模糊控制器的设计知识讲解
详细论述模糊控制器的设计内容
详细论述模糊控制器的设计内容说到模糊控制器,大家脑海里肯定会闪现出一些高大上的科技名词,像什么“控制理论”、什么“精密调控”,感觉那玩意儿离我们这些普通人挺远的,甚至有点“高不可攀”。
但模糊控制器的设计并没有那么复杂,说白了,就是让机器或者系统根据不太明确、模糊的信息做出合理的决策。
你就可以把它想象成一个“有点智慧但又不太靠谱”的小帮手。
就是那种看起来聪明得不行,但有时候又像个笨蛋,处理事情总是不会像你想象的那么完美。
好比说,你给它一个“暖和”这个模糊命令,它就能根据环境温度决定该加点热还是开个窗,帮你调节室内的温度。
哎,听着不赖吧?咱们就来细细琢磨一下,这个模糊控制器到底是怎么设计的。
首先嘛,设计模糊控制器就像做菜一样。
你得先准备好食材,那就是输入和输出。
输入不一定是很具体的数字,反而是那些模糊的、似乎难以量化的东西,比如温度、湿度,或者是“舒适”这种主观的感觉。
就像你说“有点热”,你没给出具体温度,反正就是热。
控制器拿到这些模糊的输入,就得通过一番运算,输出一个合适的结果。
这个结果就是“调高点温度”或者“打开窗户”,简简单单,直接就让系统做出反应了。
就像我们在餐厅点菜,服务员听不懂你用“还行”来描述菜品,就会根据你的语气来判断你是否满意。
说到设计过程,首先就得把模糊控制器的核心结构搞清楚,那就是“模糊化”和“去模糊化”。
什么叫模糊化呢?就像你自己在写作文的时候,可能把一些不确定的事情给写成“有点”或者“差不多”这种含糊不清的表述。
模糊化,就是把这种不清楚的输入数字转成模糊的语言,好比把温度转换成“冷”“温暖”“热”这些词。
然后,这些词会进入到控制器的推理系统,经过一番“脑洞大开的”思考,给出一个输出结果。
就像你看到“风有点大”时,你会自动判断“是不是该关窗”一样。
当结果出来了,还得通过“去模糊化”将这些抽象的决策变成具体的、可执行的动作,比如“加热两度”或者“减速百分之十”。
这就像你吃了一个不错的菜,满意地给小费,服务员就会转身去把“好评”转换成“奖励”。
模糊控制器的设计步骤
模糊控制器的设计步骤引言在控制理论中,模糊控制是一种根据模糊逻辑进行决策和控制的方法。
模糊控制器的设计步骤非常重要,本文将详细探讨模糊控制器设计的各个步骤。
一、确定控制目标控制系统的第一步是明确控制目标。
确定控制目标包括明确系统的输入和输出变量,以及期望的控制效果。
控制目标的明确定义对于后续的模糊控制器设计至关重要。
二、建立模糊化输入输出变量在模糊控制器设计中,需要将实际的输入输出变量进行模糊化。
模糊化是指将实际物理变量的取值映射到一系列模糊集合中。
模糊化过程需要确定模糊集合的数量和形状。
可以使用三角型、梯型等形状表示模糊集合。
2.1 模糊化输入变量模糊化输入变量需要确定输入变量的模糊集合和隶属度函数。
通过隶属度函数,可以将实际输入变量的取值映射到各个模糊集合中。
通常使用高斯函数、三角函数等形式的隶属度函数。
2.2 模糊化输出变量模糊化输出变量的过程类似于模糊化输入变量。
需要确定输出变量的模糊集合和隶属度函数。
同样地,可以使用各种形式的隶属度函数来描述输出变量的模糊集合。
三、制定模糊规则模糊规则是模糊控制器的核心部分,用于将模糊输入变量映射到模糊输出变量上。
模糊规则的制定需要基于专家经验或者系统的训练数据。
通常使用“如果-那么”形式的规则来描述模糊控制器的行为。
3.1 规则库的建立规则库是所有模糊规则的集合。
规则库的建立过程需要根据具体的系统特点和控制要求进行设计。
规则库中的每一条规则都包含一组条件和一个结论。
3.2 规则的模糊化在制定模糊规则时,需要对规则中的条件和结论进行模糊化处理。
模糊化处理的目的是将实际的输入值映射到相应的模糊集合上。
3.3 规则的归结在进行模糊控制运算时,需要将模糊输入和模糊规则进行匹配,并计算出相应的输出结果。
规则的归结是指将输入值和规则进行匹配,并计算出匹配程度。
3.4 规则的去模糊化规则的去模糊化是指将模糊输出结果转换为实际的物理输出值。
去模糊化需要考虑到模糊输出的不确定性和误差。
模糊控制器的设计与优化
模糊控制器的设计与优化模糊控制器是一种通过模糊推理来实现系统控制的方法。
它通过将不确定性和模糊性考虑进控制系统中,可以在一些模糊的或者难以建模的情况下实现良好的控制性能。
本文将介绍模糊控制器的基本原理、设计方法和优化技术。
一、模糊控制器的基本原理在介绍模糊控制器的设计与优化之前,我们首先来了解一下模糊控制器的基本原理。
模糊控制器的核心思想是使用模糊规则来描述输入和输出之间的关系,通过对输入进行模糊化,并通过一系列的模糊规则进行模糊推理,最终输出一个模糊的控制信号,以实现对系统的控制。
模糊控制器通常由模糊化、规则库、推理机和去模糊化四个部分组成。
模糊化过程是将输入变量映射为模糊集合,即将精确的数值转化为模糊集合的隶属度值。
规则库是存储了一系列模糊规则的知识库,这些知识规则描述了输入和输出之间的关系。
推理机则负责根据输入的模糊集合和模糊规则进行推理,生成模糊的控制信号。
最后,去模糊化过程将模糊的控制信号转化为具体的输出信号。
二、模糊控制器的设计方法模糊控制器的设计是根据具体的系统需求和控制目标而定的,一般可以采用以下几种设计方法。
1. 经验法则设计:这种方法是基于经验的,根据设计者的经验和知识来构建模糊规则库。
设计者通过分析系统的行为和特点,确定适合的输入变量和规则,以达到满足控制需求的目的。
