初一数学第一章有理数单元测试题及答案
(完整版)七年级上册数学第一章《有理数》测试题(含答案)
七年级数学(上) 第一章 有理数单元测试题(120分)一、选择题(3分×10=30分)1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、20081 2、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)4、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251 D 、-25 5、两个互为相反数的有理数的乘积为( )A 、正数B 、负数C 、0D 、负数或0 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么 _____12、一个正整数,加上-10,其和小于0,则这个正整数可能是 (写出两个即可)13、绝对值小于2008的所有整数的和是( )14、观察下列各数,按规律在横线上填上适当的数。
第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册
人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。
人教版数学七年级上册:第1章 有理数 单元测试卷(含答案)
第1章《有理数》单元测试卷 (满分:150分 时间:120分钟)一、选择题(每小题4分,共40分) 1.-3的绝对值是( )A .-3B .±3C .+3D .以上都不对 2.在下列选项中,既是分数,又是负数的是( )A .-0.125 B.15 C .9 D .-723.气温由-2 ℃上升3 ℃后是( )A .-5 ℃B .1 ℃C .5 ℃D .3 ℃ 4.近似数3.250×105是精确到( )A .千分位B .千位C .百位D .十位5.移动支付被称为中国新四大发明之一,据统计我国目前每分钟移动支付金额达3.79亿元,将数据3.79亿用科学记数法表示为( )A .3.79×108B .37.9×107C .3.79×106D .379×1066.下列计算错误的是( )A .1÷6×16=136B .(-2)3÷4=-32C.13-2-⎝ ⎛⎭⎪⎫-213=23 D .(-1)2 018=1 7.下列说法正确的是( )A .符号不同的两个数互为相反数B .有理数分为正有理数和负有理数C .两数相加,和一定大于任何一个数D .所有有理数都能用数轴上的点表示 8.如图所示,数轴上两点A ,B 分别表示有理数a ,b ,则下列四个数中最大的一个数是( )A.1aB.1b C .a D .b 9.已知|a|=3,|b|=5,且ab <0,那么a +b 的值等于( )A .-2B .8C .2或-2D .8或-8 10.商场为了促销,推出两种促销方式:方式①:所有商品打8折销售; 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是( )A .方案一B .方案二C .方案三D .方案四 二、填空题(每小题3分,共30分)11.如果把顺时针方向转30°记为+30°,那么逆时针方向转45°记为____________. 12.在数轴上,表示+4的点在原点的____________侧,距原点____________个单位长度. 13.计算:-5-(-3)=____________.14.绝对值不大于3的整数共有____________个.15.数轴上A 点表示的数是5,那么同一数轴上与A 点相距8个单位长度的点表示的数是____________.16.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为____________元. 17.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是____________. 18.若有理数m ,n 满足|m +1|+(n -2)2=0,则m +n =____________.19.有一个数值转换器,其工作原理如图所示,若输入-3,则输出的结果是____________.20.已知2+23=22×23;3+38=32×38;4+415=42×415;….若8+a b =82×a b (a 、b 为正整数),则a +b =____________. 三、(本大题12分) 21.计算:(1)0÷4-5×(-2)3; (2)⎝ ⎛⎭⎪⎫12+56-712×(-12).22.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位长度后,三个点所表示的数中,最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数.五、(本大题14分)23.规定一种新运算“※”,即a※b=a2-(1+b),例如1※2=12-(1+2)=-2,根据规定完成下列问题:(1)求3※(-2)的值;(2)求(-1)※[3※(-2)]的值.六、(本大题14分)24.有一块面积为2 m2的正方形纸片,第1次剪掉一半,第2次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的纸片的面积是多少?25.如图是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.根据图①②③中给出的数,对照原来的方阵图,请你完成图①②③的方阵图.八、(本大题16分)26.某自行车厂计划平均每天生产200辆自行车,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?(3)根据记录的数据可知该厂本周实际共生产自行车多少辆?参考答案:11.-45°12.右413.-214.715.13或-316.7017.2418.119.-120.7121.(1)40 (2)-922.(1)最小的数是-1. (2)点D表示的数是0.523.(1)根据题中的新定义得3※(-2)=32-[1+(-2)]=9+1=10.(2) (-1)※[3※(-2)]=1-11=-10.24.第1次剪掉一半,剩下的面积为21×2=1(m2);第2次剪掉一半,剩下的面积为(21)2×2=21(m2)......第6次剪掉一半,剩下的面积为(21)6×2=321(m2)25.26.(1)该厂星期三生产自行车的数量是:200-7=193(辆)(2)由表格可知,产量最多的一天是星期六,最少的一天是星期五,16-(-10)=16+10=26(辆)即产量最多的一天比产量最少的一天多生产自行车26辆。
七年级数学上册《第一章 有理数》单元测试题含答案(人教版)
七年级数学上册《第一章 有理数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.以下四个有理数中,绝对值最小的是( )A .-2B .2C .0D .12.下列选项,具有相反意义的量是( )A .增加20个与减少30个B .6个老师和7个学生C .走了100米和跑了100米D .向东行30米和向北行30米3.下列说法中不正确的是( )A .﹣3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2000既是负数,也是整数,但不是有理数D .0是正数和负数的分界4.我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为 27500 亿立方米,人均占有淡水量居世界第 110 位,因此我们要节约用水,其中 27500 用科学记数法表示为( )A .227510⨯B .42.7510⨯C .52.7510⨯D .327.510⨯5.数轴上的两点之间的距离为7,一个点表示的数是﹣3,则另一个点表示的数是( )A .4B .4或﹣10C .﹣10D .10或﹣46.下列各式中,积为负数的是( )A .()()123-⨯-⨯B .()()123-⨯-⨯-C .()103-⨯⨯D .()()()123-⨯-⨯-7.如图,在一个不完整的数轴上有A ,B ,C 三个点,若点A ,B 表示的数互为相反数,则图中点C 点表示的数是( )A .2-B .1C .0D .48.现定义两种运算“ ⊕ ”,“ * ”.对于任意两个整数 11a b a b a b a b ⊕=+-*=⨯-, ,则 (68)(35)⊕*⊕ 的结果是( )A .69B .90C .100D .112 二、填空题9.123- 的倒数是 ,-2.3的绝对值是 . 10.5月23日,我国许多天文爱好者都拍摄了金星伴月的美丽天象,金星是距离地球最近的行星,距离大约4050万千米,用科学记数法表示这个数字为 千米.(保留两位有效数字)11.我们把向东走8步记作+8步,则向西走5步记作 步.12.大于- 132 而小于 122的所有整数的和是 . 13.已知|a ﹣2|+|b+1|=0,则(a+b )﹣(b ﹣a )= .14.如图是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为 .三、计算题15.510.474( 1.53)166----16.计算:(1)()1375+-- ;(2)()()324542-÷---⨯-17.计算:(1)()15136326⎛⎫-+⨯- ⎪⎝⎭;(2)()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭.18.如图所示,在一条不完整的数轴上从左到右有点 ,,A B C ,其中 2AB = , 1BC = 设点 ,,A B C 所对应的数之和是 m ,点 ,,A B C 所对应的数之积是 n .(1)若以 B 为原点,写出点 ,A C 所对应的数,并计算 m 的值;若以 C 为原点, m 又是多少?(2)若原点 O 在图中数轴上点 C 的右边,且 4CO = ,求 n 的值.19.某工厂一周内计划每日生产200辆车.受各种因素影响,实际每天的产量与计划量相比的情况如下表(增加为正)(1)本周三生产了多少辆车?(2)本周的总产量与计划相比,是增加还是减少了?增加或减少的数量是多少?(3)产量最多的一天与最少的一天相比,多生产多少辆?20.早在1960年、中国登山队首次从珠穆朗玛北侧中国境内登上珠峰,近几十年,珠峰更是吸引了大批的登山爱好者,某日,登山运动员傅博准备从海拔7400米的3号营地登至海拔近7900米的4号营地,由于天气骤变,近6小时的攀爬过程中他不得不几次下撤躲避强高空风,记向上爬升的海拔高度为正数,向下撒退时下降的海拔高度为负数,傅博在这一天攀爬的海拔高度记录如下:(单位:米)+320、-55、+116、-20、+81、-43、+115.(1)傳博能按原计划在这天登至4号营地吗?(2)若在这一登山过程中,傅博所处位置的海拔高度上升或下降1米平均消耗8大卡的卡路里,则傅博这天消耗了多少卡路里?参考答案:1.C 2.A 3.C 4.B 5.B 6.D 7.B 8.B9.37-;2.310.74.110⨯11.-512.3-13.414.-115.解:原式= 510.474+1.53166-- = 510.47 1.534166+--=2-6=-4.16.(1)解:原式 1375=--65=-1=(2)解:原式 8458=-÷-+258=--+1=17.(1)解:()15136326⎛⎫-+⨯- ⎪⎝⎭()()()151363636326=⨯--⨯-+⨯-()()12906=---+-12906=-+-72=(2)解:()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭511138162=⨯-+÷1383216=-+⨯52=-+3=-18.(1)解:以 B 为原点,点 ,A C 所对应的数分别是 2- , 12011m =-++=-以 C 为原点 (21)(1)04m =--+-+=- ;n=---⨯--⨯-=-(2)解:(412)(41)(4)14019.(1)解:200-3=197(辆)答:本周三生产了197辆车(2)解:-8+8-3+4+14-9-25=-20 (辆)减少了20辆.答:本周与计划相比,总产量减少了,减少了20辆(3)解:产量最多的一天生产了200+14=214(辆)产量最少的一天生产了200-25=175(辆)产量最多的一天与最少的一天相比,多生产了214-175=39(辆)答:产量最多的一天与最少的一天相比,多生产39辆.20.(1)解:依题意得:-+-+-+=(米)傳博一天内的攀爬高度为:32055116208143115514-=<3号营地登至4号营地的高度为:79007400500514∴傳博能按原计划在这天登至4号营地(2)解:依题意得:傅博这天消耗了的卡路里为:()+-++-++-+⨯=⨯= 32055116208143115875086000。
人教版七年级上册数学第一章有理数《单元综合检测题》带答案
