8电子传递与氧化磷酸化

合集下载

第八章电子传递体系与氧化磷酸化ppt课件

第八章电子传递体系与氧化磷酸化ppt课件

谷草转氨酶
谷草转氨酶
天冬氨酸 -酮戊二酸 Ⅲ -酮戊二酸 天冬氨酸
呼吸链

(Ⅰ、 Ⅱ、 Ⅲ、 Ⅳ为膜上的转运载体)
2,4-二硝基苯酚的解偶联作用
NO2 H+
NO2
O-
NO2


NO2
NO2
NO2
线
OH




NO2 OH
一、生物氧化的特点 二、生物氧化过程中CO2的生成 三、生物氧化过程中H2O的生成 四、有机物在体内氧化释能的三个阶段
生物氧化的特点
在活的细胞中(pH接近中性、体温条件下), 有机物的氧化在一系列酶、辅酶和中间传递体参与 下进行,其途径迂回曲折,有条不紊。 氧化过程中 能量逐步释放,其中一部分由一些高能化合物(如 ATP)截获,再供给机体所需。在此过程中既不会 因氧化过程中能量骤然释放而伤害机体,又能使释 放的能量尽可得到有效的利用。
线粒体呼吸链
线粒体基质是呼吸底
物氧化的场所,底物在这 里 氧 化 所 产 生 的 NADH 和 FADH2 将 质 子 和 电 子 转移到内膜的载体上,经 过一系列氢载体和电子载 体的传递,最后传递给 O2 生 成 H2O。 这 种 由 载 体组成的电子传递系统称 电 子 传 递 链 ( eclctron transfer chain),因为其 功能和呼吸作用直接相关, 亦称为呼吸链。

0.4



0.6


0.8
NADH
FMN Fe-S CoQ
复合体 I
NADH 脱氢酶
Cyt b Fe-S Cyt c1
复合物 III
细胞色素 C还原酶

Chapter 8 电子传递和氧化磷酸化

Chapter 8  电子传递和氧化磷酸化
磷酸二羟丙酮
NAD+
甘油-3-磷酸
磷酸二羟丙酮 线 粒 体 膜 间 隙
甘油-3-磷酸
FADH2
FAD
NADHFMN CoQ b c1 c aa3 O2
线粒体基质 NADH通过穿梭系统带一对电子进入线粒体,只产生2分子ATP。
(二)苹果酸-天冬氨酸穿梭系统
在哺乳动物的心脏和肝脏等组织中,存在着活 跃的苹果酸-天冬氨酸穿梭系统。这一穿梭系统涉及 胞液和基质中的苹果酸脱氢酶和天冬氨酸转氨酶, 以及线粒体内膜中的载体。转运步骤如下: 1)NADH进入内膜 ①在苹果酸脱氢酶的催化下,胞液NADH将草酰乙 酸还原为苹果酸。 ②苹果酸经二羧酸转位酶进入线粒体基质。 ③在基质中,线粒体苹果酸脱氢酶催化苹果酸重 新氧化为草酰乙酸,使线粒体内的NAD+还原为NADH ,经呼吸链氧化。
膜间隙:含许多可溶性酶、底 物及辅助因子。 基质:含三羧酸循环酶系、线 粒体基因 表达酶系等以及线粒 体 DNA, RNA,核糖体。
细胞质中脱氢、产 生CO2
细胞膜 产H2O、 产能
ห้องสมุดไป่ตู้
原核生物细胞
1. 呼吸链的概念 生物氧化体系中的传递体所组成 的电子传递体系称为呼吸链,或叫电 子传递链。
2. 呼吸链的组成——电子传递体
2、氧化磷酸化抑制剂 如寡霉素等直接抑制ATP的合成。ATP的合成受到 抑制后,质子浓度梯度得不到释放,电子传递过 程在难以泵出质子时也会慢慢停止。
氧化磷酸化的抑制和解偶联
质子浓 度梯度 抗霉素 A 氰化物 一氧化碳
鱼藤酮 寡霉素 2,4-二硝基苯酚 (解偶联剂) 安密妥
氧化磷酸化的抑制和解偶联
电子经由不同的呼吸链产生的P/O比值
膜间空隙