2. 基于模型的设计:这种方法是基于系统的数学模型进行设计的。
设计者首先建立系统的数学模型,然后根据模型的特点进行模糊化和规则的设计,从而构建模糊控制器。
3. 优化算法设计:这种方法是使用优化算法对模糊控制器进行设计和优化。
设计者可以使用遗传算法、粒子群优化等算法来搜索最优的模糊规则和参数,以达到最佳的控制性能。
三、模糊控制器的优化技术模糊控制器的优化是为了改善其控制性能,提高系统的响应速度和稳定性。
以下介绍几种常用的模糊控制器优化技术。
1. 知识库的优化:知识库是模糊控制器设计中非常重要的部分。
优化知识库可以通过添加、删除或修改模糊规则来提高系统的控制性能。
模糊PID控制原理与设计步骤
模糊PID控制原理与设计步骤模糊PID控制(Fuzzy PID control)是在PID控制基础上引入了模糊逻辑的一种控制方法。
相比传统的PID控制,模糊PID控制能够更好地适应系统的非线性、时变和不确定性等特点,提高系统的性能和鲁棒性。
设计步骤:1.确定系统的模型和控制目标:首先需要对待控制的系统进行建模,确定系统的数学模型,包括系统的输入、输出和动态特性等。
同时,需要明确控制目标,即系统应达到的期望状态或性能指标。
2.设计模糊控制器的输入和输出变量:根据系统的特性和控制目标,确定模糊控制器的输入和输出变量。
输入变量通常为系统的误差、误差变化率和累积误差,输出变量为控制力。
3.确定模糊集和模糊规则:对于每个输入和输出变量,需要确定其模糊集和模糊规则。
模糊集用于将实际变量映射为模糊集合,如“大、中、小”等;模糊规则用于描述输入变量与输出变量之间的关系,通常采用IF-THEN形式,如“IF误差大AND误差变化率中THEN控制力小”。
4.编写模糊推理和模糊控制算法:根据确定的模糊集和模糊规则,编写模糊推理和模糊控制算法。
模糊推理算法用于根据输入变量和模糊规则进行推理,生成模糊的输出变量;模糊控制算法用于将模糊的输出变量转化为具体的控制力。
5.调试和优化:根据系统的实际情况,调试和优化模糊PID控制器的参数。
可以通过试错法或专家经验等方式对模糊集、模糊规则和模糊函数等进行调整,以达到较好的控制效果。
6.实施和验证:将调试完成的模糊PID控制器应用到实际系统中,并进行验证。
通过监控系统的实际输出和期望输出,对模糊PID控制器的性能进行评估和调整。
总结:模糊PID控制是一种将模糊逻辑引入PID控制的方法,能够有效地提高系统的性能和鲁棒性。
设计模糊PID控制器的步骤主要包括确定系统模型和控制目标、设计模糊控制器的输入输出变量、确定模糊集和模糊规则、编写模糊推理和模糊控制算法、调试和优化以及实施和验证。
通过这些步骤,可以设计出较为优化的模糊PID控制器来实现系统的控制。
模煳控制第四章 模糊控制器设计
4. 模糊PID控制器 PID控制器对不同的控制对象要用不同的PID参
数,而且调整不方便,抗干扰能力差,超调量 差。 模糊控制器是一种语言控制,不依赖被控对象 的数学模型,设计方法简单、易于实现。能够 直接从操作者的经验归纳、优化得到,且适应 能力强、鲁棒性好。
整理ppt
模糊控制也有其局限性和不足,就是它的 控制作用只能按档处理,是一种非线性控 制,控制精度不高,存在静态余差,一般 在语言变量偏差趋于零时有振荡。
整理ppt
2. 模糊自调整控制器 模糊控制器性能的好坏直接影响到模糊控
制系统的控制特性,而模糊控制器的性能 又取决于控制规则的完善与否。 如果在简单模糊控制器的输入输出关系中 加入修正因子,便能对控制规则进行自动 调整,从而可对不同的被控对象获得相对 满意的控制效果。
整理ppt
在简单模糊控制器中,如果将误差e、误 差变化率Δe及控制量u的关系描述为:
整理ppt
在模糊推理机中,模糊推理决策逻辑是核 心,它能模仿人的模糊概念和运用模糊蕴 涵运算以及模糊逻辑推理规则对模糊控制 作用的推理进行决策。
整理ppt
(3) 解模糊接口(Defuzzification) 通过模糊推理得出的模糊输出量不能直接
去控制执行机构,在这确定的输出范围中, 还必须要确定一个最具有代表性的值作为 真正的输出控制量,这就是所谓解模糊判 决。 完成这部分功能的模块就称作解模糊接口, 它的主要功能包括:
整理ppt
4.1 模糊控制器的基本结构及主要类 型
4.1.1 模糊控制器的基本结构
模糊控制的基础是模糊集合理论和模糊逻 辑,是用模糊逻辑来模仿人的思维对那些 非线性、时变的复杂系统以及无法建立数 学模型的系统实现控制的。
模糊控制器的设计
4模糊控制器的设计4 Design of Fuzzy Controllor4.1概述(Introduction)随着PLC在自动控制领域内的广泛应用及被控对象的日趋复杂化,PLC控制软件的开发单纯依靠工程人员的经验显然是行不通的,而必须要有科学、有效的软件开发方法作为指导。
因此,结合PLC可编程逻辑控制器的特点,应用最新控制理论、技术和方法,是进一步提高PLC软件开发效率及质量的重要途径。
系统设计的目标之一就是要提高装车的均匀性,车厢中煤位的高度变化直接影响装车的均匀性,装车不均匀对车轴有很大的隐患。
要保持高度值不变就必须不断的调整溜槽的角度,但是,在装车过程中,煤位的高度和溜槽角度之间无法建立精确的数学模型。
模糊控制它最大的特点是[43-45]:不需建立控制对象精确数学模型,只需要将操作人员的经验总结描述成计算机语言即可,因此采用模糊控制思想实现均匀装车是行之有效的方法。
虽然很多PLC生产厂家推出FZ模糊推理模块,但这些专用模块价格昂贵,需使用专门的编程设备,成本高通用性差,所以自主开发基于模糊控制理论的PLC控制器有很大的工程价值。
