概率与数理统计第8章假设检验习题及答案
概率论与数理统计 8-2
H 0 : µ ≤ µ 0 = 225, H 1 : µ > 225,
取 α = 0.05, n = 16, x = 241.5, s = 98.725 0.6685 t0.05 (15) = 1.7531 > t = s/ n
故接受 H 0 , 认为元件的平均寿命不 大于 225小时.
n = 15,
x = 10.48, α = 0.05, s = 0.237,
x − µ 0 10.48 − 10.5 t = = t分布表 = 0.327, s/ n 0.237 / 15 查表得 tα / 2 ( n − 1) = t 0.025 (14) = 2.1448 > t = 0.327, 故接受 H 0 , 认为金属棒的平均长度 无显著变化 .
n2 = 10,
y = 79.43, s2 = 2.225,
2
且s
2 w
(10 −1)s + (10 −1)s = = 2.775, 10 + 10 − 2
2 1 2 2
查表可知 t0.05 (18) = 1.7341,
查表8.1知其拒绝域为 查表 知其拒绝域为 t ≤ − tα ( n1 + n2 − 2). x− y = −4.295, 因为 t = 1 1 sw + 10 10
某切割机在正常工作时, 例1 某切割机在正常工作时 切割每段金属棒的 平均长度为10.5cm, 标准差是 标准差是0.15cm, 今从一批产 平均长度为 品中随机的抽取15段进行测量 其结果如下: 段进行测量, 品中随机的抽取 段进行测量 其结果如下 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2
根据第六章 第六章§ 定理四 定理四知 当H 0为真时, 根据第六章§2定理四知,
概率论与数理统计(茆诗松)第二版课后第八章习题参考答案
⎧Yij = µ + a i + ε ij , i = 1, 2, L , r , j = 1, 2, L , m; ⎪ r ⎪ ⎨∑ a i = 0; ⎪ i =1 2 ⎪ ⎩ε ij 相互独立,且都服从N (0, σ ).
检验的原假设与备择假设为 H0:a 1 = a 2 = … = a r = 0 8.1.3 平方和分解 vs H1:a 1 , a 2 , …, a r 不全等于 0.
i =1 j =1 i =1 j =1 r m r m r m r m r m
= ∑∑ (Yij − Yi⋅ ) 2 + ∑∑ (Yi⋅ − Y ) 2 + 2∑∑ (Yij − Yi⋅ )(Yi⋅ − Y )
i =1 j =1 i =1 j =1 i =1 j =1
= S e + S A + 2∑ [(Yi⋅ − Y )∑ (Yij − Yi⋅ )] = S e + S A + 2∑ [(Yi⋅ − Y ) × 0] = S e + S A + 0 = S e + S A ,
ε i⋅ =
1 m ∑ ε ij , i = 1, 2, …, r, m j =1
ε=
1 r m 1 r ε = ε i⋅ . ∑∑ ij r ∑ n i =1 j =1 i =1
显然有 Yi⋅ = µ i + ε i⋅ , Y = µ + ε . 在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平 A1 A2 ┆ Ar Y11 Y21 ┆ Yr1 Y12 Y22 ┆ Yr2 试验数据 … … ┆ … Y 1m Y 2m ┆ Yrm 和 T1 T2 ┆ Tr 和的平方 平方和
练习八(假设检验)--1_答案卷
5.设对统计假设H0 构造了显著性检验方法,则下列结论错误的是( )。
A.对不同的样本观测值,所做的统计推理结果可能不同 B.对不同的样本观测值,拒绝域不同 C.拒绝域的确定与样本观测值无关 D.对一样本观测值,可能因显著性水平的不同,而使推断结果不同
【参考答案】 B
6.在统计假设的显著性检验中,下列说法错误的是( )。
姓名
学号
5. 设 样 本 X1,X2,⋯,Xn 来 自 总 体 X ∼ N (μ,σ2) ,μ 已 知 , 要 对 σ2 作 假 设 检 验 , 统 计 假 设 为
H0:
σ2
=
σ
2,
0
H1:σ
2
≠
σ
2 0
,
则
要
用
检
验
统
计
量
为
(
)。
), 给定显著水平α , 则检验的拒绝域为(
【参考答案】
空(1):
∑ χ2 =
χ2=
5.78 12
= 5.78
由于χ
2 α
2
(n −1) =
1.145
< χ2 = 5.78
< 11.070 = χ2
1−
α 2
(n) 查表所得
故接受H0 ,即认为该厂这一天生产的灯泡寿命的均方差符合要求的。
A.显著性检验的基本思想是“小概率原则”,即小概率事件在一次试验中是几乎不可能发生
B.显著性水平α 是该检验犯第一类错误的概率,即“拒真”概率 C.记显著性水平为α ,则 1− α 是该检验犯第二类错误的概率,即“受伪”概率
D.若样本值落在“拒绝域”内则拒绝原假设
【参考答案】 C
第八章试题答案 概率论与数理统计
第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .nX σμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率 答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-n1i iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是( ) A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
《概率论与数理统计》第八章1假设检验的基本概念
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .
所
以,原假
设H
不正确
0
。
对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量
概率论与数理统计课后习题答案 第八章
3. 甲,乙两台机床加工某种零件,零件的直径服从正态分布,总体方差反映了加工精度.为比较两台机床
的加工精度有无差别,现从各自加工的零件中分别抽取 7 件产品和 8 件产品,测得其直径为
X(机床甲) 16.2 16.4 15.8 15.5 16.7 15.6 15.8
Y(机床乙) 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0
(kg),样
本标准差
(kg).设产品质量服从正态分布,这两个样本相互独立.问能否认为使用 B 原料生产的
产品平均质量较使用原料 A 显著大?(取显著性水平
).