第六(8)章生物氧化与氧化磷酸化

第六(8)章生物氧化与氧化磷酸化

,故称为细胞色素。
细胞色素通过辅基中的铁离子价的可逆变 化进行电子传递。它在呼吸链中作为单电子传 递体。
血红素
Cyt.类基本结构
Cys 蛋白质部分 S H3C- CH H3C-
多肽链
Cys CH3 S
细 胞 色 素
N
铁卟啉 H3CCH2 CH2 COO-
-CH - CH3 Fe N 3+ N -CH3
代谢物在脱氢酶催化下脱下的氢由相应的氢载体( NAD+ 、 NADP+ 、 FAD 、 FMN 等)所接受,再通过一系列递氢 体或递电子体传递给氧而生成H2O 。
CH3CH2OH
乙醇脱氢酶
CH3CHO
NAD+
NADH+H+
NAD+
2e
电子传递链
1\2 O2
O=
2H+
H2 O
(4)当有机物被氧化成CO2和H2O时,释放的 能量怎样转化成ATP。
2)磷氮键型
O NH C N NH CH3 P O O
NH C N NH CH3 O P O NH2 O
CH2COOH
磷酸肌酸 10.3千卡/摩尔
CH2CH2CH2CHCOOH
磷酸精氨酸 7.7千卡/摩尔
磷酸肌酸是易兴奋组织(如肌肉、脑、神经)唯一的能起 暂时储能作用的物质。 磷酸精氨酸是无脊椎动物肌肉中的储能物质
[ATP]+1/2[ADP] 能荷= [ATP]+[ADP]+[AMP]
能荷可调节代谢,能荷高时,抑制物质分解代谢,促 进物质的合成代谢;能荷低,促进物质分解代谢,抑制 物质的合成代谢。
能荷调节主要是通过 ATP 、ADP、AMP作为一些 调节酶的变构效应物而起 作用的。 如糖酵解中磷酸果糖 激酶的调控:高浓度的ATP 是该酶的变构抑制剂,ATP 的抑制作用可被AMP解除。

生物氧化——电子传递和氧化磷酸化作用

生物氧化——电子传递和氧化磷酸化作用

氧还-回路机制示意图
质子转移的两种假设机制
(2)质子泵机制
这个机制的内容是,电子传递导致复合 体构象的变化,氨基酸残基在膜内侧结合H+, 构象变化后在膜外侧释放H+,从而把H+从膜 内侧运到膜外。
三种类型的Fe-S cluster
半胱氨酸的巯基硫
Fe
Fe2-S2
Fe4-S4
每传递2个电子,可 驱动4个H+从膜内侧 运到膜外侧。
NADH-Q还原酶 催化的电子传递
电子传递链各个成员
2.辅酶Q
辅 酶 Q ( Coenzyme Q ) 又 称 泛 醌 (ubiquinone),有时简称为Q或UQ,是一种脂溶 性物质,它可以接受1个电子还原成半醌中间体,再 接受1个电子还原成对苯二酚形式。由于其脂溶性强, 可以在线粒体内膜中扩散。它有一个长长的碳氢侧 链,哺乳动物中最常见的是具有10个异戊二烯单位 的侧链,简写为Q10,在非哺乳动物中这个侧链可能 只有6~8个异戊二烯单位。
琥珀酸-Q还原酶 催化的电子传递
电子传递链各个成员
4.细胞色素还原酶
细胞色素还原酶又称复合体Ⅲ、辅酶Q- 细胞色素c还原酶。它的作用是将还原型辅酶 Q的电子传递给细胞色素c。细胞色素还原酶 中含有细胞色素b,也含有2Fe-2S聚簇。
细胞色素(cytochrome)
细胞色素是一类含有血红素辅基的电子传递蛋 白质的总称。还原型细胞色素具有明显的可见光吸 收,可以看到α、β和γ三个吸收峰,其中α峰的波长 随细胞色素种类的不同而各有特异的变化,可用来 区分不同的细胞色素。氧化型细胞色素在可见光区 看不到吸收峰。细胞色素中的血红素有三种,分别 称为细胞色素a、b和c,同一种细胞色素血红素因结 合的蛋白质不同,其α吸收峰的波长会发生小的变化, 如 细 胞 色 素 还 原 酶 中 含 有 的 细 胞 色 素 b 就 分 为 bH (b562)和bL(b566)两种。