本章首先介绍了模糊控制的基本原理、模糊控制系统及模糊控制器的设计步骤;然后在对煤位高度控制系统分析的基础上,设计基于模糊理论的PLC控制,分别从查询表计算生成和PLC程序查询两个部分进行设计。
4.2模糊控制原理(Fuzzy Control Principle)4.2.1模糊控制理论(Fuzzy Control Theory)模糊控制理论是由美国加利福尼亚大学的自动控制理论专家L.A.Zadch教授首次提出,由英国的Mamdani首次用于工业控制的一种智能控制技术[46]。
模糊控制(FUZZY)技术是一种由数学模型、计算机、人工智能、知识工程等多门科学领域相互渗透、理论性很强的科学技术。
模糊控制是以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的数学工具,用计算机来实现的一中计算机智能控制[47-48]。
模糊控制器设计
模糊控制器设计模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制。
从线性控制与非线性控制的角度分类,模糊控制是一种非线性控制。
从控制器的智能性看,模糊控制属于智能控制的范畴,而且它已成为目前实现智能控制的一种重要而又有效的形式。
1模糊控制的基本思想在自动控制技术产生之前,人们在生产过程中只能采用手动控制方式。
手动控制过程首先是通过观测被控对象的输出,其次是根据观测结果做出决策,然后手动调整输入量,操作工人就是这样不断地完成从观测、决策到调整,实现对生产过程的手动调整输入量,操作工人就是这样不断地完成从观测、决策到调整,实现对生产过程的手动控制。
这三个步骤分别是由人的眼-脑-手来完成的。
后来,由于科学技术的进步,人们逐渐采用各种测量装置(如传感器)代替人眼,完成对被控制量的观测任务;利用各种控制器(如PID调节器)取代人脑的作用,实现比较、综合被控制量与给定量之间的偏差,控制器所给出的输出信号相当于手动控制过程中人脑的决策;使用各种执行机构(如电动机)对被控对象施加某种控制作用,这就起到了手动控制中手的调整作用。
上述由测量装置、控制器、被控对象及执行机构组成的自动测控系统,就是人们所熟知的常规负反馈控制系统。
常规控制首先要建立精确数学模型,但是对一些复杂的工业过程,建立精确的数学模型是非常困难的,或者是根本不可能的。
于是常规控制技术在这里就遇到了不可逾越的障碍。
但是,熟练的技术操作人员,通过感官系统进行现场观察,再根据自己的经验就能很容易地实现这类控制过程,于是就产生了一个问题,能否把人的操作经验总结为若干条控制规则,并设计一个装置去执行这些规则,从而对系统进行有效的控制呢?答案是肯定的。
这种装置就是模糊控制器。
与传统的PID控制相比,模糊控制有其明显的优越性。
由于模糊控制实质上是用计算机去执行操作人员的控制策略,因而可以避开复杂的数学模型。
对于非线性,大滞后及带有随机干扰的复杂工业对象,由于数学模型难以建立,因而传统的PID 控制也就失效,而对这样的系统,设计一个模糊控制器,却没有多大困难。
1.模糊控制器的设计步骤
1.模糊控制器的设计步骤
模糊控制器的设计步骤主要包括以下几个步骤:
1.确定控制系统的输入和输出:在开始设计模糊控制器之前,需要明确控制系统的输入和输出是什么。
输入可以是系统的状态或者外部的信号,输出可以是系统的输出或者控制器的输出。
2.确定输入和输出的量化范围:输入和输出的范围需要进行量化,以便在模糊控制器中进行处理。
量化范围通常是以数字的形式表示,例如温度范围从0
到100度。
3.确定模糊变量:模糊变量是指控制系统中模糊化的变量,例如温度可以被表示为模糊变量“冷”、“温暖”和“热”。
模糊变量的数量和它们之间的关系需要根据实际情况进行确定。
4.定义输入、输出模糊集:输入、输出模糊集是指输入、输出变量的取值范围及其对应的模糊语言变量。
5.定义输入、输出隶属函数:隶属函数用于描述输入、输出变量的不确定性或模糊性。
6.建立模糊控制规则:根据实际需求和系统特性,建立合适的模糊控制规则。
7.建立模糊控制表:根据模糊控制规则,建立模糊控制表,用于指导模糊控制器的实际运行。
8.模糊推理:根据输入的变量和建立的模糊控制表,进行模糊推理,得到相应的输出结果。
9.反模糊化:将模糊推理得到的输出结果进行反模糊化处理,得到具体的控制量或决策结果。
模糊控制器设计
智能控制
3
大滞后、非线性的复杂工业对象, 难以获得精确数学模型, 模型非常粗糙的工业系统等。 在实际生产过程中,人们发现,有经验的操作 人员,虽然不懂被控对象或被控过程的数学 模型,却能凭借经验采取相应的决策,很好 的完成控制工作。 模糊控制就是这种模仿人的思维方式和人的控 制经验来实现控制的一种控制方法。
R
Evaluate E GE-1 e
error and
change in error
CE GC-1 ce
Infernece mechanism
Rule-base
du Gu Du
u
C plant
Fuzzification Defuzzification
2019/7/27
智能控制
14
• Type1 (Mamdani type PI type control ): including the output integration loop (i.e., the fuzzy controller output is incremental output).
