有关假设检验的习题及详解

合集下载

假设检验考试试题及答案解析

假设检验考试试题及答案解析

假设检验考试试题及答案解析一、单选题(本大题9小题.每题1.0分,共9.0分。

请从以下每一道考题下面备选答案中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。

)第1题假设检验中的显著性水平α是( )。

A 推断时犯第Ⅱ类错误的概率B 推断时犯第Ⅰ和第Ⅱ类错误的概率C 推断时犯第Ⅰ类错误的概率D 推断时犯第Ⅲ类错误的概率【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 显著性水平α是犯第Ⅰ类错误的概率,也就是原假设H0为真,却拒绝H的概率。

第2题当总体服从正态分布,但总体方差未知的情况下,H0:μ=μ,H1:μ<μ则H的拒绝域为( )。

A t≤tα(n-1)B t≤-tα(n-1)C t>-tα(n-1)D t≤(n-1)【正确答案】:B【本题分数】:1.0分第3题从一批零件中抽出100个测量其直径,测得平均直径为5.2cm,标准差为1.6cm,想知道这批零件的直径是否服从标准直径5cm,因此采用t检验法,那么在显著性水平α下,接受域为( )。

模考吧网提供最优质的模拟试题,最全的历年真题,最精准的预测押题!A |t|≥tα/2(99)B |t|<tα/2(100)C |t|<tα/2(99)D |t|≤tα/2(99)【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 采用t检验法进行双边检验时,因为,所以在显著性水平α下,接受域为|t|≤tα/2(99)。

第4题在假设检验中,若抽样单位数不变,显著性水平从0.01提高到0.1,则犯第二类错误的概率( )。

A 也将提高B 不变C 将会下降D 可能提高,也可能不变【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 原假设H0非真时作出接受H的选择,这种错误称为第二类错误。

在一定样本容量下,减少α会引起β增大,减少β会引起α的增大。

第5题机床厂某日从两台机器所加工的同一种零件中,分别抽取两个样本,检验两台机床的加工精度是否相同,则提出假设( )。

假设检验习题答案

假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量716001.251.960/26Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

假设检验练习试题-答案解析

假设检验练习试题-答案解析

假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。

根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。

例如:对于=0.05有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。

概率论与数理统计第八章假设检验习题解答

概率论与数理统计第八章假设检验习题解答

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。

设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。

这种尺寸的矩形使人们看上去有良好的感觉。

现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。

下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。

设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。

第8章假设检验含答案

第8章假设检验含答案

第8章假设检验含答案第8章假设检验一、单项选择题1.设样本是来自正态总体,其中未知,那么大样本时检验假设时,用的是()。

A 、 Z 检验法B 、检验法C 、检验法D 、检验法答案:A2.在假设检验中,由于抽样的偶然性,拒绝了实际上成立的H 0假设,则()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:A3.在假设检验中,由于抽样偶然性,接受了实际上不成立的H 0假设,则()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:B4.在假设检验中,接受了实际上成立的H 0假设,则()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C5.在假设检验中,拒绝实际上不成立的H 0假设是()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C6.α=0.05, t>t 0.05,ν,统计上可认为( )。

A 、两总体均数差别无显著意义B 、两样本均数差别无显著意义C 、两总体均数差别有显著意义D 、两样本均数差别有显著意义答案:C7.假设检验时,是否拒绝H 。

,取决于( )。

A 、被研究总体有无本质差别B 、选用α的大小C 、抽样误差的大小D 、以上都是答案:D8.设总体服从N(μ,σ2)分布,σ2已知,若样本容量n 和置信度1-α均保持不变,则对于不同的样本观测值,总体均值μ的置信区间长度()。

A 、变长B 、变短C 、不变D 、不能确定答案:C9.假设检验中,显著性水平α表示()。

A 、P{接受0H |0H 为假}B 、P{拒绝0H |0H 为真}C 、置信度为αD 、无具体含义答案:B11.在对总体参数的假设检验中,若给定显著性水平α(0<α<1),则犯第一类错误的概率为()。

