe∴bm=3.三角形abc中,ab=ac,角a=58°,ab的垂直平分线交ac与n,则角nbc=()3°因为ab=ac,∠a=58°,所以∠b=61°,∠c=61°。

因为ab的垂直平分线交ac于n,设交ab于点d,一个角相等,两个边相等。

所以,rt△adn全等于rt△bdn所以∠nbd=58°,所以∠nbc=61°-58°=3°4.在正方形abcd中,p,q分别为bc,cd边上的点。

且角paq=45°,求证:pq=pb+dq延长cb到m,使bm=dq,连接ma∵mb=dqab=ad∠abm=∠d=rt∠∴三角形amb≌三角形aqd∴am=aq∠mab=∠daq∴∠map=∠mab+∠pab=45度=∠paq∵∠map=∠paqam=aqap为公共边∴三角形amp≌三角形aqp∴mp=pq∴mb+pb=pq∴pq=pb+dq5.正方形abcd中,点m,n分别在ab,bc上,且bm=bn,bp⊥mc于点p,求证dp⊥np∵直角△bmp∽△cbp∴pb/pc=mb/bc∵mb=bn正方形bc=dc∴pb/pc=bn/cd∵∠pbc=∠pcd∴△pbn∽△pcd∴∠bpn=∠cpd∵bp⊥mc∴∠bpn+∠npc=90°∴∠cpd+∠npc=90°∴dp⊥np。

初一《几何》复习题xx--6—29姓名:一.填空题1.过一点2.过一点,有且只有直线与这条直线平行;3.两条直线相交的,它们的交点叫做;4.直线外一点与直线上各点连接的中,最短;a b 5.如果c[图1]6.如图1,ab、cd相交于o点,oe⊥cd,∠1和∠2叫做,∠1和∠3叫做,∠1和∠4叫做,∠2和∠3叫做;a7.如图2,ac⊥bc,cd⊥ab,b点到ac的距离是a点到bc的距离是,c点到ab的距离是d438.如图3,∠1=110°,∠2=75°,∠3=110°,∠4=;cb 二.判断题[图2][图3] 1.有一条公共边的两个角是邻补角;()2.不相交的两条直线叫做平行线;()3.垂直于同一直线的两条直线平行;()4.命题都是正确的;()5.命题都是由题设和结论两部分组成()6.一个角的邻补角有两个;()三.选择题1.下列命题中是真命题的是()a、相等的角是对顶角b、如果a ⊥b,a⊥c,那么b⊥、互为补角的两个角一定是邻补角d、如果a∥b,a⊥c,那么b⊥c 2.下列语句中不是命题的是()a、过直线ab外一点c作ab的平行线cf b、任意两个奇数之和是偶数c、同旁内角互补,则两直线平行d、两个角互为补角,与这两个角所在位置无关a 3.如图4,已知∠1=∠2,若要∠3=∠4,则需()da、∠1=∠3b、∠2=∠3c、∠1=∠4d、 ab∥cdc [图4] 4.将命题“同角的补角相等”改写成“如果??,那么??”的形式,正确的是()a.如果同角的补角,那么相等b.如果两个角是同一个角,那么它们的补角相等 c.如果有一个角,那么它们的补角相等d.如果两个角是同一个角的补角,那么它们相等四.解答下列各题:p 1. 如图5,能表示点到直线(或线段)的距离的线段qac 有、、;abf 2.如图6,直线ab、cd分别和ef相交,已知ab∥cd,orebba平分∠cbe,∠cbf=∠dfe,与∠d相等的角有∠[图5][图6]d∠、∠、∠、∠等五个。

c 五.证明题e[图8]如图7,已知:be平分∠abc,∠1=∠3。

求证:de∥bcb[图7]cadb六.填空题1.过一点可以画条直线,过两点可以画 2.在图8中,共有条线段,共有个锐角,个直角,∠a的余角是; 3.ab=3.8cm,延长线段ab到c,使bc=1cm,再反向延长ab到d,使ad=3cm,e是ad中点,f是cd的中点,则ef=cm ;4.35.56°=度分秒;105°45′15″—48°37′26 ″ 5.如图9,三角形abc中,d是bc上一点,e是ac上一点,ad与be交于f 点,则图中共有e 6.如图10,图中共有条射线,七.计算题bdc 1.互补的两个角的比是1:2,求这两个角各是多少度?[图9]a2.互余的两角的差为15°,小角的补角比大角的补角大多少?ebdc[图10] 1.如图11,aob是一条直线,od是∠boc的平分线,若∠aoc=34°56′求∠bod的度数;dc 八.画图题。