ri : IF e(k) is Ai and e(k) is Bi THEN u(k) is Ci
位置式模糊控制器相当于PD型(比例、微分)控 制器;
而速度型模糊控制器相当于PI型(比例、积分)控 制器。相对于位置型,速度型的模糊控制器设计 容易些。
2019/7/27
智能控制
12
下图是速度型模糊控制器的结构图(采样系统)。
– 当系统偏差大于语言变量值零档时,模糊控 制器和PI控制器的输出同时作用于对象,有 较强的控制作用;
– 当系统的偏差小于语言变量值的零档时,模 糊控制器回路自动断开,仅由PI控制器作用 于对象,
模糊控制器的设计及应用
模糊控制器的设计及应用模糊控制器是一种用于处理模糊信息的控制器,适用于一些难以建立精确数学模型的系统。
它利用模糊逻辑进行推理,将输入的模糊量转化为输出的模糊量,并根据这些模糊量进行控制,从而实现对系统的控制。
模糊控制器的设计首先需要确定模糊量和模糊规则,然后通过模糊推理进行控制。
模糊量通常通过模糊集合来描述,模糊集合是一个在[0, 1]之间取值的隶属度函数,表示了该模糊量在某个集合中的隶属程度。
模糊规则则是模糊量之间的映射关系,通过一系列IF-THEN规则来描述。
例如,IF温度低THEN加热强,IF湿度高THEN降低空调风速。
模糊推理是模糊控制的核心部分,它通过将输入的模糊量和模糊规则进行模糊匹配,得到输出的模糊量。
常用的模糊推理方法有最大隶属度法、最小隶属度法和加权平均法等。
最大隶属度法选择具有最大隶属度的模糊规则作为输出,最小隶属度法选择具有最小隶属度的模糊规则作为输出,加权平均法则通过对模糊规则进行加权平均来得到输出。
模糊控制器的应用广泛,特别适用于那些难以用精确数学模型描述的系统。
例如,在温度控制方面,它可以应用于暖气系统或空调系统的温度控制中。
通过测量室内外的温度,并根据模糊规则进行推理,就可以控制暖气或空调的温度输出,从而实现合适的室内温度。
另一个例子是在机器人导航方面的应用。
当机器人需要避开障碍物或者寻找最优路径时,可以利用模糊控制器来根据传感器的反馈信号控制机器人的移动方向和速度。
通过模糊控制器的推理过程,机器人可以根据传感器数据来判断障碍物的位置和距离,避开障碍物并寻找最优路径。
此外,模糊控制器还可应用于交通系统的信号控制、电力系统的稳定控制、水处理系统的流量控制等领域。
由于模糊控制器可以处理模糊信息和不确定性,对于这些复杂的系统具有较好的适应性和鲁棒性。
在模糊控制器的设计中,需要注意模糊量和模糊规则的选择和调整。
模糊量的选择应该与被控对象的特性相匹配,可以通过专家经验或试验数据来确定。
智能控制讲义第四章基本模糊控制器设计原理
制依据,又通过哪些量输出到被控对象。 在传统的控制系统中,一般将控制系统做如下分类: (1)SISO (Single Input Single Output)系统:一个输入变量和一个输 出变量的控制系统。 (2)MIMO (Multiple Input Multiple Output)系统:多输入变量和多 输出变量的控制系统。 而模糊控制系统类似传统控制系统,可分为单变量控制系统、多变 量控制系统。本书主要讨论的是单变量模糊控制系统。图4-2、图4-3 中,模糊控制系统的输入就是系统的给定值,输出就是系统的输出值, 通常称这样的模糊控制系统为单变量模糊控制系统。 但是,模糊控制器输入量往往可选择为系统输出了的误差、误差变 化率及变化率的变化率,输出量通常为一个,即系统的控制量。根据模 糊控制器输入量的个数通常又分为一维模糊控制器、二维模糊控制器合 三维模糊控制器,分别如图4-4、图4-5和图4-6所示。
4.3 基本模糊控制器的设计方法
前边讲了模糊控制器的组成部分及计算机实现的过程。由于模糊控 制器的控制规则是基于模糊条件语句描述的语言规则,因此,模糊控制 也称作模糊语言变量控制。在设计模糊控制器的时候,应考虑如下的几 个问题: (1)确定模糊控制器的结构。即确定模糊控制器的输入量和输出 量。 (2)确定模糊控制器输入量和输出量的论域,并确定量化因子和比 例因子。 (3)输入量模糊化的方法、输出量反模糊化的方法。 (4)确定输入语言变量、输出语言变量的语言值。 (5)设计模糊控制器的控制规则。 (6)编制模糊控制算法的应用程序。 (7)合理选择模糊控制算法的运行周期。 一、模糊控制器结构的设计 设计模糊控制器时,首先要根据被控对象的具体情况确定模糊控制 器的结构。即要确定哪些量作为模糊控制器的输入量,哪些量作为输出 量。因为模糊控制器的控制规则多半是总结专家或操作人员的经验而得 来的,所以在确定输入量、输出量时,要充分考虑到专家或现场有经验 的操作人员他们在控制时主要观察了哪些量,即以哪些量的变化作为控
模糊控制器的设计与调试
模糊控制器的设计与调试随着科技的进步,越来越多的控制器被应用于各种实际系统中。
其中,模糊控制器是一种被广泛应用的控制器,能够处理非线性问题,并具有一定的适应性和鲁棒性。
本文将详细介绍模糊控制器的设计与调试过程,旨在帮助设计工程师更好地应用该控制器。