A .1-αB 、αC 、α/2D 、不能确定答案:B12.对某批产品的合格率进行假设检验,如果在显著性水平α=0.05下接受了零假设,则在显著性水平α=0.01下()。

假设检验习题及答案

假设检验习题及答案

假设检验习题及答案第8章假设检验一、填空题1、对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。

2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。

3、设总体),(N ~X 2σμ,样本n 21X ,X ,X Λ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。

4、设n 21X ,X ,X Λ是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X(1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=?=x ?拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布,试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH 1000:1<μH在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-=拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对显著水平 a ,检验假设 H 0 ; m = m 0,H 1 ; m ≠ m 0,问当 m 0, m , a一定时,增大样本量 n 必能使犯第二类错误概率 b 减少对吗?并说明理由。

(完整版)统计学假设检验习题答案

(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

完整版假设检验习题及答案

完整版假设检验习题及答案

第二章假设检验3.2 —种元件,要求其使用寿命不低于1000 (小时),现在从一批这种元件中随机 抽取25件,测得其寿命平均值为950 (小时)。

已知这种元件寿命服从标准差100(小时)的正态分布,试在显著水平 0.05下确定这批元件是否合格。

提出假设:H 0: 1000, H 1: 1000构造统计量:此问题情形属于u 检验,故用统计量:V= u U 1本题中:0.05 u 0.95 1.64即, u u 0.95拒绝原假设H 0认为在置信水平0.05下这批元件不合格。

3.4某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在 0.01下能否接受假设,这批矿砂的镍含量为提出假设: H° :13.25 H 1 :1 0构造统计量:本题属于 2未知的情形,可用t 检验,即取检验统计量为:t=—S .n 1本题中,x 3.252, S=0.0117, n=5代入上式得:t =3.252-3.25 0.0117 .5 1否定域为:V= t>^_(n 1)2本题中, 0.01,t 0.995(4) 4.6041Qt t12接受H 0,认为这批矿砂的镍含量为 3.25。

Xu=—— 00 此题中:x 950 代入上式得:950-1000 u= 2.5 100 25拒绝域:0 100 n=25 0 10000.34193.5确定某种溶液中的水分,它的10个测定值X 0.452%, S 0.035%,0.452%-0.5% t= -4.1143 0.035%拒绝域为: V 二t >t i. (n 1)本题中, 0.05 n=10t °.95(9)1.8331 t 4.1143拒绝H 0 (ii)构造统计量: 未知,可选择统计量2nS 22"本题中,S 0.035% n=100.04%代入上式得:否定域为:接受H 。

假设检验-例题讲解

假设检验-例题讲解

假设检验一、单样本总体均值的假设检验 .................................................... 1 二、独立样本两总体均值差的检验 ................................................ 2 三、两匹配样本均值差的检验 ........................................................ 4 四、单一总体比率的检验 ................................................................ 5 五、两总体比率差的假设检验 .. (7)一、单样本总体均值的假设检验例题:某公司生产化妆品,需要严格控制装瓶重量。

标准规格为每瓶250 克,标准差为1 克,企业的质检部门每日对此进行抽样检验。

某日从生产线上随机抽取16 瓶测重,以95%的保证程度进行总体均值的假设检验。

x t μ-=data6_01 样本化妆品重量 SPSS 操作:(1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→One Sample T Test (单样本t 检验),将要检验的变量置入Test Variable(s)(检验变量);(2)在Test Value (检验值)框中输入250;点击Options (选项)按钮,在Confidence Interval(置信区间百分比)后面的框中,输入置信度(系统默认为95%,对应的显著性水平设定为5%,即0.05,若需要改变显著性水平如改为0.01,则在框中输入99 即可);(3)点击Continue(继续)→OK(确定),即可得到如图所示的输出结果。