氧化磷酸化的原理和过程

氧化磷酸化的原理和过程

氧化磷酸化的原理和过程
氧化磷酸化是生物体内提取化学能的重要途径,是有氧呼吸的关键过程,在线粒体中进行。

其基本原理和过程包括:
1. 电子传递链
NADH和FADH2将电子传递给一系列载体分子,如辅酶Q和细胞色素C。

电子层层递减能量。

2. 氧化磷酸化
电子最终传至氧分子,氧与电子和质子发生化学反应,形成水。

同时释放能量。

3. 氢离子跨膜传递
电子传递过程中,质子被主动穿梭跨线粒体膜,形成跨膜电化学位梯。

4. 合成ATP
利用质子跨膜传递的潜在能驱动ATP合酶,催化ADP与无机磷酸生成ATP。

5. 氧化反应释放能量
磷酸化过程中,氧化反应释放的能量用于合成ATP。

6. 氧化磷酸化耦合
电子传递链与质子跨膜形成耦合,两者协同进行,实现能量转化。

7. 氧是终电子受体
氧分子通过获得电子达到满殻稳定状态,是整个电子传递链中的终接收体。

综上,氧化磷酸化通过一系列细胞色素氧化反应,辅以质子跨膜传递,将化学能高效转换为生物所需的ATP的化学能,为生命活动提供能量。

第21章--氧化磷酸化(生物氧化-电子传递链和氧化磷酸化)

第21章--氧化磷酸化(生物氧化-电子传递链和氧化磷酸化)
暨南大学2011年
二、电子传递和氧化呼吸链 P118
电子传递链 磷酸化 (氧化) (ATP合成)
线粒体的电子传递链
电子传递链定义
在线粒体内膜上,由递氢体和递电子体组成的、按一 定顺序排列的、与细胞利用氧密切相关的链式反应体系,称 为(呼吸链),又称(电子传递链)(electron transfer chain)。 呼吸链是代谢物上氢原子被脱氢酶激活脱落后,经一系列电 子传递体,最后传递给被激活的氧分子而生成水的过程。
子载体的标准势能是逐步下降的,还是上升的?
电子从NADH或FADH2转移给氧的过程,自由
能变化为正值,还是为负值?
电子传递抑制剂试验
Reduced
Oxidized
Reduced
Oxidized
Reduced
还原状态呼吸链缓慢给氧
利用呼吸链各组分特 有的吸收光谱:离体线粒 体,无氧而有过量底物 (还原状态),缓慢给氧, 观察各组分被氧化的顺序。
NADH脱氢酶
复合物I:NADH到泛醌
NADH-Q还原酶(NADH脱氢酶、复合体Ⅰ)
(判断题 ) NADH脱氢酶是指以NADH为辅酶的脱氢酶的总称。
江苏大学2005年
厦门大学 2005 年
复合物I:NADH到泛醌
NADH-Q还原酶(NADH脱氢酶、复合体Ⅰ)
也称NADH:泛醌氧化还原酶,是一个大的酶复合物, 由42条不同的多肽链组成,成分包括含(FMN黄素蛋白 和至少6个铁硫中心)。高分辨率电子显微镜显示复合物I 为L形,L的一个臂在膜内,另一臂伸展到基质中。
兑换率
1分子葡萄糖完全氧化产生的ATP
酵解阶段: 2 ATP 2 1 NADH
丙酮酸氧化:2 1NADH

2023年生化题库

2023年生化题库

8 电子传递与氧化磷酸化一、名词解释1、生物氧化2、呼吸链3、氧化磷酸化4、P/O5、底物水平磷酸化二、填空1、真核细胞的呼吸链重要存在于__线粒体内膜_,而原核细胞的呼吸链存在于__细胞质膜_。

2、NADH呼吸链中氧化磷酸化的偶联部位是_复合体Ⅰ、复合体Ⅲ、复合体Ⅳ_。

3、在呼吸链中,氢或电子从_电负性较大(氧化还原电位较低)的载体依次向电正性较大(氧化还原电位较高)的载体传递。

4、典型的呼吸链涉及 NADH和FADH2两种。

5、解释氧化磷酸化作用机制被公认的学说是化学渗透学说_,它是英国生物化学家P.Mitchell于1961年一方面提出的。

6、化学渗透学说重要论点认为:呼吸链组分定位于线粒体内膜上。

其递氢体有质子泵作用,因而导致内膜两侧的质子浓度差,同时被膜上ATP合成酶所运用、促使ADP + Pi → ATP7、动物体内高能磷酸化合物的生成方式有底物水平磷酸化和氧化磷酸化两种。