I. 模糊控制器的工作原理模糊控制器是一种基于模糊逻辑的控制器,能够应对含有模糊性质的系统,其工作流程如下:1. 获取输入变量模糊控制器接收输入变量,这些变量可以是模糊的、非精确的或难以量化的变量。
例如,温度、湿度等变量均可以被看作是模糊变量。
2. 模糊化处理通过对输入变量进行模糊化处理,将其转化为模糊的量化等级或称为隶属度(membership degree)。
3. 规则库规则库是模糊控制器的核心,其中包含一系列模糊规则,用来描述输入变量和输出变量之间的关系。
每个规则都包含一条条件部分和一条结论部分。
形式化地,规则可以表示为:如果输入变量A满足条件a1,并且输入变量B满足条件b1,那么输出变量C应该为结果c1。
规则库可以通过多种方式构建,例如专家经验、数据挖掘等。
4. 模糊推理模糊推理将输入变量的模糊隶属度通过模糊规则转化成输出变量的模糊隶属度。
模糊推理运用了模糊逻辑的“或”运算、“与”运算和“非”运算等基本操作,得到输出的解模糊结果。
5. 解模糊化处理解模糊化将输出变量的模糊隶属度转化成产生控制输出的精确值。
II. 模糊控制器的设计在设计模糊控制器时,需要考虑以下几个方面:1. 确定输入变量和输出变量首先需要确定输入变量和输出变量,这些变量应该能够完整地描述控制系统的特征,并且是可测量的。
例如,在一个温度控制系统中,输入变量可以是室温和目标温度,输出变量可以是温度调节器的开度。
2. 确定隶属函数隶属函数是将输入变量转化为模糊量的数学函数,根据不同的变量的实际情况选择不同的隶属函数,一般选择三角函数、梯形函数或高斯函数等。
3. 编写规则库规则库的编写需要根据不同的情况来设计,建议根据经验或者其他方法先构建一个初始的规则库,然后根据实际系统的运行效果来持续优化。
控制系统中模糊控制器的设计与实现
控制系统中模糊控制器的设计与实现控制系统中采用的控制器可以分为许多种类,其中一种常用的控制器是模糊控制器。
模糊控制器是一种基于模糊逻辑理论的控制器,它可以处理模糊的输入和输出,适用于非线性和复杂的控制系统。
本文将介绍模糊控制器的设计和实现步骤。
一. 模糊控制器的基本原理模糊控制器的基本原理是模糊逻辑理论,它采用了一种模糊的方式来处理不确定性和模糊性的问题。
其基本思想是将系统输入或输出的模糊化,使输入和输出变成了隶属于某种模糊集合之内的量,并根据一定的模糊规则,将输入转化为输出。
模糊控制器的工作流程如下:首先将输入信号进行模糊化,将其转化为一组隶属度值。
然后根据预设的模糊规则,将输入转化为输出信号。
最后将输出信号进行去模糊化,得到具体的控制量,然后输出给被控对象。
二. 模糊控制器的设计步骤模糊控制器的设计步骤主要包括以下几个方面:1. 确定系统的模糊输入和输出模糊控制器的输入和输出通常表示为模糊变量,其基本形式是一个三元组(Name, Universe of discourse, Membership function)。
其中Name表示模糊变量的名称,Universe of discourse表示变量所描述的宇域,Membership function是变量的隶属度函数。
2. 确定模糊控制器的规则库模糊控制器的输入和输出之间建立的模糊规则来自于专家知识和经验。
将这些知识和经验编码成规则库,每个规则的形式为:“If X1 is A1 and X2 is A2 and…Xnis An, Then Y is B”。
其中X1,X2 …Xn 是输入模糊变量,A1,A2…An是它们的隶属程度,Y是输出模糊变量,B是它的隶属程度。
3. 确定模糊控制器的推理机制模糊控制器的推理机制是指如何从规则库中推导出具体的输出。
常用的推理机制有最小最大合成、中心平均合成等。
4. 确定模糊控制器的去模糊化方法模糊控制器的输出是一组隶属度值,需要将其转化为具体的控制量。
模糊控制器的设计步骤
模糊控制器的设计步骤一、引言模糊控制器是一种基于模糊逻辑的控制方法,它能够应对非线性、时变系统的控制问题,具有广泛的应用前景。
本文将介绍模糊控制器的设计步骤。
二、模糊控制器的基本原理模糊控制器是一种基于人类直觉和经验的控制方法,其基本原理是将输入量和输出量都用隶属度函数来描述,并通过模糊推理来实现对系统的控制。
其中,输入量和输出量都需要进行隶属度函数的建立,以便进行后续的推理。
三、模糊控制器设计步骤1. 确定输入与输出变量首先需要确定要进行控制的系统中所涉及到的输入与输出变量。
例如,在温度控制系统中,输入变量可以是环境温度和设定温度,输出变量可以是加热功率。
2. 建立隶属度函数建立输入与输出变量对应的隶属度函数。
通常情况下,一个变量会有多个隶属度函数来描述其不同程度上的归属关系。
例如,在温度控制系统中,环境温度可以被划分为“冷”、“凉”、“温”、“热”和“炎热”五个隶属度函数。
3. 确定规则库规则库是模糊控制器的核心,它将输入变量的隶属度函数与输出变量的隶属度函数联系起来,形成一系列的规则。
例如,在温度控制系统中,如果环境温度为“冷”,设定温度为“温”,那么加热功率可以被设定为“高”。
4. 进行模糊推理根据输入变量和规则库进行模糊推理,得到输出变量的隶属度函数。
通常情况下,采用最大值合成法来进行推理。