解:检验假设
选取检验统计量
查表知
由于
故接受
即使用 B 原料生产的产品平均质量于使用原料 A 生产的产品平均质量无显著大.
自测题 8
一、,选择题
已知元件电阻服从正态分布,设
问
(1) 两批电子元件电阻的方差是否相等;
(2) 两批元件的平均电阻是否有差异.
解: (1)检验假设
经计算
由
查表得
无法查
对应值,故无法做.
习题 8.4
某厂使用两种不同的原料生产同一类产品,随机选取使用原料 A 生产的产品 22 件,测得平均质量为
(kg),样本标准差
(kg).取使用原料 B 生产的样品 24 件,测得平均质量为
在假设检验问题中,显著性水平 的意义是 A .
A. 在 成立的条件下,经检验 被拒绝的概率
B. 在 成立的条件下,经检验 被接受的概率
C. 在 不成立的条件下,经检验 被拒绝的概率
D. 在 不成立的条件下,经检验 被接受的概率
二、,填空题
1. 设总体 X 服从正态分布
概率与数理统计第八章 --第十一章例题
• 分布函数为
0, x -1, 1 F(x;1) ,1 x 2, 2 1, x 2.
• 2、设随机过程X(t)=e-At,t>0,其中A是在区间(0,a)上 服从均匀分布的随机变量,试求X(t)的均值函数和自相 关函数。 解:由关于随机变量函数的数学期望的定理知道X(t)的均 值函数为
192 190
188 187
A2
A3 A4
201
179 180
187
191 188
196
183 175
200
194 182
• 判断4个林场松毛虫密度有无显著变化,取显著性 水平=0.05。
• 解 记Ai林场的平均松毛虫密度为I,i=1,2,3,4.则 所述问题为在显著性水平=0.05下检验假设
H 0 : 1 2 3 4 , H1 : 1 , 2 , 3 , 4不全相等。 今s 4,n1 n 2 n 3 n 4 5, n 20.T.1 932, T.2 974, T.3 935, T.4 912, T.. 3753 .
2 2 S r xij T..2 / n 705225 3753 / 20 974.55. j 1 i 1 4 4 5
SA
j 1
T. 2 j 5
T..2 n 704653 .8 704250 .45 403.35
S E S r S A 571.2. S r , S A , S E的自由度分别为 n - 1 19, s 1 3, n s 20 4 16, 从而得方差分析表如下 :
S xx
S xy
S xy
1 x ( xi ) 2 n 1 13 32 .81 25 14 1.252 2.70 83 33 , 15 1 xi yi xi yi n 1 98 5.5 14 1.25 10 4.5 1.45 83 33 , 15 1 2 yi ( yi ) 2 n 1 7.29.62 5 10 4.5 2 1.60 83 33 . 15
概率统计第八章假设检验参考答案
概率论与数理统计作业班级 姓名 学号 任课教师第八章 假设检验教学要求:一、理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;二、了解一个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验;三、了解总体分布假设的2χ检验法,会应用该方法进行分布拟合优度检验(选学).重点:假设检验的基本思想、假设检验的基本步骤、单个正态总体均值和方差的假设检验. 难点:正态总体均值和方差的假设检验.一、基本计算题1.某灯泡厂生产一种节能灯泡,其使用寿命(单位:小时)长期以来服从正态分布)(2150,1600N .现从一批灯泡中随意抽取25只,测得它们的平均寿命为1636小时.假定灯泡寿命的标准差稳定不变,问这批灯泡的平均寿命是否等于1600小时(取显著性水平05.0=α)?解:(1) 依题意,检验假设1600:00==μμH ,(1600:01=≠μμH ); (2) 由于标准差σ已知,在0H 成立时,采用U 检验法.选择统计量:nX U σμ0-=~()1,0N(3) 对于给定的显著性水平05.0=α,当25=n 时,查正态分布表得临界点96.1025.02==z z α(4)由25=n ,,1636=x ,150=σ,计算统计值:2.125150160016360=-=-=nx u σμ(5) 由于96.12.1025.02==<=z z u α落在拒绝域⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥-==20ασμz n x u W之外,所以在显著性水平05.0=α下,接受1600:0=μH .即认为这批灯泡的平均寿命等于1600.2.正常人的脉搏平均为72(次/min ),检查10例四乙基铅中毒患者,测的他们的脉搏(次/min )为: 54 67 68 78 70 66 67 70 65 69已知脉搏服从正态分布,在显著性水平05.0=α下,问四乙基铅中毒患者与正常人的脉搏有无显著差异?解:(1) 依题意,检验假设72:00==μμH ,(72:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,采用T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,4.67=x ,9292.5=s 计算统计值:4534.2109292.5724.670=-=-=n s x t μ (5) 由于>=4534.2t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之内,故拒绝72:00==μμH ,即四乙基铅中毒患者与正常人的脉搏有显著差异.3.某食品厂生产一种食品罐头,每罐食品的标准重量为500克.今从刚生产的一批罐头中随机抽取10罐,称得其重量为(单位:克)495 510 505 498 503 492 502 512 497 506假定罐头重量服从正态分布,问这批罐头的平均重量是否合乎标准(取05.0=α)?解:(1) 依题意,检验假设500:00==μμH ,(500:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,502101101==∑=i ix x ,∑==--=1012225.6)(1101i i x x s ,计算统计值: 9730.0105.65005020=-=-=n s x t μ (5) 由于<=9730.0t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之外,故接受500:00==μμH ,即认为这批罐头的平均重量合乎标准.4.在10块田地上同时试种,A B 两种谷物,根据亩产量(单位:kg )算得30.97A x =,79.21=B y ,26.7As =,21.1B s =.问这两种谷物的平均亩产量有无显著差异(05.0=α)? 假定两种谷物的亩产量都服从正态分布,且方差相等.