8、可以使用旋转催化学说很好地解释F1/F0-ATP合成酶的催化机理。

9、F1/F0-ATP合成酶合成一分子ATP通常需要消耗3个质子。

10、鱼藤酮、抗霉素A和CN-、CO的克制部位分别是复合体Ⅰ、C o Q同细胞色素C和复合体Ⅳ。

三、单项选择题1、F1/F o-ATPase的活性中心位于A、α亚基B、β亚基C、γ亚基D、δ亚基E、ε亚基2、下列哪一种物质最不也许通过线粒体内膜?A、PiB、苹果酸C、柠檬酸D、丙酮酸E、NADH3、下列氧化还原系统中标准氧化还原电位最高的是A、延胡索酸/琥珀酸B、CoQ/CoQH2C、细胞色素a(Fe2+/Fe3+)D、细胞色素b(Fe2+/Fe 3+)E、NAD+/NADH4、下列反映中哪一步随着着底物水平的磷酸化反映?A、葡萄糖→葡萄糖-6-磷酸B、甘油酸-1,3-二磷酸→甘油酸-3-磷酸C、柠檬酸→α-酮戊二酸D、琥珀酸→延胡索酸E、苹果酸→草酰乙酸5、氢原子通过呼吸链氧化的终产物是:A、H2O2B、H2OC、H+D、CO2E、O26、下列化合物中哪一个不是呼吸链的成员?A、CoQB、细胞色素C、辅酶ID、FADE、肉毒碱7、线粒体氧化磷酸化解偶联是意味着:A.线粒体氧化作用停止 B.线粒体膜ATP酶被克制C.线粒体三羧酸循环停止D.线粒体能运用氧,但不能生成ATP8、肝细胞胞液中的NADH进入线粒体的机制是:A.肉碱穿梭 B.柠檬酸-丙酮酸循环 C.3-磷酸甘油穿梭D.苹果酸-天冬氨酸穿梭9、下列有关呼吸链的叙述哪些是对的的?A、体内最普遍的呼吸链为NADH氧化呼吸链B、呼吸链的电子传递方向从高电势流向低电势C、假如不与氧化磷酸化偶联, 电子传递就中断D、氧化磷酸化发生在胞液中10、关于电子传递链的下列叙述中哪个是不对的的?()A、线粒体内有NADH+H+呼吸链和FADH2呼吸链。

电子传递与氧化磷酸化

电子传递与氧化磷酸化

电子传递与氧化磷酸化在疾病中的作用研究
心血管疾病
研究表明,电子传递与氧化磷酸化在心血管 疾病中发挥重要作用。例如,某些遗传性疾 病如Leber遗传性视神经病和肌萎缩侧索硬 化症(ALS)与电子传递链的缺陷有关。
神经系统疾病
许多神经系统疾病如帕金森病、阿尔茨海默 病和亨廷顿氏病等也与电子传递与氧化磷酸 化的异常有关。这些疾病通常伴随着线粒体 功能障碍和氧化应激的增加。
02
在这个过程中,电子从还原剂(如NADH或FADH2)传递 到氧分子,同时伴随ATP的合成。
03
氧化磷酸化主要发生在线粒体内膜上,是细胞呼吸链的主要 组成部分。
氧化磷酸化的过程
电子从NADH或FADH2开始, 经过一系列传递体(如复合体 Ⅰ、Ⅲ、Ⅳ)传递到氧分子。
在这个过程中,质子被泵出线 粒体基质,形成质子梯度。
土壤修复
利用电子传递与氧化磷酸化原理,促进土壤中有机污染 物的降解和转化,实现土壤的生态修复。
THANKS FOR WATCHING
感谢您的观看
药物靶点
电子传递与氧化磷酸化过程中涉及的酶和蛋白质可以 作为药物设计的潜在靶点,用于开发新的药物。
药物筛选
利用电子传递与氧化磷酸化的机制,建立药物筛选模 型,快速筛选出具有潜在疗效的药物分子。
在环境保护领域的应用前景
废水处理
通过模拟电子传递与氧化磷酸化过程,开发高效、环保 的废水处理技术,降低废水中有害物质的含量。
03
氧化磷酸化过程中释放的能量可以用于合成高能化合物,如ATP、 GTP等,这些化合物在细胞内发挥着重要的生物学功能。
04
氧化磷酸化还参与细胞内氧化还原状态的调节,对于维持细胞内环境 的稳定具有重要意义。