5. 做出控制决策将输出变量的隶属度函数转化为具体的控制信号。
例如,在温度控制系统中,将加热功率的隶属度函数转化为具体的电压或电流信号。
四、模糊控制器设计实例以小车自动驾驶系统为例,介绍模糊控制器设计步骤。
1. 确定输入与输出变量输入变量:小车与目标点之间的距离、小车与目标点之间的角度。
输出变量:小车转向角度、小车速度。
2. 建立隶属度函数距离隶属度函数:近、中、远。
角度隶属度函数:左、直、右。
转向角度隶属度函数:大左、小左、直行、小右、大右。
速度隶属度函数:快、中等、慢。
3. 确定规则库共设定15条规则,例如:如果距离为“近”且角度为“左”,那么转向角度为“大左”且速度为“慢”。
第九讲1-模糊控制理论
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0.5 0.5 0 0 0 0 0
1 0.5 0 0 0 0 0
2024/9/30
2024/9/30
4
模糊控制理论出现旳必然性 自动控制理论发展旳两个主要阶段: 经典控制理论――主要处理单变量系统旳
反馈控制 当代控制理论――主要处理多变量系统旳
优化控制
2024/9/30
5
模糊控制器旳构造图
参考输入 模糊化
知识库 模糊推理
解模糊化
输出 被控对象
2024/9/30
6
当代工业具有下列特征: 复杂性:系统构造和参数旳高维、时变、
第九讲 模糊控制
2024/9/30
1
OUTLINE
一、模糊系统概述 二、模糊控制器旳基本原理 三、基本模糊控制器旳设计措施 四、 Fuzzy 自整定PID参数控制器旳设计 五、模糊控制器旳构造分析 六、倒立摆旳模糊控制 七、模糊控制旳MATLAB仿真
2024/9/30
2
一、模糊系统概述
模糊理论经常被问及旳问题
能否举一种例子,只能用模糊控制来处理,而其他 措施无法处理。
我们是否需要模糊理论,因为模糊理论能处理旳问 题用概率论一样能够处理。
2024/9/30
8
模糊理论经常被问及旳问题 模糊系统措施中没有模糊旳地方 模糊系统与其他非线性建模措施相比,优点何在
比较根据:逼近精度与复杂性旳平衡; 学习算法旳收敛速度; 成果旳可解释性; 充分利用多种不同形式旳信息。
若炉温低于600℃则升压,低得越多升压越高;
模糊控制器的设计知识讲解
模糊控制器的设计一、 PID 控制器的设计我们选定的被控对象的开环传递函数为327()(1)(3)G s s s =++,采用经典的PID 控制方法设计控制器时,由于被控对象为零型系统,因此我们必须加入积分环节保证其稳态误差为0。
首先,我们搭建simulink 模型,如图1。
图1simulink 仿真模型由于不知道Kp ,Kd ,Ki ,的值的大致范围,我们采用signal constraints 模块进行自整定,输入要求的指标,找到一组Kp ,Kd ,Ki 的参数值,然后在其基础上根据经验进行调整。
当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到比较好的响应曲线。
调节时间较短,同时超调量很小。
响应曲线如图2所示。
图2 PID 控制响应曲线将数据输出到工作空间,调节时间ts =2.04s ,超调量%0σ=。
可以看出,PID 控制器的调节作用已经相当好。
二、 模糊控制器的设计1、模糊控制器的结构为:图3 模糊控制器的结构2、控制参数模糊化控制系统的输入为偏差e 和偏差的变化率ec ,输出为控制信号u 。
首先对他们进行模糊化处理。
量化因子的计算max min**max minx x k x x -=- 比例因子的计算**max minmax minu u k u u -=-其中,*max x ,*min x 为输入信号实际变化范围的最大最小值;max x ,min x 为输入信号论域的最大最小值。
*max u ,*min u 为控制输出信号实际变化范围的最大最小值,max u ,min u 输出信号论域的最大最小值。
相应的语言值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。
分别表示负大、负中、负小、零、正小、正中、正大。
3、确定各模糊变量的隶属函数类型语言值的隶属度函数就是语言值的语义规则,可分为连续式隶属度函数和离散化的隶属度函数。
本系统论域进行了离散化处理,所以选用离散量化的隶属度函数。
第四章_模糊控制器的设计
2)模糊子集的分布 每个语言变量的取值,对应于其论域上 的一个模糊集合。个数确定以后,需要考 虑模糊子集的分布,即模糊子集在模糊论 域上的分布方式和情况,即确定每个模糊 子集的隶属函数
1
NB NM NS
ZO
PS
PM PB
隶属函数的类型 ① 正态分布型(高斯基函数 )
( x ai )2 bi 2
第4章 模糊控制器的工作原理
一、模糊控制与传统控制 二、模糊控制系统的组成 三、确定量的模糊化 四、模糊控制算法的设计 五、模糊推理 六、输出信息的模糊判决 七、基本模糊控制器的设计 八、模糊模型的建立
4.1 模糊控制系统的基本组成