第一章有理数测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个4.-|-2017|的相反数是()A. 2017B.C. -2017D. -5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×1068.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×239.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 7710.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.12.已知,数轴上表示点A、B、C、D的四个数分别是-1,2,3,-4,离原点距离最远的点是_______.13.用四舍五入法得到的近似数5.10×104精确到________位.14.已知有理数-7,8,-12,通过有理数的加减混合运算,若使运算结果最大,则可列式为__________.15.已知n为正整数,计算:=__________.16.已知31=3,32=9,33=27, 34=81,35=243,36=729,….推测32017的个位数字是__.三、解答题(本大题共6小题,共52分)17.计算:(1)2×(-5)+22-3÷;(2)48×().18.用数轴上的点表示下列各有理数:-1.5,-22,-(-),+5,-|-3|,并把它们按从大到小的顺序用”>”号连接起来.19.北京航天研究院所属工厂制造飞船上的一种螺母,要求螺母内径可以有±0.02 mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,检查结果(单位:mm)如下:+0.01,-0.018,+0.026,-0.025,+0.015. (1)指出哪些产品符合要求.(2)指出符合要求的产品中哪个质量较好一些.20.根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.21.我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填”增多了”或”减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?附加题(共20分,不计入总分)23.已知a是有理数,下列各式:(-a)2=a2;-a2=(-a)2;(-a)3=a3;|-a3|=a3.其中一定成立的有()A. 1个B. 2个C. 3个D. 4个24.符号”f”表示一种运算,它对一些数的运算如下:f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+…(1)利用以上运算规律,写出f(2017)=__________;(2)计算:f(1)•f(2)•f(3)•…•f(100)的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨【答案】C【解析】【分析】根据正负号表示相反意义的量解答.【详解】解:依据题意,”+”表示”运入”,则运出为”-”,运出5吨为-5,故选择C.【点睛】本题考查了正负号的实际意义.2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -【答案】B【解析】【分析】互为相反数的两数和为0.【详解】解:由题意可知两数互为相反数,则与-5的和为0的数是5,故选择B.【点睛】本题考查了相反数的性质.3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个【答案】C【解析】【分析】由实数的大小关系逐一写出即可.【详解】解:有实数的大小关系可知,大于-0.5而小于4的整数为0,1,2,3,共4个,故选择C.【点睛】本题考查了实数的大小及整数的概念.4.-|-2017|的相反数是()A. 2017B.C. -2017D. -【答案】A【解析】【分析】-|-2017|去绝对值后得-2017,再求该数的相反数即可.【详解】解:-|-2017|去绝对值后得-2017,-2017的相反数为2017,故选择A.【点睛】本题考查了相反数.5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】试题分析:因为+(-2.1)=-2.1,-=-9,所以在数:+3、+(-2.1)、-、-π、0、-、中,正数只有+3一个,故选:A.考点:正负数.6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.故选:B.7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×106【答案】C【解析】试题分析:科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.3710000=3.71×.故选:C.考点:科学记数法——表示较大的数.8.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×23【答案】B【解析】【分析】只有符号不同的两个数互为相反数,对各选项进行整理对比即可.【详解】解:A选项,-32=-9,-23=-8,故不是相反数;B选项,(-3)2=9,-32=9,故是相反数;C选项,-23=-8,(-2)3=-8,故不是相反数;D选项,(-3×2)3=-216,-3×23=-216,故不是相反数;故选择B.【点睛】本题考查了相反数的定义.9.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A. 42 B. 49 C. 76 D. 77【答案】C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方10. 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边【答案】C【解析】试题分析:当原点在A时,则最大;当原点在点C的右边,则,当原点在点A和点B之间,则最大,则只有当原点在点B和点C之间才符合条件.考点:(1)、数轴;(2)、绝对值二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.【答案】2【解析】=+(5-3)=2;故答案是2。
七年级数学第一章有理数测试试卷及答案(共6套)
七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。
人教版初中数学七年级上册第1章《有理数》单元测试题及答案
人教版初中数学七年级上册第1章《有理数》单元测试题及答案一、选择题(本大题共10小题,共30.0分)1.用表示的数一定是A. 负数B. 正数或负数C. 负整数D. 以上全不对2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.4.计算-42的结果等于()A. B. 16 C. D. 85.-23的意义是()A. 3个相乘B. 3个相加C. 乘以3D. 的相反数6.下列说法中:①若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;②若a、b互为相反数,则;③当a≠0时,|a|总是大于0;④如果a=b,那么,其中正确的说法个数是()A. 1B. 2C. 3D. 47.有理数在数轴上的位置如图所示,则在式子中,值最大的是()A. B. C. D.8.现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(-2*5)*6等于()A. 120B. 125C.D.9.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.A. 0B.C. 10D. 20二、填空题(本大题共6小题,共18.0分)11.若-1<x<4,则|x+1|-|x-4|= ______ .12.如果a<0,则|a|=______.13.在数轴上,点P与表示有理数2的点A相距3个单位,则点P表示的数是______ .14.如图,在每个“〇”中填入一个整数,使得其中任意四个相邻“〇”中所填整数之和都相等,可得d的值为______.15.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为______.16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当-1<x<1时,化简[x]+(x)+[x)的结果是______.三、计算题(本大题共1小题,共20.0分)17.计算下列各题(1)(-2)3-|2-5|-(-15)(2)-4(3)(4)(5).四、解答题(本大题共3小题,共32.0分)18.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(4)请你根据猜想,请写出第2013个、第2014个单项式.19.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数______所表示的点重合.20.观察下列等式:=1-,=,=三个等式两边分别相加得:=1-=1-=(1)猜想并写出:______ ;(2)直接写出下列各式的计算结果:+++…+= ______ ;(3)探究并计算:+++…+.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】A【解析】【分析】此题考查了有理数的加法,绝对值的有关知识,熟练掌握运算法则是解本题的关键.找出绝对值小于5的所有整数,求和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,∴0-1+1-2+2-3+3-4+4=0.故选A.3.【答案】D【解析】解:a>0时,-a<0,是负数,a=0时,-a=0,0既不是正数也不是负数,a<0时,-a>0,是正数,综上所述,-a表示的数可以是负数,正数或0.故选D.根据字母表示数解答.本题考查了有理数,熟练掌握字母表示数的意义是解题的关键.4.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】A【解析】解:-42=-16,根据有理数的乘方法则求出即可.本题考查了有理数的乘方,能区分-42和(-4)2是解此题的关键.7.【答案】D【解析】【分析】根据乘方的意义和相反数的定义判断.本题考查了有理数乘方:求n 个相同因数积的运算,叫做乘方.【解答】解:-23的意义是3个2相乘的相反数.故选D.8.【答案】A【解析】【分析】本题考查有理数的相关概念,学生需要充分理解正负数,0,相反数,绝对值等概念,特别需要注意0既不是正数也不是负数这一重要特性.【解答】①若干个有理数相乘,如果负因数的个数是奇数,还需要因数中没有0,才能得到乘积一定是负数,故错误;②0和它本身也是互为相反数,但是没有意义,故错误;③正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0.当时,a的绝对值总是大于0,正确;④当c=0时,没有意义,故错误.故选A.9.【答案】D【解析】【分析】本题考查了数轴,有理数数的大小比较,根据数轴判断出a、b,c的正负情况以及绝对值的大小是解题的关键.根据数轴可得-1<a<0<b<c<1,且|a|=|c|,然后分别求得,c+a,-a,c-b的取值范围即可.【解答】解:由数轴可得,-1<a<0<b<c<1,且|a|=|c|,∴0<c-b<1,c+a=0,0<-a<1,,∴最大的数为.故选D.10.【答案】D【解析】解:∵a*b=ab+a-b,∴(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.根据运算的规定首先求出(-2*5),然后再求出-17*6即可.本题主要考查了有理数的混合运算,正确理解题意,能掌握新定义是解题关键.11.【答案】2x-3【解析】解:原式=x+1-(-x+4),=x+1+x-4,=2x-3,故答案为:2x-3.根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a 的绝对值是它的相反数-a可得|x+1|=x+1,|x-4|=-x+4,然后再合并同类项即可.此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x-4的正负性.12.【答案】-a【解析】解:∵a<0,则|a|=-a.故答案为-a.根据负数的绝对值是它的相反数可得所求的绝对值.考查绝对值的意义;用到的知识点为:负数的绝对值是它的相反数.13.【答案】5或-1【解析】解:∵数轴上的P点与表示有理数2的点的距离是3个单位长度,则P点表示的数是5或-1.故答案为:5或-1.由于P点与表示有理数2的点的距离是3个单位长度,所以P在表示2点左右两边都有可能,结合数轴即可求解.此题综合考查了数轴、绝对值的有关内容,解决本题的关键是明确P在表示2点左右两边都有可能.14.【答案】8【解析】【分析】本题是一道找规律的题目,考查了有理数的加法和方程组的思想,是中档题难度不大.由题意得a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,然后转化成方程组的形式,求得d的值即可.【解答】解:∵a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,∴a+8+b-5=8+b-5+c①,8+b-5+c=b-5+c+d②,b-5+c+d=-5+c+d+4③,∴a-5=c-5,8+c=c+d,b-5=-5+4,∴b=4,d=8,a=c,故答案为8.15.【答案】0或±1【解析】【分析】是整数,求解即可.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案为0或±1.16.【答案】-2或-1或0或1或2【解析】解:①-1<x<-0.5时,[x]+(x)+[x)=-1+0-1=-2;②-0.5<x<0时,[x]+(x)+[x)=-1+0+0=-1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:-2或-1或0或1或2.分五种情况讨论x的范围:①-1<x<-0.5,②-0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.17.【答案】解:(1)原式=-8-3+15=4;(2)原式=-10-5=-15;(3)原式=12-20+9-10=-9;(4)原式=;(5)原式==-10-39=-49.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,结合后,相加即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式结合后,利用乘法分配律计算即可得到结果.18.【答案】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(-1)n(2n-1)x n.(4)第2013个单项式是-4025x2013,第2014个单项式是4027x2014.【解析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.19.【答案】-8【解析】解:(1)如图所示:(2)-5×2=-10.(3)A、B中点所表示的数为-3,点C与数-8所表示的点重合.故答案为:-8.(1)将点A向右移动3个单位长度得到点C的位置,依据相反数的定义得到点B表示的数;(2)依据有理数的乘法法则计算即可;(3)找出AB的中点,然后可得到与点C重合的数.本题主要考查的是数轴、相反数、有理数的乘法,在数轴上确定出点A、B、C的位置是解题的关键.20.【答案】解:(1);(2);(3)原式.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. (1)观察已知等式,得到拆项规律,写出即可;(2)原式===故应该填;(3)原式利用程序法变形,计算即可得到结果.第11页,共11页。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
人教版初中数学七年级上册第一章有理数单元测试题含答案解析