第八章 氧化磷酸化资料讲解

第八章 氧化磷酸化资料讲解
F-6-P+ATP==1,6 FDP+ADP。 催化此反应的磷酸果糖激酶是变构酶,受到ATP强烈的抑 制,但却被AMP和ADP所激活。反之,1,6 FDP磷酸酯酶则能受 ATP的激活和被AMP所抑制。另外,在TCA中,当细胞或组织 的能荷等于1.0时,这时高浓度的ATP和低水平的AMP会降低柠 檬酸合成酶和异柠檬酸脱氢酶的活性,从而使TCA环的活性降 低以减少呼吸作用向达到调节生成ATP数量的目的。
中心,常用符号FeS表示,铁硫中心只有一
个Fe起氧化还原反应,在呼吸链中作为单电 子传递体,不传递氢,每传递一个电子。当 处于氧化态时,两个铁原子都为三价,而在 还原态时,其中一个铁成为二价,其作用是 通过Fe的价态变化而起到传递电子的作用。
(3) 辅酶Q
• 辅酶Q(Coenzyme Q,CoQ)属于醌类 (quinone,Q),由于它广泛存在于生物 系统中,所以又称为泛醌(ubiquinone, UQ),CoQ分子中含有一条由几个异 戊二烯聚合而成的长链,在不同生物 体内的CoQ,此侧链的长度有所不同, 动物n=10,高等植物n=9或10,细菌 n=6。
5
10
13



+0.02
+0.20
0.57



(2) 电子来自两个方向: 复合体Ⅰ、复合体Ⅱ
(3) 复合体Ⅰ、Ⅱ、Ⅲ中含有 FeS蛋白帮助电子的传递。
(4) ATP形成的部分。
线粒体内膜呼吸链的电子传递过程与 ADP的磷酸化过程偶联示意图
3.呼吸链的抑制剂:
能够切断呼吸链中某一部位电 子流的物质称为电子传递抑制剂(呼 吸链抑制剂)。如果把电子传递链中 断,那么,正常的生命现象活动就要 受到干扰或因此而告终。已知呼吸链 上有三处进行氧化磷酸化的偶联反应, 在三个部位分别受到不同的抑制剂抑 制。

第二章 生物氧化(电子传递与氧化磷酸化)

第二章 生物氧化(电子传递与氧化磷酸化)
第二章 生物氧化
(电子传递与氧化磷酸化)
第一节 氧化还原电势 第二节 生物氧化概述 第三节 电子传递链(呼吸链) 第四节 氧化磷酸化 第五节 线粒体穿梭系统
1-还原电势
第一节、氧化还原电势
一、氧化还原电势: 1、概念: • 氧化还原反应:凡在反应过程中有电子从一种物质 (还原剂)转移到另一种物质(氧化剂)的化学反应。 往往是可逆的 • 还原剂:在氧化还原反应中提供电子的物质。 • 氧化剂:夺得电子的物质 • (氧化)还原电势:还原剂失去电子(氧化剂得到电 子)的倾向。 • 氧化-还原电子对:氧化剂和还原剂相偶联构成的, 任何氧化还原电子对都有特定的标准电势
1-还原电势-生物体内还原电势
生物体内一些反应的标准氧化还原电势(P117)
还原剂 铁氧还蛋白(还原态) 氧化剂 铁氧还蛋白(氧化态) E’0伏 -0.43
H2
NADH(+H+) NADPH(+H+) Cytb(Fe2+) 泛醌(还原态) Cytc(Fe2+) H2O
2H+
NAD+ NADP+ Cytb(Fe3+) 泛醌(氧化态) Cytc(Fe3+) 1/2O2+2H+
第三节
电子传递链(呼吸链)
一、线粒体的通透性
•外膜:自由透过小分子和离子 •内膜: •不能自由透过小分子和离子,包括 NADH、ATP、ADP、Pi和 H+。 •有电子传递体、ATP合酶(FoF1) •膜间隙:含有许多可溶性酶、底物和一 些辅助因子。 基质:有丙酮酸脱氢酶、TCA的酶、脂肪 酸氧化的酶、氨基酸氧化的酶、DNA、核 糖体、ATP、ADP、Pi、Mg2+、可溶的中 间产物、其他酶
正极反应: Cu↔Cu2++2e

电子传递与氧化磷酸化

电子传递与氧化磷酸化

(7)细胞色素C氧化酶(复合物Ⅳ)
由 cyt.a和a3 组成。复合物中除了含有铁卟啉 外,还含有2个铜原子(CuA,CuB)。cyta与CuA相 配合,cyta3与CuB相配合,当电子传递时,在细胞 色素的Fe3+ Fe2+间循环,同时在Cu2+ Cu+间循环, 将电子直接传递给O2,也叫末端氧化酶。
△G0’= -nF△E0’ = -nF (E0’受体 - E0’ 供体)
其中:n 是转移的电子数,F 是法拉第常数。
呼吸链中电子流动方向与ATP的生成
NADH
FADH2
2e-
三.电子传递抑制剂(P184)
凡能够阻断呼吸链中某一部位电子流的物质,称为 呼吸链电子传递抑制剂.
返回
各种抑制剂的作用位点
铁硫聚簇借Fe2+和 Fe3+的互变传递电子,每次传递
一个电子.(Fe3+ +e- Fe2+ )
Cys S
S
S Cys
+e-
Fe3+
Fe3+
Cys S
S
S Cys
Cys S
S
S Cys
Fe3+
Fe2+
Cys S
S
S Cys
(4)辅酶Q(泛醌,CoQ,是许多酶的辅酶)
辅酶Q(泛醌, CoQ, Q)是电子传递链中的唯一的一种非蛋 白质组分,功能基团是苯醌,在电子传递过程中可在醌型 (氧化型)与氢醌型(还原型)之间相互转变。NADH和 FADH2上的H和电子都必须经过辅酶Q最终传递到氧分子,因 此,它是电子传递链的中心和电子集中点。
NADH + H+ + FMN