从传统控制到模糊控制 • 传统控制(Conversional control):经典反馈控 制和现代控制理论。它们的主要特征是基于精确 的系统数学模型的控制。适于解决线性、时不变 等相对简单的控制问题。
• 完备性 属函数的分布必须覆盖语言变量的整个论域,否则,将会出现“空档”, 从而导致失控。
NB NM 1 NS ZO PS PM PB
0 -6 空档
-4
-2
0
2
4
6
x
不完备的隶属函数分布
一致性:即论域上任意一个元素不得同时是两个F子集的核
交互性:即论域上任何一个元素不能仅属于一个F集合
3)一个确定数的模糊化 一个确定数的模糊化分为两步: (1)根据确定数以及量化因子求在基本论域 上的量化等级。 (2)查找语言变量的赋值表,找出与最大隶 属度对应的模糊集合,该模糊集合就代表 确定数的模糊化结果。
假设E*=-6,系统误差采用三角形隶 属函数来进行模糊化。 E*属于NB的 隶属度最大(为1),则此时,相对 应的模糊控制器的模糊输入量为:
智能控制技术(第4章-模糊控制器的基本原理及设计方法)
0
0
0
0
0
0
0 0 0 0.5 1.0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 1.0 0
图 模糊控制原理框图
模糊控制器(Fuzzy Controller—FC)也 称 为 模 糊 逻 辑 控 制 器 ( Fuzzy Logic Controller—FLC),由于所采用的模糊控制规 则是由模糊理论中模糊条件语句来描述的, 因此模糊控制器是一种语言型控制器,故也 称 为 模 糊 语 言 控 制 器 ( Fuzzy Language Controller—FLC)。
3 模糊规则的描述 根据日常的经验,设计以下模糊规则: (1)“若e负大,则u正大” (2)“若e负小,则u正小” (3)“若e为0,则u为0” (4)“若e正小,则u负小” (5)“若e正大,则u负大”
上述规则采用“IF A THEN B”形式来描述
: (1) if e=NB then u=NB (2) if e=NS then u=NS (3) if e=0 then u=0 (4) if e=PS then u=PS (5) if e=PB then u=PB 根据上述经验规则,可得模糊控制表4-3。
0 0 0 0 0 0 0
0 0 0 0 0.5 0 Oe Ou 1.0 0 0 0 0.5 1 0.5 0 0 0 0 0.5 0 0 0 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制器的设计
一、 PID 控制器的设计
我们选定的被控对象的开环传递函数为3
27
()(1)(3)G s s s =
++,采用经典
的PID 控制方法设计控制器时,由于被控对象为零型系统,因此我们必须加入积分环节保证其稳态误差为0。
首先,我们搭建simulink 模型,如图1。
图1simulink 仿真模型
由于不知道Kp ,Kd ,Ki ,的值的大致范围,我们采用signal constraints 模块进行自整定,输入要求的指标,找到一组Kp ,Kd ,Ki 的参数值,然后在其基础上根据经验进行调整。
当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到比较好的响应曲线。
调节时间较短,同时超调量很小。
响应曲线如图2所示。
图2 PID 控制响应曲线
将数据输出到工作空间,调节时间ts =2.04s ,超调量%0σ=。
可以看出,PID 控制器的调节作用已经相当好。
二、 模糊控制器的设计
1、模糊控制器的结构为:
图3 模糊控制器的结构
2、控制参数模糊化
控制系统的输入为偏差e 和偏差的变化率ec ,输出为控制信号u 。
首先对他们进行模糊化处理。
量化因子的计算max min
**
max min
x x k x x -=
- 比例因子的计算**max min
max min
u u k u u -=-
其中,*max x ,*
min x 为输入信号实际变化范围的最大最小值;max x ,min x 为输入信号论域的最大最小值。
*max u ,*
min u 为控制输出信号实际变化范围的最大最小
值,max u ,min u 输出信号论域的最大最小值。
相应的语言值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。
分别表示负大、负中、负小、零、正小、正中、正大。
3、确定各模糊变量的隶属函数类型
语言值的隶属度函数就是语言值的语义规则,可分为连续式隶属度函数和离散化的隶属度函数。
本系统论域进行了离散化处理,所以选用离散量化的隶属度函数。
隶属度函数一般是根据操作人员的经验给出。
设计中遵循的一般原则是:选择的隶属度形状越陡,其分辨率就越高,模糊控制的灵敏度就越高;相反,如果隶属度函数形状越平缓,其分辨率就越低,控制性能就越平稳。
所以在误差为零的区域附近,要采用高分辨率的隶属度函数,而在误差较大的区域选择分辨率低的隶属度函数,使系统获得较好的稳定性。
根据经验e,ec和u的隶属函数类型我们都选择了gaussmf类型。