解:(1)设A X ~()211,σμN ,BY~()222,σμN,依题意,检验假设210:μμ=H,(211:μμ≠H );(2)由于2221,σσ未知但2221σσ=,在0H 成立时,选择统计量:2111n n S Y X T w+-=~()221-+n n t其中 ()()2112122212-+-+-=n n S n S n S BA w;(3) 对于给定的显著性水平05.0=α,当1021==n n 时,查t 分布表得临界点()1009.2)18(2025.0212==-+t n n t α,(4)由1021==n n , 97.30=x ,7.26=A s ,79.21=B y ,1.21=B s 计算统计值:8465.01011010635.2479.2197.301121=+-=+-=n n s y x t wB A其中 ()()05.5792112122212=-+-+-=n n s n s n s BA w,0635.24=w s ;(5)由于<=8465.0t ()1009.2)18(2025.0212==-+t n n t α,t 没有落在接受域中,故应接受210:μμ=H ,即这两种谷物的平均亩产没有明显差异.5.按两种不同配方生产橡胶,测的伸长率(%)如下:配方Ⅰ: 540 533 525 520 544 531 536 529 534配方Ⅱ: 565 577 580 575 556 542 560 532 570 561 设橡胶伸长率服从正态分布,检验按两种配方生产的橡胶伸长率的方差是否相同(取05.0=α)?解:(1) 设Y X ,分别表示配方Ⅰ、配方Ⅱ的总体,则X ~()211,σμN,Y ~()222,σμN . 依题意,检验假设22210:σσ=H ,22211:σσ≠H ;(2)在0H 成立时,选择统计量:222122212221S S S S F ==σσ~()1,121--n n F (3)对于给定的显著性水平05.0=α,当10,921==n n 时,查F 分布的双侧临界值: ()()10.49,82,1025.0212==--F n n F α,()()()2294.036.418,919,81,1025.0975.02121≈===---F F n n Fα (4) 由于4444.5329191==∑=i i x x ,()778.5319129121=--=∑=i i x x s ,8.561101101∑-==i i y y ,()8444.2381101101222∑==--=i i y y s ;得统计值:2271.08444.2367778.532221≈==s s F(5) 由于()2294.09,82271.0975.0=<≈F F .则F 落在拒绝域中,故应拒绝22210:σσ=H (或接受22211:σσ≠H )。
概论论与数理统计:第八章假设检验(浙大第四版)
χ2 =
(n − 1) s 2
σ 02
, 拒 绝 域 为 {χ >
2
2 χα (n − 1)} , 由
3
n = 9, s = 0.007, χ 02.05 (8) = 15.504 ,算得 χ 2 = 15.68 > 15.504, 因此拒绝原假设 H 0 ,即认
为这批导线的标准差显著地偏大. 6、解 设枪弹甲、乙的速度分别为 x, y ,并设 x ~ N ( μ1 , σ 1 ), y ~ N ( μ 2 , σ 2 ) .
x−y 1 1 + n1 n2
其中
2 sw =
2 (n1 − 1) s12 + (n2 − 1) s 2 n1 + n2 − 2
拒绝域为 C = ⎨| t |≥ t α (n1 + n 2 − 2)⎬ .
⎧ ⎩
⎫ ⎭
2
由于 n1 , n 2 很大,故有 t 0.025 (218) ≈ z 0.025 = 1.96 将 x = 2805, y = 2680, 以上数据代入上式 计算可得 | t |= 8.206 > 1.96 ,故拒绝原假设 H 0 ,可以认为两个总体的平均值有显著差异, 即 两种枪弹在速度方面有显著差异. 综上所述,两种枪弹在速度方面有显著差异但在均匀性方面没有显著差异. 7、解 设马克吐温与思诺特格拉斯的小品文中由 3 个字母组成的词的比例分别为 x, y ,并且 由题意可设 x ~ N ( μ1 , σ ) , y ~ N ( μ 2 , σ ) ,本题是在显著性水平 α = 0.05 下检验假设:
⎧ ⎩
⎫ ⎭
2
已 知 n1 = 8, n 2 = 10 , 查 表 得 t 0.025 (16) = 2.1199, , 经 计 算 得 , x = 0.2319, s1 = 0.01456,
概率与数理统计第8章--假设检验与方差分析
第8章假设检验与方差分析【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。
尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以元报收后停牌。
2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至元。
此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与 600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。
通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg 组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。
有关数据如表所示:表乙肝新疫苗的应答率注:εP A-44为治疗用(合成肽)乙型肝炎疫苗简称。
上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”为什么说这个结论表示乙肝新疫苗无效什么叫“在统计意义上无差异”如何根据样本数据作出统计意义上有无差异的判断解答这些问题就需要本章所要介绍的假设检验。
现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。
例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。
这些分析研究都离不开假设检验或方差分析。
假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。
本教材介绍假设检验与方差分析的基本原理和一些基本方法。
概率论与数理统计第8章例题
第八章例题1.在假设检验中,检验水平α的意义是:原假设0H 成立,经检验被____________的概率(填写“拒绝”或“接受”) 拒绝2.在假设检验中,犯第一类错误是指___ 弃真。
即0H 正确却被拒绝 __3. ),(~2σμN X ,当2σ未知时,为检验假设00:μμ=H 须构造统计量__________ nS x /μ- 4.从已知标准差 5.2σ=的正态总体中,抽取容量为16的样本,算得样本均值27.56x =,试在显著水平0.05α=之下,检验假设0:26H μ=.(0.025 1.96u =) 解:0:26H μ=)1,0(~/00N n x U σμ-=;0.05α=,/20.025 1.96u u α==; 算得 1.2u ==; 由于0.025u u <,所以在显著水平0.05α=之下,接受假设0:26H μ=.5.某产品按规定每包重为10kg ,现从中抽取6包进行测试,得9.7 10.1 9.8 10.0 10.2 9.6若包重服从正态分布2(,)N μσ,且20.05σ=,问在显著性水平为0.05α=下,包的平均重量是否为10kg ?(0.025 1.96u =) 解01:10,:10.H H μμ=≠令, 9.9x =0.025||||| 1.095u 1.96x u ===<= 所以可以认为重量为10kg6. 工厂某电子元件平均使用寿命为3000小时,采用新的生产设备后,从中随机抽取20个,测得这批电子元件的平均寿命X =3100小时,样本标准差为S=170小时,设电子元件的寿命X 服从正态分布N ()2,σμ,试检验用了新生产设备后产品质量是否显著改变?(显著性水平01.0=α,54.2)19(01.0=t )解 0H :μ=3000, 1H :3000>μ0.01(19)t 显著改变 7. 设罐头番茄汁中维生素C 含量服从正态分布。