1 .已知∠α,画出它的余角和补角,并表示出来aob[图11]北 2.已知∠α和∠β,画一个角,使它等于2∠α—∠β北偏西20β 3.仿照图12,作出表示下列方向的射线:西东⑴北偏东43°⑵南偏西37°⑶东北方向⑷西北方向九.证明题[图12]南两直线平行,内错角的平分线平行(要求:画出图形,写出已知、求证,并进行证明)已知:求证:证明:初一几何证明题一、1)d是三角形abc的bc边上的点且cd=ab,角adb=角bad,ae是三角形abd的中线,求证ac=2ae。

(2)在直角三角形abc中,角c=90度,bd是角b的平分线,交ac 于d,ce垂直ab于e,交bd于o,过o作fg平行ab,交bc于f,交ac于g。

求证cd=ga。

延长ae至f,使ae=ef。

be=ed,对顶角。

证明abe全等于def。

=》ab=df,角b=角edf角adb=角bad=》ab=bd,cd=ab=》cd=df。

角ade=bad+b=adb+edf。

ad=ad=》三角形adf全等于adc=》ac=af=2ae。

题干中可能有笔误地方:第一题右边的e点应为c点,第二题求证的cd不可能等于ga,是否是求证cd=fa或cd=co。

如上猜测准确,证法如下:第一题证明:设f是ab边上中点,连接ef角adb=角bad,则三角形abd为等腰三角形,ab=bd;∵ae是三角形abd的中线,f是ab边上中点。

∴ef为三角形abd对应da边的中位线,ef∥da,则∠fed=∠adc,且ef=1/2da。

∵∠fed=∠adc,且ef=1/2da,af=1/2ab=1/2cd∴△afe∽△cda∴ae:ca=fe:da=af:cd=1:2ac=2ae得证第二题:证明:过d点作dh⊥ab交ab于h,连接oh,则∠dhb=90°;∵∠acb=90°=∠dhb,且bd是角b的平分线,则∠dbc=∠dbh,直角△dbc与直角△dbh有公共边db;∴△dbc≌△dbh,得∠cdb=∠hdb,cd=hd;∵dh⊥ab,ce⊥ab;∴dh∥ce,得∠hdb=∠cod=∠cdb,△cdo为等腰三角形,cd=co=dh;四边形cdho中co与dh两边平行且相等,则四边形cdho为平行四边形,ho∥cd且ho=cd∵gf∥ab,四边形ahof 中,ah∥of,ho∥af,则四边形ahof为平行四边形,ho=fa∴cd=fa得证有很多题1.已知在三角形abc中,be,cf分别是角平分线,d是ef中点,若d到三角形三边bc,ab,ac的距离分别为x,y,z,求证:x=y+z 证明;过e点分别作ab,bc上的高交ab,bc于m,n点.过f点分别作ac,bc上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做bc上的高交bc于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交ac于j点.则x=do,y=hy,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。

又因为fq=fp,em=en.fq=2dj,en=2hd。

又因为角fqc,doc,enc都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。

所以do=hd+jd。

因为x=do,y=hy,z=dj.所以x=y+z。

2.在正五边形abcde中,m、n分别是de、ea上的点,bm与相交于点o,若∠bon=108°,请问结论bm=是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。

bm=还成立证明;如图5连结bd、ce.在△bci)和△cde中∵bc=cd,∠bcd=∠cde=108°,cd=de∴δbcd≌δcde∴bd=ce,∠bdc=∠ced,∠dbc=∠cen∵∠cde=∠dec=108°,∴∠bdm=∠cen∵∠obc+∠ecd=108°,∠ocb+∠ocd=108°∴∠mbc=∠ncd又∵∠dbc=∠ecd=36°,∴∠dbm=∠e∴δbdm≌δe∴bm=3.三角形abc中,ab=ac,角a=58°,ab的垂直平分线交ac与n,则角nbc=()3°因为ab=ac,∠a=58°,所以∠b=61°,∠c=61°。

相关文档
最新文档