第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣52.咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃3.在、、、、中,负数的个数是()A.1B.2C.3D.44.绝对值为1的实数共有().A.0个B.1个C.2个D.4个5.比﹣1小2的数是()A.3B.1C.﹣2D.﹣36.下列正确的有()①若x与3互为相反数,则x+3=0;②﹣的倒数是2;③|﹣15|=﹣15;④负数没有立方根.A.①②③④B.①②④C.①④D.①7.将5.49亿亿记作()A.5.49×1018B.5.49×1016C.5.49×1015D.5.49×10148.下列计算,不正确的是( )A.(-9)-(-10)=1B.(-6)×4+(-6)×(-9)=30C.=-D.(-5)2÷=2009.如图,的倒数在数轴上表示的点位于下列两个点之间A.点E和点F B.点F和点GC.点G和点H D.点H和点I10.下列说法不正确的是()A.0小于所有正数B.0大于所有负数C.0既不是正数也不是负数D.0没有绝对值11.若a=2,|b|=5,则a+b=( )A.-3B.7C.-7D.-3或712.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点A在M与N之间,数b对应的点B在P与R之间,若|a|+|b|=3,则原点是( )A.N或P B.M或R C.M或N D.P或R二、填空题13.绝对值不大于4.5的整数有________.14.若(1﹣m)2+|n+2|=0,则m+n的值为________.15.一个数的倒数是它本身,这个数是_______, 互为倒数的两个数的_______是1,一个数的相反数是它本身这个数是________.16.点A在数轴上的位置如图所示,则点A表示的数的相反数是_____.17.对于有理数a,,我们规定:,下列结论中:;;;正确的结论有______把所有正确答案的序号都填在横线上三、解答题18.计算:(1)13+(-15)-(-23);(2)-17+(-33)-10-(-16).19.有一列数:,1,3,﹣3,﹣1,﹣2.5;(1)画一条数轴,并把上述各数在数轴上表示出来;(2)把这一列数按从小到大的顺序排列起来,并用“<”连接.20.把下列各数分别填入相应的集合里.(1)正数集合:{…};(2)负数集合:{…};(3)正分数集合:{…};(4)非正整数集合:{…}21.计算下列各题(1)15+(-)-15-(-0.25) (2)(-81)÷×÷(-32)(3)29×(-12) (4)25×-(-25)×+25×(-)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-)-(-)+(-)+]22.①已知x的相反数是﹣2,且2x+3a=5,求a的值.②已知﹣[﹣(﹣a)]=8,求a的相反数.23.一只小虫沿一根东西方向放着的木杆爬行,小虫从某点A出发在木杆上来回爬行7次,如果向东爬行的路程记为正数,向西爬行的路程记为负数,爬行过的各段路程依次如下(单位:cm):+5,-3,+11,-8,+12,-6,-11.(1)小虫最后是否回到了出发点A?为什么?(2)小虫一共爬行了多少厘米?24.在一次数学测验中,一年班的平均分为86分,把高于平均分的部分记作正数.李洋得了90分,应记作多少?刘红被记作分,她实际得分多少?王明得了86分,应记作多少?李洋和刘红相差多少分?25.股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?参考答案1.A【解析】【分析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A.【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.2.C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键. 3.D【解析】【分析】根据相反数、乘方、绝对值的概念对各数进行化简,结合正负数的概念进行判断即可.【详解】因为=-9,=-2.5,=,=-9,=-27,所以负数的个数是4个,故选D.【点睛】本题考查了正数和负数的知识点,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.4.C【解析】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.故选:C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.5.D【解析】分析:根据题意可得算式,再计算即可.详解:-1-2=-3,故选:D.点睛:此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.6.D【解析】【分析】直接利用互为相反数的定义以及绝对值、倒数的定义分别分析得出答案.【详解】①若x与3互为相反数,则x+3=0,正确;②﹣的倒数是﹣2,故此选项错误;③|﹣15|=15,故此选项错误;④负数有1个立方根,故此选项错误.故选D.【点睛】此题主要考查了互为相反数的定义以及绝对值、倒数的定义,正确把握相关定义是解题关键.7.B【解析】【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成a时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】一亿是1×108,一亿亿是1×108×108=1016,则5.49亿亿是5.49×1016,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n 为整数,表示时关键要正确确定a的值以及n的值.8.D【解析】【分析】根据有理数的运算法则分别计算各项,由此即可解答.【详解】选项A,(-9)-(-10)=-9+10=1,选项A正确;选项B,(-6)×4+(-6)×(-9)=-24+54=30,选项B正确;选项C,=-,选项C正确;选项D,(-5)2÷=25÷=25×(-8)=-200,选项D错误.故选D.【点睛】本题考查了有理数的运算,熟知有理数的运算法则是解题的关键.9.C【解析】【分析】根据倒数的定义即可判断.【详解】的倒数是,在G和H之间.故选C.【点睛】本题考查了倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D【解析】0小于所有正数,0大于所有负数,这是正数与负数的定义,A. B正确;0既不是正数也不是负数,这是规定,C正确;0的绝对值是0,D错误.故选D.11.D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.12.B【解析】【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【详解】∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|MA|=|BR|时,|a|+|b|=3,综上所述,此原点应是在M或R点,故选B.【点睛】本题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.13.±4,±3,±2,±1,0.【解析】分析:根据有理数大小比较的方法,可得绝对值不大于 4.5的所有整数有:﹣4、﹣3、﹣2、﹣1、0、1、2、3、4.详解:∵绝对值不大于4.5的所有整数有:﹣4、﹣3、﹣2、﹣1、0、1、2、3、4.故答案为:±4,±3,±2,±1,0.点睛:本题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握.14.-1【解析】【分析】根据非负数性质可得:1-m=0,n+2=0,求出m,n,再算m+n的值.【详解】若(1﹣m)2+|n+2|=0,则1-m=0,n+2=0,所以,m=1,n=-2,所以,m+n=-1.故答案为:-1.【点睛】本题考核知识点:非负数性质的运用.解题关键点:理解平方和绝对值的意义.15.1或-1,积, 0;【解析】分析:倒数等于本身的数为1和-1,相反数等于本身的数为0.详解:一个数的倒数是它本身,这个数是1和-1,互为倒数的两个数的积是1,一个数的相反数是它本身这个数是0.点睛:本题主要考查的是倒数和相反数的性质,属于基础题型.理解定义是解题的关键.16.-2【解析】【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【详解】∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2,故答案为:﹣2.【点睛】本题考查了在数轴上表示数的方法,以及相反数的含义和求法,熟练掌握相关知识是解题的关键.17.①②④【解析】【分析】根据a*b=a2-ab-5,可以判断各个小题是否正确,从而可以解答本题.【详解】∵a*b=a2-ab-5,∴(-3)*(-2)=(-3)2-(-3)×(-2)-5=9-6-5=-2,故①正确,a*a=a2-a•a-5=-5,b*b=b2-b•b-5=-5,故②正确,a*b=a2-ab-5,b*a=b2-ab-5,故③错误,(-a)*b=a2+ab-5,a*(-b)=a2+ab-5,故④正确,故答案为:①②④.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.(1) 21;(2)-44.【解析】【分析】原式利用减法法则变形,计算即可得到结果.【详解】(1)原式=13-15+23=21;(2)原式=-17-33-10+16=-60+16=-44.【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.19.(1)画数轴见解析;(2)(2) ﹣3<﹣2.5<﹣1<<1<3.【解析】试题分析:(1)按数轴的三要素规范的画出数轴,并把各数表示到数轴上即可;(2)根据各数在数轴上的位置,按照数轴上的点表示的数左边的总小于右边的,把各数用“<”连接起来即可.试题解析:(1)把各数表示到数轴上如下图所示:;(2)根据数轴上的点表示的数,左边的总小于右边的结合(1)可得:﹣3<﹣2.5<﹣1<<1<3.20.见解析【解析】分析:根据有理数的分类方法进行分析解答即可.详解:(1)正数集合:{2006,,1.88, …};(2)负数集合:{-4,-|-|,-3.14,-(+5)…};(3)正分数集合:{,+1.88 …};(4)非正整数集合:{-4,0, -(+5)…}.点睛:熟记“相反数的定义、绝对值的意义和有理数分类的方法”是解答本题的关键. 21.(1)0 (2)(3)-359(4) 25(5)-27 (6)-【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-)-15-(-0.25)=15-15- +0.25=0(2)(-81)÷×÷(-32)=81×××=(3)29×(-12)= (30- ) ×(-12)= 30×(-12) -× (-12)=-359(4)25×-(-25)×+25×(-)=25×(+-)=25×1=25(5)-24-(-4)2 ×(-1)+(-3)3= -16+16-27= -27(6)3.25-[(-)-(-)+(-)+]=3+-+-【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则. 22.① a=②8【解析】【分析】①直接利用相反数的定义得出x的值,进而得出a的值;②直接去括号得出a的值,进而得出答案.【详解】解:①∵x的相反数是﹣2,且2x+3a=5,∴x=2,故4+3a=5,解得:a=;②∵﹣[﹣(﹣a)]=8,∴a=﹣8,∴a的相反数是8.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.23.(1)小虫最后回到了出发点A; (2)小虫一共爬行了56 cm.【解析】【分析】(1)求出(+5)+(-3)+(+11)+(-8)+(+12)+(-6)+(-11)的值,根据结果判断即可;(2)求出|+5|+|-3|+|+11|+|-8|+|+12|+|-6|+|-11|的值即可.【详解】(1)小虫最后回到了出发点A,理由是:(+5)+(-3)+(+11)+(-8)+(+12)+(-6)+(-11)=0,即小虫最后回到了出发点A.(2)|+5|+|-3|+|+11|+|-8|+|+12|+|-6|+|-11|=56(厘米),答:小虫一共爬行了56 厘米.【点睛】本题考查了有理数的加减,正数、负数,数轴,绝对值的应用,关键是能根据题意列出算式.24.;;;.【解析】分析:(1)90−86即可;(2)86−5即可;(3)86−86即可;(4)用李洋的成绩减去刘红的成绩即可.详解:(1)90−86=+4;(2)86−5=81;(3)86−86=0;(4)90−81=9.点睛:本题考查了正负数的意义和正负数的有关计算,是基础知识要熟练掌握.25.(1)34.5元;(2)26元;(3)如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.【解析】【分析】(1)根据算式27+4+4.5-1可得;(2)最高价在星期二,最低价在星期五;(3)收益=卖出所得-买入成本;【详解】解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).(3)买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).收益:25935-27040.5=-1105.5(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,列出算式.。
人教版七年级数学上册《第一章有理数》单元测试题-附答案
人教版七年级数学上册《第一章有理数》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作()A.+10元B.﹣10元C.+20元D.﹣20元2.在数−2,12,√3,227中,有理数的个数有()A.4个B.3个C.2个D.1个3.如图是单位长度为1的数轴,点A,B是数轴上的点,若点A表示的数是−3,则点B表示的数是()A.−1B.0 C.1 D.24.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.B.C.D.5.如图,数轴上点A所表示的数的相反数是()A.9 B.−19C.19D.−96.下列各对数中,互为相反数的是()A.-(-3)和3 B.+(-5)和-[-(-5)]C.13和-3 D.-(-7)和-|-7|7.有理数−2,−12,0,32中,绝对值最大的数是()A.−2B.−12C.0 D.328.−3的绝对值的相反数是()A.−3B.3 C.13D.0 二、填空题9.有理数中,最大的负整数是.10.在−5,|−4|,−(+3),0,−(−2)中,负数共有个.11.绝对值小于2.5的整数有.12.若a与−12互为相反数,则a的值为.13.如果一个数的绝对值是10,那么这个数是.三、解答题14.小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样.请问“±5g”表示什么意义?小明拿去称了一下,发现只有297g.问食品生产厂家有没有欺诈行为?15.把下列各数填在相应的集合中:8,-1,-0.4与35,0,13,−137,−(−5),−|−207|.正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …};非负有理数集合{ …}.16.求+358,-2.35,0,−227的相反数和绝对值.17.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0 −5218.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B2.B3.C4.B5.D6.D7.A8.A9.-110.211.±2;±1;012.1213.±1014.解:由题意可知:“±5g”表示总净含量的浮动范围为上下5g,即含量范围在(300+5)=305克到(300−5)=295克之间,故总净含量为297在合格的范围内,食品生产厂家没有欺诈行为.15.8 3513−(−5);-1 -0.4 −137−|−207|;8 -1 0 −(−5);-0.4 3513−137−|−207|;8 350 1316.解:相反数分別是:−358,2.35,0,227;绝对值分别是:358,2.35,0,227.17.解:+3的相反数为:-3 -1.5的相反数为:1.50的相反数为:0−52的相反数为:52在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。