规定每罐维生素C 的平均含量为21毫克。
概率论与数理统计练习题第八章答案
第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。
概率论与数理统计习题解答(第8章)
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差2= ,随机抽取6件,记录其长度(毫米)分别为,,,,,在显著性水平 = 下,能否认为这批零件的平均长度为32.50毫米 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α>查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:、54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平 = 下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i ix x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ()9(025.0t t >可知,t 落入拒绝域中,故在的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
概率论与数理统计习题及答案第八章
习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。
第八章试题答案概率论与数理统计
第八章试题答案概率论与数理统计第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是()A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0?H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为() A .nμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是() A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-ni iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是() A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
考研数学(三)题库 概率论与数理统计(第八章 假设检验)打印版【圣才出品】
第八章 假设检验一、选择题1.设总体X ~N (μ0,σ2),μ0未知,X 1,X 2,…,X n 为来自正态总体X 的样本,记X _为样本均值,S 2为样本方差,对假设检验H 0:σ≥2;H 1:σ<2,应取检验统计量χ2为( )。
A .(n -1)S 2/8B .(n -1)S 2/6C .(n -1)S 2/4D .(n -1)S 2/2【答案】C【解析】χ2=(n -1)S 2/σ2,,σ=2。
2.在假设检验中,H 0表示原假设,H 1表示备择假设,则犯第一类错误的情况为()。
A .H 1真,接受H 1B .H 1不真,接受H 1C .H 1真,拒绝H 1D .H 1不真,拒绝H 1【答案】B【解析】第一类错误:H 0为真,H 1非真,但是接受了H 1否定了H 0。
二、填空题()22111ni i S X X n ==--∑1.设X 1,X 2,…X 16是来自正态总体N (μ,22)的样本,样本均值为X _,则在显著性水平α=0.05下检验假设H 0:μ=5;H 1:μ≠5的拒绝域为____。
【答案】{|X _-5|≥0.98}【解析】已知σ2=σ02=22,设检验H 0:μ=μ0;H 1:μ≠μ0,取检验统计量为,|u|≥u 1-α/2为拒绝域,其中,又u 1-α/2=1.96,所以拒绝域为{|X _-5|≥0.98}。
2.设X 1,X 2,…,X n 是来自正态总体N (μ,σ2)的样本,其中参数μ和σ2未知,记,,则假设H 0:μ=0的t 检验使用的统计量T =____。
【解析】,其中又μ=0,S 2=Q 2/(n -1),所以3.设总体X ~N (μ0,σ2),μ0为已知常数,(X 1,X 2,…,X n )为来自正态总体X 的样本,则检验假设H 0:σ2=σ02;H 1:σ2≠σ02的统计量是____;当H 0成立时,服从____分()0X U μσ-=)52X u -=11ni i X X n ==∑()221n i i Q X X ==-∑X ()1X T t n Sμ-=-()22111n i i S X X n ==--∑X T =布。
概率论与数理统计第八章课后习题及参考答案
概率论与数理统计第八章课后习题及参考答案1.设某产品指标服从正态分布,它的均方差σ已知为150h ,今从一批产品中随机抽查26个,测得指标的平均值为1637h .问在5%的显著性水平,能否认为这批产品的指标为1600h ?解:总体X ~)150,(2μN ,检验假设为0H :1600=μ,1H :1600≠μ.采用U 检验法,选取统计量nX U /00σμ-=,当0H 成立时,U ~)1,0(N ,由已知,有1637=x ,26=n ,05.0=α,查正态分布表得96.1025.0=u ,该检验法的拒绝域为}96.1{>u .将观测值代入检验统计量得2577.142.293726/150********==-=u ,显然96.12577.1<=u ,故接受0H ,即可认为这批产品的指标为1600h .2.正常人的脉搏平均为72次/min ,现某医生从铅中毒患者中抽取10个人,测得其脉搏(单位:次/min)如下:54,67,68,78,70,66,67,70,65,69设脉搏服从正态分布,问在显著性水平05.0=α下,铅中毒患者与正常人的脉搏是否有显著性差异?解:本题是在未知方差2σ的条件下,检验总体均值72=μ.取检验统计量为nS X T /0μ-=,检验假设为0H :720==μμ,1H :72≠μ.当0H 成立时,T ~)1(-n t ,由已知,有4.67=x ,93.5=s ,05.0=α,查t 分布表得262.2)9(025.0=t ,将观测值代入检验统计量得45.288.16.410/93.5724.67/0-=-=-=-=n s x t μ,显然)9(262.2447.2025.0t t =>=,故拒绝0H ,即铅中毒患者与正常人的脉搏有显著性差异.3.测定某溶液中的水分,得到10个测定值,经统计%452.0=x ,22037.0=s ,该溶液中的水分含量X ~),(2σμN ,μ与2σ未知,试问在显著性水平05.0=α下该溶液水分含量均值μ是否超过5%?解:这是在总体方差2σ未知的情况下,关于均值μ的单侧检验.检验假设为0H :%5.0≤μ,1H :%5.0>μ.此假设等价于检验假设0H :%5.0=μ,1H :%5.0>μ.