图中的第2~5 列分别为:计算的检验统计量t 、自由度、双尾检验p-值和样本均值与待检验总体均值的差值。

使用SPSS 软件做假设检验的判断规则是:p-值小于设定的显著性水平Ɑ时,要拒绝原假设(与教材不同,教材的判断标准是p<Ɑ/2)。

08章 假设检验习题及答案

08章 假设检验习题及答案

第八章假设检验1、原假设与备选假设一定是对应的关系。

()是: 否: 2、假设检验中犯1类错误的后果比犯2类错误的后果更为严重。

()是: 否: 3、显著性水平越小,犯检验错误的可能性越小。

()是: 否: 4、假设检验一般是针对错误的抽样推断做的。

()是: 否: 5、对总体成数的检验一般采用Z检验法为好。

()是: 否:1、下面有关小概率原则说法中正确的是()。

小概率原则事件就是不可能事件它是指当一个事件的概率不大于充分小的界限α(0<α<1)时,可认为该事件为不可能事件基于”小概率原则”完全可以对某一事件发生与否作出正确判断总体推断中可以不予考虑的事件2、假设检验中的1类错误也叫()。

弃真错误纳伪错误假设错误判断错误3、如果是小样本数据的均值检验,应该采用()。

t 检验z 检验秩符检验以上都不对4、如果检验总体方差的显著性,应采用哪种检验方法?()。

t 检验Z 检验X2检验以上都对、 一个优良的统计量通常要符合( )标准。

无假性一致性有效性完整性随机性2、在统计检验假设中,通常要对原假设作出判断,就有可能会犯错误。

这些错误分别是( )。

1类错误(α类)2类错误(β类)功效错误 系统错误代表性错误3、 科学的抽样估计方法要具备的要素是( )。

合适的统计量抽样方法合理的误差范围可接受的置信度严格遵守随机原则1、用一台自动包装机包装葡萄糖,按规格每袋净重0.5千克。

长期积累的数据资料表明,每袋的实际净重服从正态分布,标准差为0.015千克。

现在从成品中随机抽取9袋,结果其净重分别为0.479,0.5006,0.518,0.511,0.524,0.488,0.515,0.512。

试根据抽样结果说明:(1)标准差有无变化?(2)袋糖的平均净重是否符合规格?(α=0.05)2、环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰,现在取5份水样测定有害物质含量,得到如下数据:0.53‰,0.542‰,0.51‰,0.495‰,0.515‰。

假设检验例题.

假设检验例题.
=0.01
总体均值的检验(σ2未知(例题分析
【例】某一小麦品种的平均产量为5200kg/hm2。一家研究机构对小麦品种进行了改良以期提高产量。为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2。试检验改良后的新品种产量是否有显著提高? (α=0.05
假设检验
总体均值的检验(σ2已知(例题分析
【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml ,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平α=0.05 ,检验该天生产的饮料容量是否符合标准要求?
H 0 : π = 80% H 1 : π ≠ 80% α = 0.05 n = 200检验统计量:
H 0 : π = 80%
H 1 : π ≠ 80%
α = 0.01
n = 200
检验统计量:
7035. 0. 01289. 11-=-7035. 0. 01289. 11-=-=t决策:不拒绝H 0结论:该供货商提供的零件符合要求
475. 2200 80. 01(80. 0-=--475. 220080. 073. 0-=-=z 475. 2200 80. 01(80. 080. 0-=-⨯-475. 220080. 073. 0-=-=z决策:拒绝H 0 (P = 0.013328 < α = 0.05结论:该杂志的说法并不属实决策:拒绝H 0 (P = 0.013328 < α = 0.05结论:该杂志的说法并不属实
H 0 :μ≤ 5200
H 1 :μ > 5200
α = 0.05 n = 36临界值(c :检验统计量:决策:

假设检验习题答案

假设检验习题答案
假设检验习题答案
单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。

(完整版)假设检验习题及答案

(完整版)假设检验习题及答案

第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。

3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。

取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50)=1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。

假设检验的例子及解析

假设检验的例子及解析

假设检验的例子及解析以下是 9 条关于假设检验的例子及解析:1. 咱就说,你觉得每天喝一杯牛奶能长高,这是不是一个假设呀,就像你觉得学习一门新语言能让你更聪明一样。

那咱们怎么检验呢?那就得观察长期喝牛奶的人是不是真的普遍比不喝的高呀!要是真这样,那这假设可能就有点靠谱呢!2. 比如说你假设经常锻炼的人身体更好,这可不是凭空说的吧!就好像你说经常笑的人运气不会差一样。