电子传递和氧化磷酸化

电子传递和氧化磷酸化

解耦联剂存在和不存在条件下线粒体的呼吸 (a)过量的Pi和底物存在下,当加入ADP后,氧快速消耗, (b)加入解耦联剂2,4-二硝基苯酚后,底物的氧化过程没有发生ADP磷酸化
在没有ADP的条件下,称为解耦联剂的化合物可以刺激 底物的氧化,直至所有的可利用的氧被还原为止,但底物的 氧化过程没有发生ADP磷酸化。简言之,这些化合物的氧化 没有与磷酸化过程耦联。
12.3 贮存在质子浓度梯度中的能量具有电能和化学 能的成分
通过呼吸复合物转移到膜间隙的质子经过ATP合成酶返回基 质时,形成一个质子环流。质子浓度梯度的能量称为质子动力 势,类似于电化学中的电动势。
在一分子氧被一个还原剂 XH2 还原的电化学反应池中:
XH2+1/2O2 X+H2O
电子从阴极流出,阴极处的 XH2 被氧化:
12.1 真核生物中,氧化磷酸化发生在线粒体中 12.2 化学渗透假说解释了电子传递是如何与ADP的
磷酸化耦联的 12.3 贮存在质子浓度梯度中的能量具有电能和化学
能的成分 12.4 电子传递和氧化磷酸化取决于蛋白质复合物 12.5 穿梭机制使得胞液中的NADH可被有氧氧化
需氧生物能够利用氧将葡萄糖(以及其他有机物分 子)完全氧化,产生二氧化碳(CO2)和水(H2O)。葡萄糖 完全氧化的总反应可用下式表示:
1. 一个完整的线粒体内膜对于耦联是绝对需要的。膜对带电 的溶剂应当是不通透的,否则质子浓度梯度将消失,特殊的 转运体使得离子代谢物跨过膜。
2. 通过电子传递链的电子传递产生一个质子浓度梯度,线粒 体内膜外侧(膜间隙)的H+浓度很高。
3. 一个结合于膜上的酶-ATP合成酶在跨膜的质子转移电子由阴极流到阳极,阳极处的分子氧被还原:
1/2O2+2H++2e- H2O

电子传递和氧化磷酸化

电子传递和氧化磷酸化

一个典型的哺乳动物线粒体的直径是0.2m到0.8m,长度 为0.5m到1.5m,大小类似于大肠杆菌细胞。
线粒体外膜 线粒体外膜
膜间隙
线粒体基质

20.2 化学渗透学说解释了电子传递是如何 与ADP磷酸化耦联的
一个质子浓度梯度作为能量库用于驱动 ATP的形成的概念被称之化学渗透理论, 是由Peter Mitchell于1961年提出来的,获 得了1978年诺贝尔化学奖。
2 复合物I将来自NADH的电子传递给泛醌
复合物I NADH-泛醌氧化还原酶(也称之NADH脱氢酶) 催化NADH的两个电子转移给泛醌。
鱼藤酮(一种植物毒素)和安密妥加入到线粒体悬浮液将 阻断复合物 I 中的电子传递。
复合物I中电子转移和质子流
3 复合物II将电子由琥珀酸转移到泛醌
XH2
X+2H++2e-
电子由阴极流到阳极,阳极处的分子氧被还原:
1/2O2+2H++2e- H2O
由于两个反应池存在电势差,电子能够通过外部的导线流动。
电子流的方向和氧化剂还原的程度是由XH2和O2之间的自由能 的差确定的,而这一差别又取决于它们各自的还原电位。
化学电池
线粒体中
(a)在化学电池中,电子通过连接两个原电池的导线从XH2流向氧化剂O2。 (b)在线粒体中,质子被跨膜转运到膜间隙,造成跨膜的质子浓度梯度,
1. 一个完整的线粒体内膜对于耦联是绝对需要的。膜对带电 的溶剂应当是不通透的,否则质子浓度梯度将消失,特殊的 转运体使得离子代谢物跨过膜。
2. 通过电子传递链的电子传递产生一个质子浓度梯度,线粒 体内膜外侧(膜间隙)的H+浓度很高。
3. 一个结合于膜上的酶-ATP合成酶在跨膜的质子转移驱动反 应中催化ADP磷酸化。