由于2σ未知,取检验统计量为nS X T /0μ-=.当0H 成立时,T ~)1(-n t ,拒绝域为)}1(/{0-≤-n t n s x αμ,将观测值代入检验统计量得709.1)5.052.0(10/0=-=-=ns x t μ,由05.0=α,查t 分布表得833.1)9(05.0=t ,显然)9(833.1709.105.0t t =<=,所以接受0H ,即该溶液水分含量均值μ是否超过5%.4.甲、乙两个品种作物,分别用10块地试种,产量结果97.30=x ,79.21=y ,7.2621=s ,1.1222=s .设甲、乙品种产量分别服从正态分布),(21σμN 和),(22σμN ,试问在01.0=α下,这两种品种的产量是否有显著性差异?解:这是在方差相等但未知的情况下检验两正态总体的均值是否相等的问题.检验假设为0H :21μμ=,1H :21μμ≠.由题可知,22221σσσ==未知,因此取检验统计量nm n m mn S n S m YX T +-+-+--=)2()1()1(2221,当0H 为真时,T ~)2(-+n m t ,该检验法的拒绝域为)}2({2/-+>n m t t α.由题设,10==n m ,97.30=x ,79.21=y ,7.2621=s ,1.1222=s .将其代入检验统计量得n m n m mn S n S m yx t +-+-+--=)2()1()1(222166.4201810101.1297.26979.2197.30=⨯⨯⨯+⨯-=,由01.0=α,查t 分布表得878.2)18()2(005.02/==-+t n m t α.显然)18(878.266.4005.0t t t =>=,因此,拒绝0H ,即这两种品种的产量有显著性差异.5.某纯净水生产厂用自动灌装机装纯净水,该自动灌装机正常罐装量X ~)4.0,18(2N ,现测量某厂9个罐装样品的灌装量(单位:L)如下:0.18,6.17,3.17,2.18,1.18,5.18,9.17,1.18,3.18在显著性水平05.0=α下,试问:(1)该天罐装是否合格?(2)罐装量精度是否在标准范围内?解:(1)检验罐装是否合格,即检验均值是否为18,故提出假设0H :18=μ,1H :18≠μ,由于方差224.0=σ已知,取检验统计量为nX U /00σμ-=,当0H 为真时,U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≥.由题可知,9=n ,18=x ,将其代入检验统计量得09/4.01818/00=-=-=n x u σμ,由05.0=α,查标准正态分布表得96.1025.0=u ,显然,025.096.10u u =<=,故接受0H ,即该天罐装合格.(2)检验罐装量精度是否在标准范围内,即检验假设0H :224.0≤σ,1H :224.0>σ,此假设等价于0H :224.0=σ,1H :224.0>σ.由于18=μ已知,选取检验统计量为∑=-=n i i X12202)18(1σχ,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}({22n αχχ≥.由已知计算得625.6)18(112202=-=∑=n i i x σχ,查2χ分布表得307.18)10(205.0=χ,由此知)10(307.18625.6205.02χχ=<=,故接受0H ,即罐装量精度在标准范围内.6.某厂生产某型号电池,其寿命长期以来服从方差221600h =σ的正态分布,现从中抽取25只进行测量,得222500h s =,问在显著性水平05.0=α下,这批电池的波动性较以往有无显著变化?解:这是在均值未知的条件下,对正态总体方差的检验问题.检验假设为0H :202σσ=,1H :202σσ≠,其中160020=σ,取检验统计量为222)1(σχS n -=.当0H 为真时,2χ~)(2n χ,对于给定的显著性水平,该检验法的拒绝域为)}1({22/12-≤-n αχχ或)}1({22/2-≥n αχχ.将观测值25002=s 代入检验统计量得5.371600250024)1(222=⨯=-=σχs n .对于05.0=α,查2χ分布表得401.12)24()1(2975.022/1==--χχαn ,364.39)24()1(2025.022/==-χχαn ,由于)24(364.395.37401.12)24(2025.022975.0χχχ=<=<=,故接受0H ,即这批电池的波动性较以往无显著变化.7.某工厂生产一批保险丝,从中任取10根试验熔化时间,得60=x ,8.1202=s ,设熔化时间服从正态分布),(2σμN ,在01.0=α下,试问熔化时间的方差是否大于100?解:本题是在均值未知的条件下,检验2σ是否大于100,是关于2σ的单侧检验问题.检验假设为0H :1002≥σ,1H :1002<σ,此假设等价于0H :1002=σ,1H :1002<σ,这是左侧检验问题,取检验统计量为2022)1(σχS n -=,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}1({212-≤-n αχχ.将10=n ,10020=σ,8.1202=s ,代入上述统计量得87.101008.1209)1(2022=⨯=-=σχs n .对于01.0=α,查2χ分布表得0879.2)9(299.0=χ,显然)9(0879.287.10299.02χχ=>=,接受0H ,即熔化时间的方差大于100.本题如果将检验假设设为0H :1002≤σ,1H :1002>σ,即进行右侧检验,统计量得选取如上,则该检验法的拒绝域为)}1({22-≥n αχχ.对于01.0=α,查2χ分布表得666.21)9(201.0=χ,显然)9(666.2187.10201.02χχ=<=,接受0H ,即熔化时间的方差不大于100.注:若选取的显著性水平为3.0=α,用MATLAB 计算得6564.10)9(23.0=χ,从而有)9(6564.1087.1023.02χχ=<=,则应拒绝原假设,即熔化时间的方差大于100.上述结果说明了在观测值接近临界值时,原假设不同的取法会导致检验结果的不一样,如果用-p 值检验法则可避免上述矛盾.8.设有两个来自不同正态总体的样本,4=m ,5=n ,60.0=x ,25.2=y ,07.1521=s ,81.1022=s .在显著性水平05.0=α下,试检验两个样本是否来自相同方差的总体?解:记两正态总体为),(211σμN 和),(222σμN ,其中1μ和2μ未知.检验假设为0H :2221σσ=,1H :2221σσ≠.取检验统计量为2221S S F =,当0H 为真时,F ~)1,1(--n m F ,该检验法的拒绝域为)}1,1({2/1--≤-n m F F α或)}1,1({2/--≥n m F F α.由题可知,05.0=α,4=m ,5=n ,将观测值代入检验统计量得39.181.1007.152221===s s F ,查F 分布表得98.9)4,3()1,1(025.02/1==---F n m F α,066.010.151)3,4(1)4,3()1,1(025.0975.02/====--F F n m F α.由此知)4,3(98.939.1066.0)4,3(025.0975.0F F =<<=,观测值没有落入拒绝域内,接受0H ,即两个样本来自相同方差的总体.9.