如图4所示。
图4-1Mamdany型控制器偏差e的隶属度函数
图4-2Mamdany型控制器偏差变化率ec的隶属度函数
图4-3Mamdany型控制器输出u的隶属度函数
4、建立模糊控制规则
模糊控制规则对模糊控制器是否能取得好的控制效果起着非常关键的作用。
常用的建立模糊规则的方法有经验归纳法和合成推理法两种。
所谓的经验归纳法,就是根据专家经验、操作人员的长期实践和推测经过整理、归纳和提炼后构成模糊控制规则系统的方法。
合成推理法就是根据已有的输入输出数据进行模糊推理合成,建立模糊规则。
首先我们尝试了根据PID控制所得到的数据进行模糊推理,建立模糊规则,但是经过反复调试所取得的控制效果并不理想。
于是我们转而采用专家经验归纳的规则进行控制,在其基础上进行调整。
模糊条件语言为if e and ec then u
表2 模糊控制规则表
5、模糊控制查询表的建立
根据语言变量E和EC论域的量化等级,按照上面合成推理的方法,分别计算不同模糊变量值输入组合情况下的各个输出值,就可以获得一个模糊控制查询表。
这将是一个 7×7(49 点)的控制表。
在状态观测器中,同时输入e和ec的值,点击回车键,就会自动显示u的值。
如图5。
图5模糊推理规则观测器计算输出值
按照此方法,依次计算出u的值。
6、模糊控制器的构建及调试
利用MATLAB中的模糊工具箱构建模糊控制器,并且添加到控制系统中。
为了消除稳态误差,仍然加入积分环节,根据PID调试结果,选择积分系数ki=0.8。
将选择开关拨到模糊控制器,响应曲线如图6。
图6 调整前模糊控制响应曲线
我们发现在没有调整的情况下模糊控制器的控制效果非常差。
于是我们调整对隶属函数曲线的宽度、隶属函数的类型来改善控制效果。
在调整的过程中我们发现,越靠近中间的曲线的宽度和类型对响应输出的影响越大,而最左和最右边曲线的宽度和类型对输出的影响最小。
通过适当增加e中间曲线的宽度,减小ec 中间曲线的宽度,超调量减小,调节时间加快,调整后的隶属函数曲线如图7所示。
图7-1 调整后的Mamdany型控制器偏差e的隶属函数
图7-2 调整后的Mamdany型控制器偏差变化率ec的隶属函数
图7-3 调整后的Mamdany型控制器输出u的隶属函数
经过调整后,输出响应得到了较大改善,超调量减小,调节时间加快,调整
σ=,调节时后的响应曲线如图8所示。
调整后,阶跃响应的超调量为% 2.06%
间为 1.94
=。
ts s
图8 调整后的模糊控制器响应曲线
调整后的控制规则表面如图9所示。
图9 模糊控制器控制表面图
调整后的控制量变化如图10所示
图10 控制量变化图
三、结果对比
在传统PID控制器以及模糊控制器控制下的响应曲线对比图如图11所示。
图11 系统阶跃响应对比图
主要性能指标对比如表4。
四、结果分析
1、在传统PID控制中,先利用自整定方法找到控制参数的大致范围,进
行微调之后响应曲线基本符合要求。
超调量为0,调节时间也接近要求。
2、与传统PID控制器相比,模糊控制器在本例中并没有体现出较大的优
势,调节时间虽然稍微缩短,但有了一定的超调,响应曲线没有PID控
制平滑。
这跟传递函数的选取也有一定的关系,当改变被控对象后,我
们发现模糊控制器的控制效果确实优于PID控制。
本例中PID控制效果
很好,这也导致模糊控制改善调节效果的余地比较小。
3、隶属函数的线型对控制效果的影响。
一般工程应用中,选取三角型和
高斯型分布比较多。
三角型可以加快调节时间,高斯型使响应输出更稳
定,我们根据快速性和稳定性的要求进行选取,在本例中我们发现高斯
型曲线调节效果更好。
4、隶属函数的宽度对控制效果的影响。
我们发现最中间的隶属函数的宽
度对控制效果的影响最大,越靠近边上的影响越小。
e中间的隶属函数
宽度越大,超调量越大;越小,震荡越明显,甚至会出现不稳定,稳态
特性变差。
ec 中间隶属函数的宽度越大,超调量越大,但调节时间越小。
u 中间隶属函数宽度越大,超调量越大;越小,震荡越明显,动态特性变差。
5、 模糊控制器的控制规则对控制效果的影响。
开始我们尝试根据PID 控
制器的结果采用合成推理的方法设计控制器,但是经过反复调整之后控制效果并不理想。
于是我们采用专家经验法设计控制器,效果有所改善,说明了简单地根据PID 控制结果设计模糊控制规则并不合理,模糊推理机制比较复杂的,要受到多方面因素的影响。
6、 量化因子和比例因子对控制效果的影响。
当误差e 和误差变化率ec 较
大时,应选取较小的e k 和ec k 以降低对输入量e 和ec 的分辨率;同时取较大的u k 增大控制量的变化,加快系统的过渡过程。
当误差e 和误差变化率ec 较小时,应选取较小的e k 和ec k 以提高对输入量e 和ec 的分辨率;同时取较小的u k 增大控制量的变化,抑制系统响应超调量的增加,是系统尽快达到稳态。
7、 对于本例中简单的被控对象,模糊控制并没有体现出较大的优势。
但
是对于一些复杂的系统,往往难以建立它的数学模型,而传统的控制理论都是建立在精确的数学模型的基础上的,这种情况下运用模糊控制的方法往往能取得比较好的控制效果。