人教版七年级上册:第1章《有理数》单元测试卷含答案
《有理数》单元测试卷一、选择题1. 下列有关“0”的叙述中,错误的是( )A. 不是正数,也不是负数B. 不是有理数,是整数C. 是整数,也是有理数D. 不是负数,是有理数 2. 如果把收入100元记作+100元,那么支出80元记作( )A. +20元B. +100元C.+80元D. -80元3. -2的相反数是() A. 2B. -2C. 1/2D. -1/2 4. -2018的绝对值是( )A. 1/2018B. -2018C. 2018D. -1/2018 5. 计算|-5+2|的结果是( )A. 3B. 2C.D.6、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数7.抚顺一天早晨的气温是-21℃,中午的气温比早晨上升了14℃,中午的气温是( )A. 14℃B. 4℃C. -7℃D. -14℃8.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )(A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c 9.下列说法错误的是( )A. -2的相反数是2B. 3的倒数1/3C. (-2)-(-1)=1D. -11、0、4这三个数中最小的数是010.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为()A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米二、填空题11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“-8”表示______.12.数轴上表示点A的数是-4,点B在点A的左边,则点B表示的数可以是______.(写一个即可)13.请写出一对互为相反数的数:______和______.14.计算:|-7+3|=______.15.-1/5的倒数是。
初中数学七年级上册第一章:有理数测试题(含答案)
《第1章有理数》单元测试卷一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣12.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣3.2015的相反数是()A.B.﹣C.2015D.﹣20154.﹣的相反数是()A.2B.﹣2C.D.﹣5.6的绝对值是()A.6B.﹣6C.D.﹣6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是() A.﹣10℃B.10℃C.14℃D.﹣14℃8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为__________.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是__________,第n个数是__________(n为正整数).13.﹣3的倒数是__________,﹣3的绝对值是__________.14.数轴上到原点的距离等于4的数是__________.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是__________.16.在数轴上点P到原点的距离为5,点P表示的数是__________.17.绝对值不大于2的所有整数为__________.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:__________.负数集:__________.有理数集:__________.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m的值.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.新人教版七年级上册《第1章有理数》单元测试卷解析版一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.2015的相反数是()A.B.﹣C.2015D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.﹣的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.6的绝对值是()A.6B.﹣6C.D.﹣【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是1【考点】绝对值;有理数;相反数.【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.【解答】解:A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D.【点评】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.7.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.9.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【考点】绝对值.【分析】根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.【解答】解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A【点评】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.00000053=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是8,第n 个数是(n为正整数).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是(n+1).【解答】解:第7个数是(7+1)=8;第n 个数是(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.13.﹣3的倒数是﹣,﹣3的绝对值是3.【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.14.数轴上到原点的距离等于4的数是±4.【考点】数轴.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是0或4或﹣4.【考点】有理数的混合运算;绝对值.【分析】根据绝对值的性质求出a的值,根据平方根求出b的值,再根据|a+b|=a+b可知,a+b≥0,然后确定出a、b的值,再代入进行计算即可.【解答】解:∵|a|=4,∴a=2或﹣2,∵b2=4,∴b=2或﹣2,∵|a+b|=a+b,∴a+b≥0,∴a=2时,b=2,或a=2时,b=﹣2,或a=﹣2时,b=2,∴a﹣b=2﹣2=0,或a﹣b=2﹣(﹣2)=4,或a﹣b=(﹣2)﹣2=﹣4,综上所述,a﹣b的值是0或4或﹣4.故答案为:0或4或﹣4.【点评】本题考查了有理数的混合运算,绝对值的性质,平方根的概念,根据题意求出a、b的值是解题的关键.16.在数轴上点P到原点的距离为5,点P表示的数是±5.【考点】数轴.【专题】推理填空题.【分析】根据数轴上各点到原点距离的定义进行解答.【解答】解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.【点评】本题考查的是数轴上各数到原点距离的定义,即数轴上各点到原点的距离等于各点所表示的数绝对值.17.绝对值不大于2的所有整数为0,±1,±2.【考点】绝对值.【专题】计算题.【分析】找出绝对值不大于2的所有整数即可.【解答】解:绝对值不大于2的所有整数为0,±1,±2.故答案为:0,±1,±2.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9.有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n 变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
七年级数学第一单元有理数单元测试精选题目含答案
七年级数学第一单元有理数单元测试精选题目含答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、计算-2+3的结果是A.1 B.-1 C.-5 D.-6 2、在、、、这四个数中比小的数是()A.B.C. D.3、 -5的相反数是()A. -5 B. 5 C.D.4、一个数的相反数是-8,则这个数是( )A.8 B.-8 C. D.-5、里海是世界最大的湖,里海水面低于海平面28米,那么里海的海拔高度是( )A.+28米 B.-28米 C.0米 D.无法确定6、的绝对值是()A. B. C. D.7、 5的相反数是()A、-5B、5C、D、8、的倒数为()A.-2 B.2 C.D.9、已知,则下列四个式子中一定正确的是( ).A. B. C. D.10、水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()A.(+3)×(+2) B.(+3)×(﹣2) C.(﹣3)×(+2) D.(﹣3)×(﹣2)二、填空题(共6题)1、湛江市某天的最高气温是℃,最低气温是℃,那么当天的温差是℃.2、如果水位上升1.2米,记作+1.2米,那么水位下降0.8米记作______米。
3、计算:的结果是___________.4、若_________.5、-2的绝对值等于___________6、经验证明,在一定范围内,高出地面的高度每增加l00m,气温就降低大约0.6℃,现在地面的温度是25℃,则在高出地面5000m高空的温度是_________.三、计算题(共2题)1、化简下列各数:-[-(-3)];2、若,,试确定所有可能的取值。
四、解答题(共7题)1、快递配送员王叔叔一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(长度单位:千米): +3 ,﹣ 4 , +2 . +3 .﹣1 ,﹣ 1 ,﹣ 3( 1 )这天送完最后一个快递时,王叔叔在出发点的什么方向,距离是多少?( 2 )如果王叔叔送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油 0.2 升)?2、某病人每天下午需要测量一次血压,下表是该病人本周星期一至星期五收缩压的变化情况 . (“+”表示上升,“-”表示下降)星期一二三四五收缩压的变化(与前一天比+30 -20 +17 +18 -20较)( 1 )本周三与周一相比较收缩压 ________ 了;(填“上升”或“下降”)( 2 )通过计算说明本周五收缩压与上周日相比是上升了还是下降了,并求出上升或下降了多少;( 3 )如果该病人本周五的收缩压为 185 ,那么他上个周日的收缩压为多少?3、一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想.(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格;(3)如果以标准价为标准,超过标准价记“+”,低于标准价记“-”,•该商品价格的浮动范围又可以怎样表示?4、将下列各数填在相应的集合里。
人教版七年级数学上册 第一章 有理数 单元测试题 (有答案)