某厂的生产管理员认为该厂第一道工序加工完的产品送到第二道工序进行加工之前的平均等待时间超过90min .现对100件产品的随机抽样结果的平均等待时间为96min ,样本标准差为30min .问抽样的结果是否支持该管理员的看法?(05.0=α).解:这是非正态总体均值的检验问题,用X 表示第一道工序加工完的产品送到第二道工序进行加工之前的等待时间,设其均值为μ,依题意,检验假设为0H :90≤μ,1H :90>μ.由于100=n 为大样本,故用U 检验法.总体标准差σ未知,用样本标准差S 代替.取检验统计量为100/90S X U -=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u >.由题可知,96=x ,30=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验统计量得2100/309096100/90=-=-=s x u ,显然,05.0645.12u u =>=,故拒绝0H ,即平均等待时间超过90分钟,也即支持该管理员的看法.10.一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8h 电视.”她认为她所领导的学校,学生看电视时间明显小于该数字.为此,她向学校的100名初中学生作了调查,得知平均每周看电视的时间5.6=x h ,样本标准差为2=s h ,问是否可以认为校长的看法是对的?(05.0=α)解:初中生每周看电视的时间不服从正态分布,这是非正态总体均值的假设检验问题.检验假设为0H :8=μ,1H :8<μ.由于100=n 为大样本,故用U 检验法,取检验统计量为nS X U /μ-=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u -<.由题可知,5.6=x ,2=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验算统计量得5.7100/285.6-=-=u ,显然,05.0645.15.7u u -=-<-=,故拒绝0H ,即初中生平均每周看电视的时间少于8小时,这位校长的看法是对的.11.已知某种电子元件的使用寿命X (单位:h)服从指数分布)(λE .抽查100个元件,得样本均值950=x h .能否认为参数001.0=λ?(05.0=α)解:X ~)(λE ,λ1)(=X E ,21)(λ=X D ,由中心极限定理知,当n 充分大时,近似地有n X n X U )1(/1/1-=-=λλλ~)1,0(N .由题可知001.00=λ,检验假设可设为0H :0λλ=,1H :0λλ≠.取检验统计量为n X n X U )1(/1/1000-=-=λλλ,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≤.由题知,100=n ,950=x ,05.0=α,查标准正态分布表知96.1025.02/==u u α.将观测值代入检验统计量得5.0-=u ,显然,025.096.15.0u u =<=,故接受0H ,即可以认为参数001.0=λ.12.某地区主管工业的负责人收到一份报告,该报告中说他主管的工厂中执行环境保护条例的厂家不足60%,这位负责人认为应不低于60%,于是他在该地区众多的工厂中随机抽查了60个厂家,结果发现有33家执行了环境保护条例,那么由他本人的调查结果能否证明那份报告中的说法有问题?(05.0=α)解:设执行环境保护条例的厂家所占的比率为p ,则检验假设为0H :6.0≥p ,1H :6.0<p ,上述假设等价于0H :6.0=p ,1H :6.0<p .引入随机变量⎩⎨⎧=.,0,,1条例抽到的厂家为执行环保例抽到的厂家执行环保条X 则X ~),1(p B ,p X E =)(,)1()(p p X D -=,由中心极限定理,当0H 为真时,统计量60/)6.01(6.06.0/)1(000--=--=X n p p p X U 近似地服从)1,0(N .对于显著性水平05.0=α,查标准正态分布表得645.105.0==u u α,由此可知05.0}645.160/)6.01(6.06.0{≈-<--X P .以U 作为检验统计量,该检验法的拒绝域为}645.1{05.0-=-<u u .将55.06033==x 代入上述检验统计量,得791.060/)6.01(6.06.055.0/)1(000-=--=--=n p p p x u ,显然,05.0645.1791.0u u -=->-=,故接受0H ,即执行环保条例的厂家不低于60%,也即由他本人的调查结果证明那份报告中的说法有问题.13.从选取A 中抽取300名选民的选票,从选取B 中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所选候选人,试在显著性水平05.0=α下,检验两个选区之间对候选人的支持是否存在差异.解:这是检验两个比率是否相等的问题,检验假设为0H :21p p =,1H :21p p ≠.取检验统计量为⎪⎭⎫ ⎝⎛+--=m n p p p pU 11)ˆ1(ˆˆˆ21,其中)(1ˆ2121m n Y Y Y X X X mn p ++++++++= 是21p p p ==的点估计.当0H 为真时,近似地有U ~)1,0(N .由题可知300=n ,168=n μ,200=m ,96=m μ,又56.0300168ˆ1==p ,48.020096ˆ2==p ,528.0500264ˆ==++=m n p m n μμ.由此得统计量的观测值为755.11201472.0528.048.056.0=⨯⨯-=u ,由05.0)96.1(==>αU P ,得拒绝域为}96.1{>u ,因为96.1755.1<=u ,故接受0H ,即两个选区之间对候选人的支持无显著性差异.。
《概率论与数理统计》习题及答案 第八章
《概率论与数理统计》习题及答案第 八 章1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域. 解 00:H λλ≥选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑则22~(2)n χχ,对于给定的显著性水平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=因 22χχ>,所以2222((2))((2))n n ααχχχχ≥⊃≥,从而 2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥ 可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺寸方差为21.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。
设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=).解 问题是在2σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -==⨯=-0.0251.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是32.5毫米。