电子传递和氧化磷酸化

电子传递和氧化磷酸化

三、问答题 1、 什么是生物氧化?有何特点?试比较体内氧化和体外氧化旳异同。 2、 氰化物为何能引起细胞窒息死亡?
3、简述化学渗透学说旳主要内容,其最明显旳特点是什么? 四、名词解释 生物氧化 氧化磷酸化 底物水平磷酸化 磷氧比 呼吸链
电子传递克制剂有鱼藤酮、抗霉素、氰化物等, 他们对电子传递链中旳电子传递体具有克制作用。
电子传递被克制旳成果使底物停止利用,氧气停 止消耗,ATP旳合成也停止。
解偶联剂,如2,4-二硝基苯酚等使电子传递过程与原先紧密相 连旳氧化磷酸化作用相分离,使电子传递在没有ATP合成旳情 况下进行。
成果是氧被过量地消耗,底物被不受控制地利用,能量以热旳 形式散失。
NADH + H
⑥氧化磷酸化
1.3-二磷酸甘油酸
ΔG= -0.4kcal/mol
氧AD化P——氧化还原⑦反产应能 1 (可逆)
2 磷⑦磷 酸酸化甘—油—酸特激酶 指ADΔPG磷= +酸0.3化kc成al/AmoTlP(储能)
根A据TP氧化方式不同分为(可两逆类)
3-磷酸 甘4油 .1酸底物磷酸化 ⑧异构
-0.92 -18.45 +1.38 -8.30 -1.34 -1.84 -23.9
? -0.18 FADH2 -12.91 +0.1 CoQ
3个复合体各能合成1ATP 但第4复合体不能产生 怎样产生ATP呢? ——机制
氧化磷酸化旳机理
?呼吸链中旳电子传递是怎样推动ADP磷 酸化形成ATP旳
比较著名旳假说有三个: 化学偶联假说 构象偶联假说 化学渗透学说
第六节 外源NADH进入线粒体旳方式
一 .植物外源NADH旳进入 直接将H+交给线粒体内膜外侧旳黄素蛋白,进入呼吸链 不经过复合物I 生成2ATP P/O=2

电子传递与氧化磷酸化

电子传递与氧化磷酸化

催化ADP 和PI的转 变为ATP.
除以上之外还有:UQ和 Cytc UQ:电子传递链中非蛋白质成员 实现在复合体Ⅰ,Ⅱ,Ⅲ之间的传递。 Cytc: 线粒体内膜外侧的外周蛋白,是电子 传递链中唯一的可移动色素蛋白,通过辅 基中的铁离子价的可逆变化,在复合体Ⅲ 和Ⅳ之间传递电子。

在氰化物的存在下,某些植物呼吸不受抑 制,所以把这种呼吸称为抗氰呼吸。 抗氰呼吸电子传递途径与正常的NADH电子 传递途径交替进行,所以抗氰呼吸途径由 称为交替呼吸途径,简称交替途径。

①.利于授粉 ②.能量溢流 ③.增强抗逆性

植物线粒体膜间隙油附属2个外脱氢酶,分 别是外在的NADH 和NADPH脱氢酶,都对 鱼藤酮不敏感。 功能:催化细胞质中的NADH或NADPH的 氧化,把氧化脱下的电子直接传递给UQ库。

O2
氧化
偶联
↓ 供生命活动,生化反应需要
ATP
磷酸化
½ O 2 → H+ + e
ATP
营养物分解
氧化磷酸化
肌肉收缩,物质转运 信息传递,腺体分泌
ADP
氧化磷酸化作用: 在生物氧化中,电子经过线粒体电子传递链传递到 氧,伴随ATP合酶催化,使ADP和磷酸合成ATP的过程。
线粒体内膜与氧化磷酸化
线粒体是生物氧化和能量转换的主要场所。是组 织细胞的“发电厂”。

在呼吸链一系列反应的最末端,有能活化 分子氧并生成ATP的末端氧化酶。 如:线粒体膜上:细胞色素c氧化酶和交替 氧化酶。 细胞质基质和微粒体中,还存在不产生ATP 的末端氧化酶体系。如:酚氧化酶. 抗坏血 酸氧化酶.乙醇酸氧化酶等。