人教版七年级数学上册第一章有理数单元测试题一.选择题(共10小题)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.33.点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1 B.﹣2或2 C.﹣2 D.14.<()<,符合条件的分数有()个.A.无数B.1 C.2 D.35.在,,1.62,0四个数中,有理数的个数为()A.4 B.3 C.2 D.16.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+ B.﹣C.×D.÷7.有理数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.<08.312是96的()A.1倍B.C.D.36倍9.2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×108 10.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元二.填空题(共8小题)11.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.12.绝对值不大于11.1的整数有个.13.今年,秦州市市区道路的改造面积约达到231500平方米,使市民行车舒适度大大提升.231500(精确到1000)≈.14.计算:﹣ +|3|﹣+(﹣6)=.15.一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.16.对于任意有理数a、b,规定a⊕b=2a2+ab﹣1,则(﹣3)⊕5=.17.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.18.若a+3=0,则a=.三.解答题(共8小题)19.计算(1)×()×÷;(2)()×12;(3)(﹣125)÷(﹣5);(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].20.求|x+3|+|x﹣5|的最小值.21.如图,点A,B在数轴上,它们对应的数分别是﹣2,3x﹣4,且点A,B到原点的距离相等,求x的值.22.已知A地海拔高度为﹣30m,B地海拔高度为50m,C地海拔高度为﹣10m,哪个地方地势最高?哪个地方地势最低?地势最低的地方与地势最高的地方相差多少米?23.先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.24.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①24×11=264.计算过程:24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①32×11=,②78×11=;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.26.定义新运算@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.参考答案与试题解析一.选择题(共10小题)1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.3.解:由题意得,|2a+1|=3,解得,a=1或a=﹣2,故选:A.4.解:设符合条件的数为x,根据分数的基本性质,把分子分母扩大2倍,则,符合条件的分数有:,,;把分子分母扩大3倍,则,符合条件的分数有:,,,,;…,所以符合条件的分数有无数个,故选:A.5.解:在,,1.62,0四个数中,有理数为,1.62,0,共3个,故选:B.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:由数轴可知:b<﹣1,0<a<1,∴a+b<0,a﹣b>0,ab<0,<0.故选:D.8.解:∵312=(32)6=96,∴312是96的1倍.故选:A.9.解:111.7亿=11170000000=1.117×1010故选:C.10.解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.二.填空题(共8小题)11.解:93480000=9.348×107.故答案为:9.348×107.12.解:原点(0点)左边绝对值不大于11.1的整数有:﹣1、﹣2、﹣3、﹣4、﹣5、﹣6、﹣7、﹣8、﹣9、﹣10、﹣11,原点(0点)右边绝对值不大于11.1的整数有:1、2、3、4、5、6、7、8、9、10、11,还有0,因此,绝对值不大于11.1的整数有:11+1+11=23(个).故答案为:23.13.解:231500≈2.32×105,故答案为2.32×105.14.解:原式=﹣﹣+﹣=﹣1﹣3=﹣4,故答案为:﹣4.15.解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向左爬行2个单位长度,得﹣2,故答案为:2或﹣2.16.解:∵a⊕b=2a2+ab﹣1,∴(﹣3)⊕5=2×(﹣3)2+(﹣3)×5﹣1 =18﹣15﹣1=2.故答案为:2.17.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.18.解:∵a+3=0,∴a=﹣3.故答案为:﹣3.三.解答题(共8小题)19.解:(1)×()×÷=×(﹣)×=﹣;(2)()×12=3+2﹣6=﹣1;(3)(﹣125)÷(﹣5)=[(﹣125)+(﹣)]×(﹣)=25+=25;(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=(﹣1000)+[16﹣(1﹣9)×2]=(﹣1000)+[16﹣(﹣8)×2]=(﹣1000)+(16+16)=(﹣1000)+32=﹣968.20.解:∵|x+3|+|x﹣5|表示点x到点﹣3和点5之间的距离之和,∴当点x在点﹣3和5之间时,距离之和最小,即﹣3≤x≤5故最小值为5﹣(﹣3)=8.21.解:∵点A,B到原点的距离相等,点A表示的数是﹣2,点B在原点的右侧,∴点B表示的数为2,即:3x﹣4=2,解得,x=2,答:x的值为2.22.解:因为50>﹣10>﹣30,所以B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差:50﹣(﹣30)=50+30=80(m).答:B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差80m.23.解:(1)原式=×12﹣×12+×12=4﹣2+6=8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.24.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.25.解:(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为:a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为:“头尾一拉,中间相加,满十进一”.26.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.。
人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)
《有理数》检测题一、单选题1.实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.2.实数在数轴上的对应点位置如图所示,把,按照从小到大的顺序排列,正确的是( ).A. B.C. D.3.的计算结果为()A. B. C. D.4.在﹣,0,﹣π,﹣1这四个数中,最小的数是()A. ﹣B. 0C. ﹣πD. ﹣15.在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A. (﹣3)﹣(+1)=﹣4 B. (﹣3)+(+1)=﹣2 C. (+3)+(﹣1)=+2 D. (+3)+(+1)=+46.在 0.5, 0 ,-1,-2 这四个数中,绝对值最大的数是( ) A. 0.5 B. 0 C. -1 D. -27.一个数的绝对值等于5,这个数是().A. 5B. ±5C. -5D.8.的倒数的相反数是()A. ﹣5B.C.D. 59.计算的结果等于( ).A. -2B. 0C. 1D. 210.气温由﹣1℃上升2℃后是()A. 3℃B. 2℃C. 1℃D. ﹣1℃11.武汉地区冬季某一天最高气温7℃,最低-3℃,则这一天最高气温比最低气温高()A. 10℃B. 4℃C. 8℃D. 7℃二、填空题12.(2017四川省宜宾市)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.常用成语中有“半斤八两”,旧制一斤为十六两,若一两为十六钱,则48钱为_____斤.14.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1200亿吨油当量.将1200亿用科学记数法表示为a×10n的形式,则a的值为_____.15.2017年襄阳全市实现地区生产总值4064.9亿元,数据4064.9亿用科学计数法表示为_______.16.扬州市梅岭中学图书馆藏书12000本,数据“12000”用科学记数法可表示为_________.17.计算_______________.三、解答题18.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,试求几秒后点A 与点C距离为12个单位长度?参考答案1.C【解析】分析:根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.详解:由数轴上点的位置,得:a<−4<b<0<c<1<d.A.a<−4,故A不符合题意;B.bd<0,故B不符合题意;C.|a|>|b|,故C符合题意;D.b+c<0,故D不符合题意;故选:C.点睛:本题考查了实数与数轴、绝对值的性质.2.C【解析】分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.详解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a.故选C.点睛:本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣b<0<﹣a,是解答此题的关键.3.B【解析】分析:原式利用绝对值的代数意义计算即可.详解:原式==﹣.故选B.点睛:本题考查了有理数的减法以及绝对值,熟练掌握运算法则是解答本题的关键.4.C【解析】分析:正数大于一切负数;零大于一切负数;零小于一切正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.本题只要根据有理数大小比较方法即可得出答案.详解:根据有理数的大小比较方法可得:-π<-<-1<0,故选C.点睛:本题主要考查的是有理数的大小比较方法,属于基础题型.明白有理数的大小比较方法即可得出答案.5.B【解析】分析:根据向左为负,向右为正得出算式(-3)+(+1),求出即可.详解:∵把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,∴根据向左为负,向右为正得出(-3)+(+1)=-2,∴此时笔尖的位置所表示的数是-2.故选:B.点睛:本题考查了有关数轴问题,解此题的关键是理解两次运动的表示方法和知道一般情况下规定:向左用负数表示,向右用正数表示.6.D【解析】分析:根据绝对值的意义,数轴上一个数所对应的点与原点(点零处)的距离叫做该数绝对值,由距离的多少比较即可.详解:0.5的绝对值为0.5;0的绝对值为0;-1的绝对值为1;-2的绝对值为2.因为2最大,所以绝对值最大的是-2.故选:D.点睛:此题主要考查了绝对值的意义,熟记绝对值的意义和绝对值的性质是解题关键,比较简单.7.B【解析】分析:根据绝对值的定义解答.详解:绝对值是5的数,原点左边是-5,原点右边是5,∴这个数是±5.故选B.点睛:本题主要考查了绝对值的定义,要注意从原点左右两边考虑求解.8.D【解析】分析:先根据倒数的定义得到的倒数为-5,再根据相反数的定义得到-5的相反数为5.详解:∵的倒数为-5,-5的相反数为5,∴的倒数的相反数是5.故选D.点睛:本题考查了倒数的定义,也考查了相反数的定义.9.A【解析】分析:根据有理数的减法运算法则进行计算即可得解.详解:﹣1﹣1=﹣2.故选A.点睛:本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.10.C【解析】分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.详解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选C.点睛:本题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.11.A【解析】分析:根据题意列出式子按有理数减法法则计算即可.详解:由题意可得:(℃).故选A.点睛:本题考查的是有理数减法的实际应用,解题的关键是根据题意列出正确的算式.12.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.考点:1.两条直线相交或平行问题;2.有理数大小比较;3.解一元一次不等式组.13.256【解析】【分析】根据题意列出算式,计算即可得.【详解】根据题意得:48÷16=48÷42=46(两),46÷16=46÷42=44=256(斤),故答案为:256.【点睛】本题考查了有理数的乘方、同底数幂的除法,掌握相应的运算法则是解题的关键.14.1.2.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1200亿有12位,所以可以确定n=12-1=11.详解:1200亿=1.2×1011,故a=1.2.故答案为:1.2.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.4.0649×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4064.9亿=406490000000,406490000000小数点向左移动11位得到4.0649,所以4064.9亿用科学计数法表示为4.0649×1011,故答案为:4.0649×1011.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:12000=1.2×104.故答案为:1.2×104.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.【解析】分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.18.(1) a=﹣1,b=1,c=5;(2) 1秒后点A与点C距离为12个单位长度.【解析】分析:(1)根据非负数的性质列出算式,求出a、b、c的值;(2)根据题意列出方程,解方程即可.详解:(1)由题意得,b=1,c-5=0,a+b=0,则a=-1,b=1,c=5;(2)设x秒后点A与点C距离为12个单位长度,则x+5x=12-6,解得,x=1,答:1秒后点A与点C距离为12个单位长度.点睛:本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。
人教版七年级数学上册《第一章有理数》单元测试卷-附答案