3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批产品的指标的期望值μ不低于1600。
解 问题是在2σ已知的条件下检验假设0:1600H μ≥0H 的否定域为/2u u α<-,其中 158016005.1 1.02100X u -==⨯=-.0.051.64u -=-.因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600.4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格?(0.05α=)解 设元件寿命为X ,则2~(,100)X N μ,问题是检验假设0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -==⨯=-0.05 1.64u = 因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=?解 问题是在2σ未知的条件下检验假设0: 3.25H μ=0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-⨯==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==⨯=因为0.005||0.345 4.6041(4)t t =<=所以接受0H ,即可以认为这批矿砂的镍含量为3.25.6.糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 问该日打包机工作是否正常(0.05α=;已知包重服从正态分布)?解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H μ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==⨯=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该日打包机工作正常.7.按照规定,每100克罐头番茄汁中,维生素C 的含量不得少于21毫克,现从某厂生产的一批罐头中抽取17个,测得维生素C 的含量(单位:毫克)如下 22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维生素C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。
概率论与数理统计第8章假设检验习题及答案
62第8章 假设检验一、填空题1、 对正态总体的数学期望m 进行假设检验,如果在显著性水平0.05下,接受假设00:m m =H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为a ,则犯第一类错误的概率是a 。
3、设总体),(N ~X 2s m ,样本n 21X ,X ,X ,2s未知,则00:H m =m ,01:H m <m 的拒绝域为 )}1(/{0--<-n t nS X a m ,其中显著性水平为a 。
4、设n 21X ,X ,X 是来自正态总体),(N 2s m 的简单随机样本,其中2,sm 未知,记å==n1i i X n 1X ,则假设0:H 0=m 的t 检验使用统计量=T Qn n X )1(-.二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2s m N X05.016==a n 4252==S X(1)检验假设250:0=m H 250:1¹m H , 因为2s 未知,在0H 成立下,)15(~/250t nS X T -=拒绝域为)}15(|{|025.0tT >,查表得1315.2)5(025.0=¹t由样本值算得1315.22<=T ,故接受0H (2)检验假设9:20=s H9:201>s H因为m 未知,选统计量 222)1(s S n x -=在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=´=x 拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=s 小时正态分布, 试在显著性水平0.05下确定这批产品是否合格. 解:设元件寿命),(~2s m N X ,2s 已知10002=s,05.0,950,25===a X n检验假设1000:0=m H1000:1<m H在2s 已知条件下,设统计量)1,0(~/1000N nX s m -=拒绝域为}{05.0mm<,查表得645.195.005.0-=-=m m而645.15.2205025/1001000950-<-=-=-=m拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对 显 著 水 平 a , 检 验假 设 H 0 ; m = m 0, H 1 ; m ¹ m 0, 问当 m 0, m , a 一定 时 , 增大样本量 n 必 能 使 犯 第 二 类 错 误 概 率 b减 少 对 吗 ?并 说 明 理 由 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 假设检验
一、填空题
1、 对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设
00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。
3、设总体),(N ~
X 2σμ,样本n 21X ,X ,X ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0
--<-n t n
S X αμ,其中显著性水平为α。
4、设n 21X ,X ,X 是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记
∑==n 1
i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .
二、计算题
1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?
解:设重量),(~2σμN X 05.016==αn 4252==S X (1)检验假设250:0=μH 250:1≠μH ,
因为2σ未知,在0H 成立下,)15(~/250t n S X T -=
拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t
由样本值算得1315.22<=T ,故接受0H
(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量
202
2)1(σS n x -= 在0H 成立条件下,2x 服从)15(2
x 分布, 拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x , 现算得966.24667.269
16152>=⨯=x 拒绝0H , 综合(1)和(2)得,以为机器工作不正常
2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布, 试在显著性水平0.05下确定这批产品是否合格.