那怎么知道对不对呢?那就去看看那些健身达人,他们是不是真的很少生病,身体倍儿棒!3. 你说多吃水果皮肤会变好,这咋检验呀?好比你说早睡早起精神好一样。

那就找一群人,一部分多吃水果,一部分不多吃,过段时间看看他们皮肤状态的差别不就行了嘛!4. 假设下雨天心情会不好,哎呀,这可真太常见了!就像你说考试前会紧张一样。

那咱们去问问周围的人,下雨天的时候是不是大多都有点小情绪低落呀!5. 要是说努力工作就会升职加薪,这是真理吗?这就如同说长得帅就一定有女朋友一样。

那得看看那些努力了很久的同事,是不是真的得到了相应的回报呀!6. 有人假设听音乐能提高工作效率,哇,这有点意思哦!好比说吃巧克力能让人开心一样。

那咱们自己试试呗,边工作边听听音乐,看看效率是高了还是低了!7. 假设玩游戏能锻炼思维能力,这能是真的吗?就像有人说逛街能减肥一样。

那找些爱玩游戏的人,看看他们的思维是不是真的很敏捷呀!8. 你觉得看小说能增长知识,这到底对不对呢?这就好比说发呆能放松身心一样。

拿自己做个实验呗,看看看完一本小说后知识量有没有增加呀!9. 说吃辣能让人性格开朗,这可太神奇了吧!就仿佛说跑步能让人更有毅力一样。

那到底是不是这样呢?去观察那些无辣不欢的人呀!我的观点结论就是:假设检验真是个有意思的事儿,能让我们知道好多事情到底是不是真的像我们想的那样,通过观察和对比来验证,真的很有趣!。

假设检验例题及解析

假设检验例题及解析

选择题在进行假设检验时,如果原假设为真,而样本数据却导致我们拒绝了原假设,这种情况被称为:A. 第一类错误(正确答案)B. 第二类错误C. 第三类错误D. 无错误假设我们要检验某种药物是否能有效降低血压,原假设应为:A. 药物能降低血压B. 药物不能降低血压(正确答案)C. 药物对血压无影响D. 药物可能升高血压在单样本t检验中,如果计算出的t值大于临界t值,我们应该:A. 接受原假设B. 拒绝原假设(正确答案)C. 无法判断D. 重新进行试验假设检验中的P值表示的是:A. 原假设为真的概率B. 备择假设为真的概率C. 在原假设为真的条件下,观察到当前或更极端结果的概率(正确答案)D. 犯第二类错误的概率在进行两个独立样本的均值比较时,如果两个样本的方差未知且不相等,我们应使用:A. 单样本t检验B. 配对t检验C. Welch's t检验(正确答案)D. 方差分析假设检验中的显著性水平α通常设定为:A. 0.01B. 0.05(正确答案)C. 0.10D. 0.20在进行卡方检验时,如果计算出的卡方值小于临界卡方值,我们应该:A. 接受原假设(正确答案)B. 拒绝原假设C. 无法判断D. 需要更多数据假设我们要检验某种食品中是否含有某种有害物质,原假设应为:A. 食品中含有有害物质B. 食品中不含有害物质(正确答案)C. 食品中可能含有有害物质D. 食品中一定不含有害物质在进行假设检验时,如果犯第二类错误的成本远高于犯第一类错误的成本,我们应该:A. 提高显著性水平αB. 降低显著性水平α(正确答案)C. 保持显著性水平α不变D. 无法确定如何调整显著性水平α。