人教版七年级数学上册《第一章有理数》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各数中,最小的数是( )A .3-B .1C .0D .522.实数2-的绝对值是( )A .2-B .2C .12D .12- 3.一天早晨的气温是7-℃,中午上升了10℃,中午的气温是( )A .1-℃B .3-℃C .1℃D .3℃4.下列说法不正确的是( )A .不同的两个数叫做互为相反数B .如果数轴上的两个点关于原点对称,则这两个点表示的数互为相反数C .若a 的相反数是正数,则a 一定是负数D .若a 和b 互为相反数,则0a b +=5.新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年新能源汽车国内销量达8292000辆.数字8292000用科学记数法表示为( )A .68.29210⨯B .582.9210⨯C .4892.210⨯D .28.29210⨯ 6 . 若方程无解,则m 的取值范围是( ) A . B . C . D .7.用一块长12米,宽6米的长方形铁皮剪成半径是1.5米的小圆(不能剪拼)( )个. A .11个 B .8个 C .10个 D .13个8.下列计算正确的是( )A .733.5384⎛⎫-÷⨯-=- ⎪⎝⎭B .12323-÷⨯=-C .556(4)64-÷-⨯=D .11113065⎛⎫-÷÷=- ⎪⎝⎭9.a 、b 是有理数.下列各式中成立的是( )A .若22a b >,则a b >B .若a b >,则22a b >C .若a b ≠,则a bD .若a b ,则a b ≠10.如果四个互不相同的正整数m n p q 、、、满足()()()()44449m n p q ----=,则433+++m n p q 的最大值为( )A .40B .53C .60D .70二、填空题11.计算:20241-= .12.如图是一个简单的数值运算程序图,当输入x 的值为1-时,输出的数值为 .13.若12x <<,求代数式2121x x x x x x---+=-- . 14.车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表: 车床代号 A B C DE 修复时间(分钟) 8 31 116 17 若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且一名修理工每次只能修理一台机床,则下列三个修复车床的顺序: ①D B E A C →→→→;①D A C E B →→→→;①C A E B D →→→→中,经济损失最少的是 (填序号);(2)如果由两名修理工同时修复车床,且每台机床只由一名修理工修理,则最少经济损失为 元.三、解答题15.计算:()()()2122533-+⨯---. 16.下面是一个不完整的数轴(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:-3;3.5与122⎛⎫-- ⎪⎝⎭;-|-1|. 17.(1)若a 2=16,|b |=3,且ab<0,求a +b 的值.(2)已知a 、b 互为相反数且a≠0,c 、d 互为倒数,m 的绝对值是3,且m 位于原点左侧,求22015 (1)()2016m a b cd--++-的值.18.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“-”表示出库)+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品________.(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算时发现仓库里还剩货品460t,那么6天前仓库里有货品多少吨?(3)如果货品进出仓库的装卸费都是每吨5元,那么这6天共需付多少元装卸费?参考答案1.A2.B3.D4.A5.A6.D7.B8.C9.C10.B11.1-12.5-13.114.① 104015.616.(1)(2)1312 3.52--⎛⎫-<<--<⎪⎝⎭17.(1)1±;(2)9.18.(1)减少了(2)500吨(3)860元。
人教版初中七年级上册数学第一章《有理数》单元测试含答案解析
《第1章有理数》一、选择题1.﹣的相反数是()A. B.±C.D.﹣2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和33.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.410.﹣的相反数是()A.5 B.C.﹣ D.﹣511.一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.15.若a=13,则﹣a= ;若﹣x=3,则x= .16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?18.填表.原数﹣59.2 0 4相反数 3 ﹣719.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣的相反数是()A. B.±C.D.﹣【考点】相反数.【分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣的相反数是﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握.2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和3【考点】相反数.【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数【考点】相反数.【分析】根据相反数的定义,0的相反数仍是0.【解答】解:0的相反数是其本身.故选C.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数【考点】相反数.【分析】根据0的相反数为0对A进行判断;根据数轴表示数的方法对B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与【考点】相反数.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣(+7)=﹣7,+(﹣7)=﹣7,故这对数不互为相反数,故本选项错误;B、﹣与﹣(0.5)不互为相反数,故本选项错误;C、﹣1=﹣,与互为相反数,故本选项正确;D、+(﹣0.01)=﹣0.01,﹣ =﹣0.01,故这对数不互为相反数,故本选项错误;故选C.【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】接:A、∵﹣5与5是只有符号不同的两个数,∴﹣5的相反数是5,故本选项错误;B、∵﹣与,∴﹣的相反数是,故本选项错误;C、∵﹣4与4是只有符号不同的两个数,∴﹣4的相反数是4,故本选项正确;D、∵﹣与是只有符号不同的两个数,∴﹣的相反数是,故本选项错误.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.【点评】简化符号可根据同号得正,异号得负求得.9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.4【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣(﹣2)=2,故选B【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.(•宜宾)﹣的相反数是()A.5 B.C.﹣ D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11.(2012•大庆)一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣5【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,列出方程求解即可.【解答】解:根据题意得,﹣a=5,解得a=﹣5.故选D.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,是基础题,熟记概念是解题的关键.12.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.【点评】本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣【考点】相反数.【分析】根据相反数的概念,及正整数的概念,采用逐一检验法求解即可.【解答】解:其相反数是正整数的数本身首先必须是负数则可舍去A、B,而且相反数还得是整数又舍去D.故选C.【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),则有x﹣(﹣x)=4,解得:x=2.则这两个数分别是2和﹣2.故答案为:2,﹣2.【点评】本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.15.若a=13,则﹣a= ﹣13 ;若﹣x=3,则x= ﹣3 .【考点】相反数.【分析】根据相反数的定义,即可得出答案.【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.【专题】数形结合.【分析】点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,﹣1﹣x=4,解出即可解答;【解答】解:如图,点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,﹣1﹣x=4,x=﹣5;故答案为:﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【考点】相反数;数轴.【专题】数形结合.【分析】(1)根据互为相反数的点到原点的距离相等在数轴上表示出﹣a,﹣b;(2)先得到b表示的点到原点的距离为10,然后根据数轴表示数的方法得到b表示的数;(3)先得到﹣b表示的点到原点的距离为10,再利用数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的点到原点的距离为5,然后根据数轴表示数的方法得到a表示的数.【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.18.填表.原数﹣5﹣3 9.2 0 47相反数﹣5 3 ﹣9.2 0 ﹣4﹣7【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:原数﹣5﹣3 9.2 0 47相反数5 3 ﹣9.2 0 ﹣4﹣7故答案为:4,﹣3,﹣9.2,0,﹣4,7.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.【考点】相反数.【分析】根据相反数的定义,a的相反数是﹣a,分别得出即可.【解答】解:(1)的相反数为:;(2)5的相反数为:﹣5;(3)0的相反数为:0;(4)a的相反数为:﹣a;(5)x+1的相反数为:﹣x﹣1.【点评】此题主要考查了相反数的定义,熟练掌握相关定义是解题关键.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(2)﹣(﹣7.1)=7.1;(3)﹣[+(﹣5)]=﹣5;(4)﹣[﹣(﹣8)]=﹣8.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?【考点】相反数;数轴.【分析】根据数轴上两点间的距离等于较大的数减去较小的数列式计算,再根据相反数的定义写出最后答案.【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?【考点】数轴.【专题】综合题.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.【点评】此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;第三行,数值为+3,﹣3个数为2,总数为5,依此类推,第n行,数值为+n,﹣n个数为2,总数为2n﹣1,故令2n﹣1=2013,解得:n=1007,则这两个数为+1007和﹣1007.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
七年级数学上册《第一章有理数》单元测试卷及答案
七年级数学上册《第一章有理数》单元测试卷及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如 需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写 在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章有理数。
5.难度系数:中等。
第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.32.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 3.设x 为有理数,若x x =,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个B .1个C .2个D .3个5.以下数轴画法正确的是( ) A .B .C .D .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个B .3个C .4个D .5个7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0B .1C .2D .38.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3B .7-C .0D .202310.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c+++++的值为1±. A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦= .12.若b -的相反数是 2.4-,则b = .13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d+++的最大值是 . 15.新定义如下:()3f x x =-, ()2g y y =+ 例如:() 2235f -=--=, ()3325g =+= 根据上述知识, 若()()6f x g x +=, 则x 的值为 . 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________; (2)当a = 时,12a -+有最小值,最小值是 .三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤) 17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.18.(4分)把下列各数的序号填入相应的大括号内:①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…}; 非负数集合:{_______________…}; 非正整数集合:{_______________…}; 分数集合:{_______________…}.19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期周一 周二 周三 周四 周五学规得分 +5+3−4+7−2(1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示).21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-;(2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}.