解:设元件寿命),(~2
σμN X ,2σ已知10002=σ,05.0,950,25===αX n 检验假设1000:0=μH
1000:1<μH 在2σ已知条件下,设统计量)1,0(~/1000N n X σμ
-= 拒绝域为}{05.0μμ<
,查表得645.195.005.0-=-=μμ 而645.15.2205025
/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.
3. 对 显 著 水 平 α, 检 验假 设 H 0 ; μ = μ0, H 1 ; μ ≠ μ0, 问当 μ0, μ, α一 定 时 , 增大样本量 n 必 能 使 犯 第 二 类 错 误 概 率 β 减 少 对 吗 ?并 说 明 理 由 。
答 : ( 1 ) 对 。
( 2 ) 增 大 n , 使 概 率 分 布 更 集 中 , 使 H 1 的 拒 绝 域 及 H 0 的
接 受 域 均 变 小 , 二 者 交 集 也 变 小 。
4、 甲 制 药 厂 进 行 有 关 麻 疹 疫 菌 效 果 的 研 究 , 用 X 表 示 一 个 人
用 这 种 疫 菌 注 射 后 的 抗 体 强 度 。
假 定 X ~ N ( μ, σ2 ) 另 一 家 与 之 竞 争 的 乙 制 药 厂 生 产 的 同 种 疫 菌 的 平 均 抗 体 强 度 是 1.9 , 若 甲 厂 为 证 实 其 产 菌 有 更 高 的 平 均 抗 体 问 : ( 1 ) 如 何 提 出 零 假 设 和 配 择 假 设 ? ( 2 ) 从 甲 厂 取 容 量 为 16 的 样 本 , 测 得 x s ==2225026866672.,. 检 验 ( 1 ) 的 假 设 。
α = 0.05。
( 已 知 t 0.95 ( 15 ) = 1.7531 )
解:( 1 ) H 0: μ = μ0 = 1.9; H 1 : μ > μ0 = 1.9
( 2 ) t x s n =-=-=μ02225190268666716
25081.... 由 于 t = 2.5081 > 1.7531 ===== t 0.95 ( 15 ) = t 1-α( n -1 )
故拒绝H 0,即在α = 0.05下可以认为甲厂的产品有更高的平均抗体。
5、某 装 置 的 平 均 工 作 温 度 据 制 造 厂 讲 是 190。
C , 今 从 一 个 由 16 台 装 置 构 成 的 随 机 样 本 得 出 的 工 作 温 度 平 均 值 和 标 准 差 分 别 为 195。
C 和 8。
C 。
这 些 数 据 是 否 提 供 了 充 分 证 据 , 说 明 平 均 工 作 温 度 比 制 造 厂 讲 的 要 高 ? 取 α = 0.05 , 可 以 假 定 工 作 温 度 服 从 正 态 分 布 。
( 已 知 t 0.95 ( 15 ) = 1.7531 )
解: 这 问 题 即 是 在 α = 0.05 下 , 检 验
H 0: μ = μ0 =190; H 1: μ > μ0 =190 ( σ2 末 知 )
t x s n =-=-=μ0195190816
25. 由 于 t = 2.5 > 1.7531 === t 0.95( 15 ) === t 1-α ( n -1 )
故 拒 绝 H 0, 即 认 为 该 装 置 的 平 均 工 作 温 度 高 于 190。
C 。
6、 测 定 某 种 溶 液 中 的 水 份 ,由 它 的 10 个 测 定 值 ,算 得 .%037.0,%452.0==s x 设 测 定 值 总 体 服 从 正 态 分 布 ,能 否 认 为 该 溶 液 含 水 量 小 于 0.5% ? ( α = 0.05 ), ( 已 知 t 0.95 ( 9 ) = 1.833 )
解: 这 问 题 即 是 在 ( α = 0.05 ) 下 , 检 验 假 设
H 0: μ = μ0 = 0.5%; H 1: μ < μ0 = 0.5%
t x s n =-=-=-μ0045205003710
4102.... 由 于 t = -4.102 < -1.8331 == -t 0.95( 9 ) = t α( n -1 )
故 拒 绝 H 0 即 认 为 溶 液 的 含 水 量 小 于 0.5% 7、 某 厂 生 产 的 某 种 产 品 , 由 以 往 经 验 知 其 强 力 标 准 差 为 7.5 kg 且 强 力 服 从 正 态 分 布 , 改 用 新 原 料 后 , 从 新 产 品 中 抽 取 25 件 作 强 力 试 验 , 算 得 s = 9.5 kg , 问 新 产 品 的 强 力 标 准 差 是 否 有 显 著 变 化?(α=0.05,0.01 )
()()()(),928.4624,646.4024,98.4224,415.36242995.02975.0299.0295.0====χχχχ ()()886.924,401.12242005.02025.0==χχ
解:
要 检 验 的 假 设 为
H 0: σ2 = σ02 = 7.52; H 1: σ2 > σ02 = 7.52
()51.385.75.924122202
2=⨯=-=σχs n 在 α = 0.05 时 , x 2 =38.51 > 36.415 == x 0.952 ( 24 ) = x 1-α2 ( n - 1 )
故 在 α = 0.05 时 , 拒 绝 H 0 认 为 新 产 品 的 强 力 的 差 较 原 来 的 有 显 著 增 大 。
当 α = 0.01 时 , χ 2 =38.51 < 42.98 == χ0.992 ( 24 ) = χ1-α2 ( n - 1 )
故 在 α = 0.01 下 接 受 H 0,认 为 新 产 品 的 强 力 的 标 准 差 与 原 来 的 无 显 著 差 异 。
注 : H 1: σ2 > σ02 = 7.52 改 为 H 1: σ2 ≠ σ02 = 7.52 也 可。