假设检验例题

假设检验例题
甲 20.5 ,19.8 ,19.7 ,20.4 ,20.1 ,20.0 。19.6 ,19.9 乙 19.7 ,20.8 ,20.5 ,19.8 ,19.4 ,20.6 ,19.2 。
试比较甲乙两台机床加工的精度有无显著差异?显著性水平为 0.05 。
解:假定甲产品直径服从
N
(
1
,
2 1
)
, 由 子 样 观 察 值 计 算 得 x 2 0 . 0 0,
解 总体 N (,1502 ) ,对假设, H0 : 1600 ,采用 U 检验法,在 H0 为真时, 检验统计量
u x - 0 n 1.2578 0
临界值 u1 / 2 u0.975 1.96 |u | u1 /2 ,故接受 H0 。
3. 某电器零件的平均电阻一直保持在 2.64 ,根方差保持在 0.06 ,改变加 工工艺后,测得 100 个零件,其平均电阻为 2.62 ,根方差不变,问新工艺对 此零件的电阻有无显著差异?去显著性水平 =0.01。
解 设改变工艺后电器的电阻为随机变量 ,则 E 未知, D (0.06)2 , 假设为 H0 : 2.64 ,统计量
u - 0 n 3.33
由于 u1- /2 u0.995 2.10 | u | ,故拒绝原假设。即新工艺对电阻有显著差异。
4.有甲乙两个检验员,对同样的试样进行分析,各人实验分析的结果如下:
1.设 1,2 ,L ,25 取自正态总体 N(,9) ,其中参数 未知,x 是子样均值,如对 检验问题 H0 : 0, H1 : 0 取检验的拒绝域: c {(x1, x2,L , x25 ) :| x 0 | c} ,试决定常数 c ,使检验的显著性水平为 0.05
解:因为 N Leabharlann ,9) ,故 N (, 9 )假定重量服从正态分布,试由此数据对该机器所包糖的平均重量 求置信水平为 95%的区间估计。

假设检验习题及答案

假设检验习题及答案

第8章 假设检验一、填空题1、 对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。

2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。

3、设总体),(N ~X 2σμ,样本n 21X ,X ,X ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t n S X αμ,其中显著性水平为α。

4、设n 21X ,X ,X 是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Qn n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X(1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x , 现算得966.24667.26916152>=⨯=x ?拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布,试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH 1000:1<μH在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-=拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对 显 著 水 平 α, 检 验假 设 H 0 ; μ = μ0, H 1 ; μ ≠ μ0, 问当 μ0, μ, α一 定 时 , 增大样本量 n 必 能 使 犯 第 二 类 错 误 概 率 β 减 少 对 吗 ?并 说 明 理由 。

假设检验与指数练习题讲解

假设检验与指数练习题讲解
假设检验案例分析1
某机床厂加工一种零件,根据经验知道,该厂加工 零件的椭圆度近似服从正态分布,其总体均值为 0=0.081mm,总体标准差为=0.025 。今换一种新机床 进行加工,抽取n=200个零件进行检验,得到的椭圆 度为0.076mm。试问新机床加工零件的椭圆度的均值 与以前有无显著差异?(=0.05)
分析:1.双侧检验; 2.大样本且方差2已知,使用z检验。
z
x 0

n
~ N (0,1)
1
1
题解1
H0: = 0.081 H1: 0.081 = 0.05 n = 200
临界值(如下图):
拒绝 H0
.025
选择并计算检验统计量: x 0 0.076 0.081 z 2.83 n 0.025 200 决策:
拒绝 H0
0.025
检验统计量:
t
11.89 12 0.4932 10
0.7035
决策:
不拒绝H0
拒绝 H0
0.025
结论:
该供货商提供的零件符合要求
-2.262
0
2.262
t
10
10
不同显著性水平的检验结果比较
11
11
练题解答
12
12
指数体系练习题
表2. 某商店三种商品销售资料
销售量 价格(元) 商品 计量 名称 单位 2011年 2012年 2011年 2012年 甲 公斤 300 360 0.42 0.45 乙 件 200 200 0.30 0.36 丙 套 1400 1600 0.20 0.28
在 = 0.05的水平上拒绝H0
拒绝 H0
.025
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线中取样品 9 根,测得 S 0.007 (欧姆),设总体为正态分布,问在水平 0.05下,能
否认为这批导线的标准差显著性地偏大? 【解】本题属于总体均值未知,正态总体方差的单边检验问题
H0 : 0 0.005 H1 : 0 0.005
选取统计量
2
(n
1)S 2 2
2 (n 1)
【例 8.2】设总体 X N (u, 2 ) , u, 2 未知, x1, x2 , , xn 是来自该总体的样本,记
x
1 n
n i 1
xi
,Q
n i 1
( xi
x)2
,则对假设检验 H0
:u
u0
H1 : u
u0 使用的 t 统计量
t
(用 x,Q 表示);其拒绝域 w
.
【分析】 2 未知,对 u 的检验使用 t 检验,检验统计量为
有关假设检验的习题及详解包括典型考研真题
§假设检验
基本题型Ⅰ 有关检验统计量和两类错误的题型
【例 8.1】u 检验、t 检验都是关于
的假设检验.当