(1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:_________. (3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.23.(10分)阅读下面的文字,完成后面的问题: 我们知道:11×2=1−12;12×3=12−13;13×4=13−14. 那么: (1)14×5=______;12019×2020=______;(2)用含有n 的式子表示你发现的规律______; (3)求式子11×2+12×3+13×4+⋯+12019×2020的值.24.(12分)阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求: (1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.25.(12分)定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是-3,6.5,11,其中是【M ,N 】美好点的是 ; 写出【N ,M 】美好点H 所表示的数是 .(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?参考答案第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.3【答案】C【分析】先求出每个数的绝对值,再根据有理数的大小比较法则比较即可.本题考查了有理数的大小比较和绝对值,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.【详解】解:55-= ()22--= 00= 0.30.3-= ∵00.325<<< ∴绝对值最小的是0. 故选:C .2.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 【答案】D【分析】此题考查了正数和负数的实际意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,依次判断各可. 【详解】解:“向东10米”与“向西5米”是相反意义的量;故A 不符合题意; 如果气球上升25米记作25+米,那么15-米的意义就是下降15米;故B 不符合题意; 如果气温下降6℃,记为6-℃,那么8+℃的意义就是上升8℃;故C 不符合题意;若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米,正确,故D 符合题意; 故选D3.设x 为有理数,若x x =,则( ) A .x 为正数 B .x 为负数C .x 为非正数D .x 为非负数【答案】D【分析】本题考查绝对值的性质,根据(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩直接判断即可得到答案;【详解】解:∵x x = ∴x 是非负数 故选:D .4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个 B .1个C .2个D .3个【答案】D【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数.根据相反数的定义一一进行分析即可得出答案.【详解】解:①a 的相反数是a -,说法正确;②只有符号不同的两个数互为相反数,说法错误;③()3.8--的相反数是 3.8-,说法正确;④一个数和它的相反数可能相等,如0的相反数等于0,说法正确;⑤正数与负数不一定互为相反数,如2和1-,说法错误;故正确的有3个. 故选:D .5.以下数轴画法正确的是( ) A .B .C .D .【答案】C【分析】本题考查数轴,了解数轴三要素是关键.根据数轴三要素:原点,正方向,单位长度,逐一排除即可.【详解】解:A .没有正方向,错误,不符合题意; B .单位长度不相等,错误,不符合题意;C .有正方向,原点,单位长度相等,正确,符合题意;D .选项没有原点,错误,不符合题意. 故选:C .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个 B .3个C .4个D .5个【答案】B【分析】本题考查了负数的概念,含乘方的有理数化简与化简绝对值,负数就是小于0的数,带负号的数不一定负数.熟练掌握以上知识点是解题的关键.根据相关性质化简各项,再利用负数的概念进行判断即可. 【详解】解: −|−2|=−2,是负数; −22023是负数;()1--=1,不是负数;0不是负数;−(−2)2=−4,是负数; 综上:有3个负数 故选:B .7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0 B .1 C .2 D .3【答案】B【分析】本题考查了整数“整数包括正整数、0和负整数”、有理数的分类“有理数可分为正有理数、0和负有理数”、正数与负数,熟练掌握有理数的分类是解题关键.根据整数、有理数的分类、正数与负数逐个判断即可得.【详解】解:①0不是最小的整数,如负整数10-<,则原说法错误; ②有理数0既不是正数也不是负数,则原说法错误; ③若a 是正数,则a -是负数,则原说法正确; ④自然数0不是正数,则原说法错误;⑤整数0既不是正整数也不是负整数,则原说法错误; ⑥非负数就是指不是负数,即正数和0,则原说法错误; 综上,正确的个数是1个, 故选:B .8.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④【答案】C【分析】本题考查根据点在数轴上的位置比较代数式大小,熟练掌握利用数轴比较数的大小是解决问题的关键.【详解】解:a,b 在数轴上的位置如图所示:0a b ∴<<故①0a b <<正确 a b > ②错误;由①②可得0ab->,③正确; 0,0a b b a +<->∴b a a b ->+ ④错误;综上所述,正确的有①③ 故选:C .9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3 B .7- C .0 D .2023【答案】A【分析】本题考查相反数的性质,负整数.根据相反数、负整数的性质求出相关数据,再通过计算即可求解. 【详解】∵m 和n 互为相反数,a 是最大的负整数 ∴0m n += 1a =-∴m+n2023−3a =02023−3×(−1)=3. 故选:A .10.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c +++++的值为1±.A .1个B .2个C .3个D .4个【答案】A【分析】本题考查有绝对值的化简,数轴上两点间的距离,解答本题的关键是对于错误的结论,要说明理由或者举出反例. 【详解】若11a a=,则a >0, 故①错误, 不合题意; 若a b >则0a b >>或0a b a >>>-或0a b a ->>>或0b a >> 当0a b >>时, 则有()()0a b a b +->是是正数当0a b a >>>-时, 则有()()0a b a b +->是正数 当0a b a ->>>时, 则有()()0a b a b +->是正数 当0b a >>时, 则有()()0a b a b +->是是正数由上可得, ()()0a b a b +->是正数, 故②正确,符合题意;A B C 、、三点在数轴上对应的数分别是-2、6、x ,若相邻两点的距离相等,则x =2或10-或14,故③错误,不合题意;若代数式29312011x x x +-+-+的值与x 无关,则29312011293120112019x x x x x x +-+-+=+-+-+= 故④错误,不合题意;0,0a b c abc ++=<∴a b c 、、中一定是一负两正 b c a +=- ,a c b a b c +=-+=- 不妨设0,0,0a b c >>< b c a c a ba b c+++∴++ b c a c a b a b c +++=++- a b c a b c---=++- 111=--+1=-,故⑤错误,不合题意;故选: A .第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦ .【答案】337-/247-【分析】本题主要考查了多重符号化简,熟练掌握相反数定义,根据“只有符号不同的两个数互为相反数”进行求解即可.【详解】解:333377⎡⎤⎛⎫---=- ⎪⎢⎥⎝⎭⎣⎦.故答案为:337-.12.若b -的相反数是 2.4-,则b = .【答案】 2.4-【分析】根据相反数的性质解答即可.本题考查了相反数的性质,熟练掌握互为相反数的两个数的和为0,列出方程求解是解题的关键.【详解】解:根据题意,得()2.40b -+-=解得 2.4b =-.故答案为: 2.4-.13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.【答案】9【分析】本题考查了数轴.熟练掌握数轴是解题的关键.根据在数轴上表示有理数进行作答即可.【详解】解:由数轴可知,被盖住的整数有−6,−5,−4,−3,−2,1,2,3,4共9个故答案为:9.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d +++的最大值是 . 【答案】2【分析】根据绝对值的运用判断出有理数a ,b ,c ,d 中负数的个数,然后分别讨论求出最大值.本题主要考查了绝对值的运用,采用分类讨论的思想进行解题. 【详解】解:||1abcd abcd=- ∴有理数a ,b ,c ,d 中负数为奇数个.①若有理数a ,b ,c ,d 有一个负三个正 则||||||||2a b c d a b c d+++=; ②若有理数a ,b ,c ,d 有三个负一个正 则||||||||2a b c d a b c d+++=-; 所以||||||||a b c d a b c d +++的最大值是2. 故答案为:2.15.新定义如下:()3f x x =- ()2g y y =+; 例如:() 2235f -=--= ()3325g =+=;根据上述知识, 若()()6f x g x +=, 则x 的值为 . 【答案】72或52-【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据()()6f x g x +=得出含绝对值的方程,解方程可得答案. 【详解】解:由题可得:326x x -++=当3x ≥时326x x -++=,解得72x =; 当23x -<<时326x x -++=,方程无解;当2x ≤-时326x x ---=,解得52x =-; 故答案为:72或52-. 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.【答案】(1)3(2)1,2【分析】本题考查绝对值;(1)有绝对值的非负性可以得出000+=,代入即可求出答案.(2)根据绝对值的非负性解题即可.【详解】(1)∵2010a b -≥-≥, 210a b -+-= ∴2010a b -=-=,∴21a b ==,∴3a b +=故答案为:3;(2)∵10a -≥∴当10a -=时,10a -=最小,此时12a -+有最小值∴当1a =时12a -+有最小值,最小值是2故答案为:1,2.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.【答案】1a = 2b =【分析】本题考查了绝对值非负的性质.当它们相加和为0时,必须满足其中的每一项都等于0.根据非负数的性质列出方程求出未知数的值.【详解】解:|1||2|0a b -+-=10a ∴-= 20b -=1a ∴= 2b =故答案为:1a = 2b =.18.(4分)把下列各数的序号填入相应的大括号内: ①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…};非负数集合:{_______________…};非正整数集合:{_______________…};分数集合:{_______________…}.【答案】②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧【分析】本题考查了正有理数、非负数、非正整数、分数的定义,根据定义直接求解即可,解题的关键是熟悉正有理数、非负数、非正整数、分数的定义,熟练掌握此题的特点并能熟练运用. 【详解】由33--=- ()0.750.75-+=- 3344-= ()3535--= 正有理数集合:{②③⑧⑩…};非负数集合:{②③⑦⑧⑨⑩…};非正整数集合:{⑤⑦…};分数集合:{①②③④⑥⑧…}故答案为:②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期 周一 周二 周三 周四 周五学规得分 +5+3 −4 +7 −2 (1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?【答案】(1)9分(2)-2分【分析】(1)将表格中的得分求和即可;(2)第4周末学规累加分数和第5周学规得分相加,得到第5周末学规累加分数,用第6周末学规累加分数减去第5周末学规累加分数,即为第6周的学规得分.【详解】(1)解:∵+5+3−4+7−2=9∵第5周小李学规得分总计是9分;(2)解:∵第4周末学规累加分数为65分,第5周学规得分总计是9分∵第5周末学规累加分数为:65+9=74∵72-74=-2∵第6周的学规得分总计是-2分.20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示)【答案】(1)3,2(2)4,7 m n -【分析】本题主要考查数轴,熟练掌握数轴上两点间的距离公式是解题的关键.(1)直接根据数轴上两点间的距离进行计算即可.(2)根据数轴上两点间的距离进行计算,再进行规律总结,即可得到答案.【详解】(1)解:点C 与点D 的距离为303-=点B 与点D 的距离为0(2)2--=故答案为:3,2;(2)解:点B 与点E 的距离为2(2)4--=,点A 与点C 的距离为3(4)7--=在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN m n =-故答案为:4,7 m n -.21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-; (2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .【答案】(1)见解析;(2)3401 1.532-<-<<<<;(3)2,3 【分析】本题考查了有理数的大小比较,数轴,准确在数轴上找到各数对应的点是解题的关键. (1)先在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答;(3)根据数轴上两点间距离公式进行计算,即可解答.【详解】解:(1)如图:(2)由(1)可得:3401 1.532-<-<<<<; (3)数轴上表示3和表示1的两点之间的距离312=-=,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离31.5 1.5 1.532⎛⎫=--=+= ⎪⎝⎭故答案为:2;3.22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}. (1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:__________.(3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.【答案】(1)见解析;(2) -1,-4,-4.2,18-;(3)见解析. 【分析】(1)根据数集的包含关系进行分类(2)选出负数;(3)根据观察易得.【详解】解:(1)如图所示.(2)-1,-4,-4.21 8 -(3)有,是2.1.故答案为(2)-1,-4,-4;218-;(3)有,是2.1.23.(10分)阅读下面的文字,完成后面的问题:我们知道:11×2=1−12;12×3=12−13;13×4=13−14.那么:(1)14×5=______;12019×2020=______;(2)用含有n的式子表示你发现的规律______;(3)求式子11×2+12×3+13×4+⋯+12019×2020的值.【答案】(1)14−15(2)12019−12020(3)20192020.【分析】(1)根据阅读部分的提示规律直接进行计算即可;(2)根据阅读部分的提示规律用含n的代数式表示即可;(3)根据得到的规律把原式化为:11−12+12−13+13−14+⋯+12019−12020,再计算即可;(4)先利用非负数的性质求解x,y,再代入代入式结合规律进行计算即可。
第1章 有理数 人教版七年级数学上册单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在―π3,3.1415,0,―0.333…,―22,2.010010001…中,非负数的个数( )7A.2个B.3个C.4个D.5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A.7.1695×107B.716.95×105C.7.1695×106D.71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A.B.C.D.4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.计算3―(―3)的结果是( )A.6B.3C.0D.-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a,都可以用1⑤任何无理数都是无限不循环小数.正确的有a表示它的倒数.( )个.A.0B.1C.2D.37.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5B.1C.5或-1D.5或18.如果|a|=―a,那么a一定是( )A.正数B.负数C.非正数D.非负数9.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1―12=11×2①12―13=12×3②13―14=13×4③14―15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2―ab ,例如:3⊗1=32―3×1=6,则4⊗[2⊗(―5)]的值为 .14.如图所示的运算程序中,若开始输入的值为―2,则输出的结果为 .15.若a ―2+|3―b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a |+b |b |+c |c |+abc |abc | 的值可能是 . 三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.―3,|―3|,32,(―2)2,―(―2)18.将有理数―2.5,0,212023,―35%,0.6分别填在相应的大括号里.2,整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.的值.(2)求m―cd+3a+3bm22.我们知道,|a|可以理解为|a―0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a―b|,反过来,式子|a―b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数―1的点和表示数―3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a―3|=5,那么a的值是_________.②|a―3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B11.【答案】﹣1212.【答案】213.【答案】―4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,―3<3<―(―2)<|―3|<(―2)2218.【答案】解:整数:0,2023;负数:―2.5,―35%;,0.6.正分数:21219.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm .(3)18.521.【答案】(1)0,1,±2;(2)1或―322.【答案】(1)5,2(2)①8或―2;②9;③102313223.【答案】(1)5;6(2)解:①点M 未到达O 时(0<t≤2时),NP=OP=3t ,AM=5t ,OM=10-5t ,MP=3t+10-5t即3t+10-5t=5t ,解得t =107,②点M 到达O 返回,未到达A 点或刚到达A 点时,即当(2<t≤4时),OM=5t-10,AM=20-5t , MP=3t+5t-10即3t+5t-10=20-5t ,解得t =3013③点M 到达O 返回时,在A 点右侧,即t >4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t =―103(不符合题意舍去).综上t =107或t =3013;(3)解:如下图:根据题意:NO=6t ,OM=5t ,所以MN=6t+5t=11t依题意: NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M 对应的数为20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学有理数单元测试题
满分100分时间60分
考生注意:1、本卷共有29个小题,共100分+30分
2、考试时间为90分钟
一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)
1、下列说法正确的是()
A 整数就是正整数和负整数
B 负整数的相反数就是非负整数
C 有理数中不是负数就是正数
D 零是自然数,但不是正整数
2、下列各对数中,数值相等的是()
A -27与(-2)7
B -32与(-3)2
C -3×23与-32×2
D ―(―3)2与―(―2)3
3、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()
A -12
B -9
C -0.01
D -5
4、如果一个数的平方与这个数的差等于0,那么这个数只能是()
A 0
B -1
C 1
D 0或1
5、绝对值大于或等于1,而小于4的所有的正整数的和是()
A 8
B 7
C 6
D 5
6、计算:(-2)100+(-2)101的是()
A 2100
B -1
C -2
D -2100
7、比-7.1大,而比1小的整数的个数是()
A 6
B 7
C 8
D 9
8、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )
A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×104
9、下列代数式中,值一定是正数的是( )
A.x2 B.|-x+1| C.(-x)2+2 D.-x2+1
10、已知8.622=73.96,若x2=0.7396,则x的值等于()
A 86. 2
B 862
C ±0.862
D ±862
二、填空题(本题共有9个小题,每小题2分,共18分)
11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记
作;数-2的实际意义为,数+9的实际意义为。
12、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________。
13、某数的绝对值是5,那么这个数是。
134756
≈(保留四个有效数字)
14、( )2=16,(- )3=。
15、数轴上和原点的距离等于3 的点表示的有理数是。
16、计算:(-1)6+(-1)7=____________。
17、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______。
18、+5.7的相反数与-7.1的绝对值的和是。
19、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车。
三、解答题
20、计算:(本题共有8个小题,每小题4分,共32分)
(1)8+(― )―5―(―0.25) (2)―82+72÷36
(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )
(5)(-79)÷2 +×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2]
(7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)
21、一天小明和冬冬利用温差来测量山峰的高度。
冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?5分
22、有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。
例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。
运算式如下:(1),(2),
(3)。
另有四个有理数3,-5,7,-13,可通过运算式
(4)使其结果等于24。
(4分)
23、下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。
现在的北京时间是上午8∶00
(1)求现在纽约时间是多少?
(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?3分
24、画一条数轴,并在数轴上表示:3.5和它的相反数,-4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来。
6分
25、体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.
问:(1)这个小组男生的达标率为多少?()
(2)这个小组男生的平均成绩是多少秒?6分
26、有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n。
若a1=1/2,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。
试计算:a2=______,a3=____,a4=_____,a5=______。
这排数有什么规律吗?由你发现的规律,请计算a2004是多少?6分
四、提高题(本题有2个小题,共16分)
1、同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。
试探索:(1)求|5-(-2)|=______。
(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是___________。
(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由。
(8分)
2、若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值(8分)
七年级数学有理数单元测试题答案
一、选择题: 每题2分,共20分
1:D 2:A 3:C 4:D 5:C
6:D 7:C 8:A 9:C 10:C
二、填空题(本题共有9个小题,每小题2分,共18分)
11:+2;-1;地下第2层;地面上第9层. 12:-5,+1 13: ±5;1.348×
105 14:±4;-8/27 15: ±
3.5 16:0 17:3 18 :1.4 19:12
三、解答题:
20: 计算:(本题共有8个小题,每小题4分,共32分)
① 3 ②-80 ③21/16 ④
⑤ -48 ⑥ 0 ⑦5x-9 ⑧-2a-7
21:解: (4-2)÷0.8×100=250(米)
22:略
23: ①8-(-13)=21时②巴黎现在的时间是1时,不可以打电话.
24:解:数轴略;-3.5<-3<-2<-1<-0.5<1<3<3.5
25: ①成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75% ②-0.8+1-1.2+0-0.7+0.6-0.4-0.1=-1.6
15-1.6÷8=14.8秒
26 a2=2,a3=-1,a4=1/2,a5=2。
这排数的规律是:1/2,2,-1循环. a2004=-1
四、提高题(本题有3个小题,共20分)
2: ①7
②画出数轴,通过观察:-5到2之间的数
都满足|x+5|+|x-2|=7,这样的整数有-5,-4,-3,-2,-1,0,1,2
③猜想对于任何有理数x,|x-3|+|x-6|有最小值=3.因为
当x在3到6之间时, x到3的距离与x到6的距离的和是3,并且是最小的.
当x<3和x>6时, x到3的距离与x到6的距离的和都>3.
3:解: ∵∣a-b∣3+∣c-a∣2=1,并且a、b、c均为整数
∴∣a-b∣和∣c-a∣=0或1
∴当∣a-b∣=1时∣c-a∣=0,则c=a, ∣c-b∣=1
∴∣a-c∣+∣c-b∣+∣b-a∣=0+1+1=2
当∣a-b∣=0时∣c-a∣=1,则b=a, ∣c-b∣=1
∣a-c∣+∣c-b∣+∣b-a∣=1+1+0=2。