知时,用 u 检验;当
未知时,用 t 检验.
【分析】 由 u 检验、 t 检验的概念可知, u 检验、 t 检验都是关于均值的假设检验,当
方差 2 为已知时,用 u 检验;当方差 2 为未知时,用 t 检验.
【分析】一般地,选取问题的对立事件为原假设.在本题中,需考察青工的技术水平是否
有了显著性的提高,故选取原假设为 H0 : p 0.6 ,相应的,对立假设为 H1 : p 0.6 ,故
选 (B) .
【例 8.6】某厂生产一种螺钉,标准要求长度是 68mm,实际生产的产品,其长度服从
N (u, 3.62 ) ,考察假设检验问题 H0 : u 68 H1 : u 68 .设 x 为样本均值,按下列方式
30 当 n 64 , u 68.5 时, x N (68.5, 0.452 ) ,则
(68.5) P{67 x 69 | u 68.5}
(69 68.5) (67 68.5) (1.11) (3.33)
0.45
0.45
0.8665 [1 0.9995] 0.8660 .
(u nu)
(u 0)
因 u 0 ,故当 u 时, (u) 0 ,即 u 与假设 H0 偏离越大,犯第二类错误的概率越
有关假设检验的习题及详解包括典型考研真题
小;而当 u 0 时, (u) 1 ,即当 u 为正值且接近 0 时,犯第二类错误的概率接近 1 .
基本题型Ⅱ 单个正态总体的假设检验
【解】由题意, 2 未知,在水平 0.05下检验假设
H0 : u u0 1000 H1 : u u0 1000
属于单边(左边) t 检验. 构造检验统计量 t x u0 n t(n 1) ,其中 n 25, S 65, X 980h ,查 t 分布 S
表可得: t (n 1) t 0.05(25 1) 1.7109 ,
【分析】u 未知,对 2 的检验使用 2 检验,又由题设知,假设为单边检验,故统计量
为 2 (n 1)S 2 16
2 (n
1)
,从而拒绝域为{
2
2 1
(n
1)} .
【例 8.5】某青工以往的记录是:平均每加工 100 个零件,由 60 个是一等品,今年考 核他,在他加工零件中随机抽取 100 件,发现有 70 个是一等品,这个成绩是否说明该青工
(2)当 H0 不成立时,求犯第二类错误的概率 (u) .
【解】(1)当 H0 成立时, u 0 ,则
(u) P{u u | u 0} P{ nx u | u 0}
P{ n(x u) u nu | u 0} 1 (u nu)
(u 0)
因 u 0 ,故 (u nu) (u ) 1 ,从而 (u) 1 (u ) 1 (1 ) ,即 犯第一类错误的概率不大于 . (2) (u) P{u u | u 0} P{ n(x u) u nu | u 0}
只电池,测得寿命的样本方差 S 2 9200(小时)2 ,问根据这一数据能否推断这批电池寿命
有关假设检验的习题及详解包括典型考研真题
的波动性较以往有显著性的变化(取 0.02 ). 【解】 检验假设 H0 : 2 5000 H1 : 2 5000 ,
选取统计量 2 (n 1)S 2 2 (n 1) , 2
【例 8.8】某天开工时,需检验自动包装机工作是否正常,根据以往的经验,其包装的
质量在正常情况下服从正态分布 N (100,1.52 ) (单位:kg),先抽测了 9 包,其质量为:
99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5 问这天包装机工作是否正常?
这表明:当原假设 H0 不成立时,参数真值越接近于原假设下的值时, 的值就越大.
【 例 8.7 】 设 总 体 X N (u, 2 ) , x1, x2 , , xn 是 来 自 该 总 体 的 样 本 , 对 于 检 验
H0 : u 0 H1 : u 0 ,取显著性水平 ,拒绝域为:w {u u },其中 u nx ,求: (1)当 H0 成立时,求犯第一类错误的概率 (u) ;
0.6
2[1 (1.67)] 2[1 0.99575] 0.095 .
(2)当 n 64 时, x N (u, 3.62 ) N (u, 0.452 ) 64
P{| x 68 | 1| H0成立} P{x 67 | H0成立} P{x 69 | H0成立}
(67 68) [1 (69 68)]
对于假设检验 H0 : u1 u2 H1 : u1 u2 ,使用的统计量为
,它服从的分布为
.
【分析】记 x
1
n1
n1
xi , y
i 1
1 n2
n2 i 1
yi ,因两样本独立,故 x, y 相互独立,从而在 H0
成立下,
E(x
y)
0

D(x
y)
D( x )
D( y)
12
2 2
,故构造检验统计量
497,507,510,475,484,488,524,491,515
问这天自动包装机工作是否正常(显著性水平 0.05)?
【解】 设每袋盐重量为随机变量 X ,则 X N (u, 2 ) ,为了检查机器是否工作正常,
需检验假设: H01 : u 500 及 H02 : 2 100 . 下面现检验假设 H01 : u 500 H11 : u 500
【解】(1)当 n 36 时, x N (u, 3.62 ) N (u, 0.62 ) , 36
P{| x 68 | 1| H0成立} P{x 67 | H0成立} P{x 69 | H0成立}
(67 68) [1 (69 68)] (1.67) [1 (1.67)]
0.6
进行假设检验:当| x 68 | 1时,拒绝原假设 H0 ;当| x 68 | 1时,接受原假设 H0 .
(1)当样本容量 n 36 时,求犯第一类错误的概率 ; (2)当样本容量 n 64 时,求犯第一类错误的概率 ;
(3)当 H0 不成立时(设 u 70 ),又 n 64 时,按上述检验法,求犯第二类错误的概率 .
【分析】 关键是将这一问题转化为假设检验问题.因检验包装机工作是否正常,化为数
学问题应为双边检验 H0 : u 100 H1 : u 100 .
【解】由题意,提出假设检验问题: H0 : u 100 H1 : u 100 ,
选取检验统计量 u x u0 n N (0,1)

0.05时, u
2
u0.025
1.96 ,又 uBiblioteka 99.98 100 1.5
9 0.04 u 1.96 ,即接受原
2
假设 H0 ,认为包装机工作正常. 【例 8.9】已知某种元件的寿命服从正态分布,要求该元件的平均寿命不低于1000h ,现
从这批元件中随机抽取 25 知,测得平均寿命 X 980h ,标准差 S 65h ,试在水平 0.05下,确定这批元件是否合格.
0.45
0.45
2[1 (2.22)] 2[1 0.9868] 0.0264 .
有关假设检验的习题及详解包括典型考研真题
(3)当 n 64 ,又 u 70 时, x N (70, 0.452 ) ,这时犯第二类错误的概率
(70) P{| x 68 |1| u 70} P{67 x 69 | u 70}
由 0.02 , n 26 ,查 2 分布表可得
2
(n
1)
2 0.01
(25)
44.314

2 1
(n
1)
2 0.09
(25)
11.524

2
2
又统计量 2
(n 1)S 2 2
46
2 0.01
(25)
44.314 ,故拒绝原假设 H0 ,即认为这批电池
寿命的波动性较以往有显著性的变化. 【例 8.11】 某种导线,要求其电阻的标准不得超过 0.005(欧姆),今在生产的一批导
n1 n2
u xy
2 1
2 2
n1 n2
N (0,1) .
【例 8.4】设总体 X N (u, 2 ) , u 未知, x1, x2 , , xn 是来自该总体的样本,样本方
差为 S 2 ,对 H0 : 2 16 H1 : 2 16 ,其检验统计量为
,拒绝域为
.
有关假设检验的习题及详解包括典型考研真题
| t | | x u0 | S
n | 499 500 | 16.03
9 0.187 t 0.025(8) 2.306
相关文档
最新文档