重要的酚氧化酶:单酚氧化酶(酪氨酸酶 ) 和多酚氧化酶(儿茶酚氧化酶) 酚氧化酶是含铜的酶。

简述氧化磷酸化和电子传递的偶联机制

简述氧化磷酸化和电子传递的偶联机制

简述氧化磷酸化和电子传递的偶联机制
氧化磷酸化和电子传递是生物体中重要的代谢过程,它们之间存在着偶联机制。

氧化磷酸化是一种重要的代谢过程,它可以将低能量的磷酸化物转化为高能量的磷酸化物,从而提供细胞活动所需的能量。

氧化磷酸化的偶联机制是通过一系列的反应来实现的,首先,一种叫做ATP酶的酶将ATP分解为ADP和磷酸,然后,一种叫做磷酸酶的酶将磷酸与另一种叫做磷酸酰转移酶的酶结合,最后,一种叫做磷酸酰转移酶的酶将磷酸酰转移到另一种叫做磷酸酰转移酶的酶上,从而实现氧化磷酸化反应。

电子传递是一种重要的代谢过程,它可以将低能量的电子转移到高能量的电子,从而提供细胞活动所需的能量。

电子传递的偶联机制是通过一系列的反应来实现的,首先,一种叫做NADH的酶将NADH分解为NAD+和电子,然后,一种叫做电子转移酶的酶将电子转移到另一种叫做电子转移酶的酶上,最后,一种叫做电子转移酶的酶将电子转移到另一种叫做NADH的酶上,从而实现电子传递反应。

总之,氧化磷酸化和电子传递是生物体中重要的代谢过程,它们
之间存在着偶联机制,即通过一系列的反应来实现氧化磷酸化和电子传递反应。

这些反应可以提供细胞活动所需的能量,从而保证细胞的正常运作。

21王镜岩生物化学教程 2008版 第21章__氧化磷酸化和光合作用磷酸化作用

21王镜岩生物化学教程 2008版 第21章__氧化磷酸化和光合作用磷酸化作用

解偶联剂
双香豆素
对三氟甲氧基苯腙羰基氰化物
The rotary motion of the bacterial flagella is energized directly by the proton gradient across the inner plasma membrane.
(六)细胞溶胶内 NADH的再氧化
甘油-3-磷酸穿梭
主要存在于肌肉和神经组织
苹果酸-天冬氨酸穿梭
主要存在于 肝、肾、心 等组织
(七)氧化磷酸化的调控
杀黑星菌素
(八)
葡萄糖彻底氧化的总结算
(九) 氧的不完全还原
氧的彻底还原需要4个电子,1个电子使氧还原成超氧化物负离子,2个电子使 氧还原成过氧化氢,3个电子使氧还原成羟自由基。 超氧化物歧化酶可清除超氧化物自由基,可能的机制如图24-33所示。 过氧化氢可被过氧化氢酶或谷胱甘肽过氧化物酶清除。 清除超氧化物自由基和过氧化氢可防止羟自由基的生成。 抗氧化剂有助于预防疾病和延缓衰老。
2.高等植物和藻 类具有两个光系 统
红降现象说 明光合细胞 有两个光反 应系统
光合作用的光 化学作用光谱
P700和 P680分别是两个 光系统的作用中心色素
3.放氧光合生物光作用中 心的结构
光系统Ⅱ的结构
*
*藻褐素
光系统Ⅰ的结构
*叶绿醌
*
4.真核光合电 子传递的Z图式
*
*藻褐素
5.水的光解与放 氧
第21章 电子传递和 氧化磷酸化作用
一、氧化-还原电势
(一) 氧化-还原电势 生物氧化是通过加氧、脱氢或失电 子而进行的,加氧反应较少见,氧原子通 常是通过加水再脱氢引入代谢物的。代谢 物中生成的羧基,可通过脱羧基作用生成 二氧化碳。脱氢或失电子反应是生物氧化 的主要方式,反应过程中伴随着氧化-还 原电势的变化。 ε = E正极- E负极

证明线粒体的电子传递和氧化磷酸化是由两2个不同的结构.

证明线粒体的电子传递和氧化磷酸化是由两2个不同的结构.

氧化磷酸化的解偶联剂和抑制剂
1.解偶联剂(uncoupler)
2.抑制剂(depressant) 3.离子载体抑制剂(ionophore depressant)
1.解偶联剂(uncoupler)

植物在遇到干旱或某些化学物质作用时,会抑制 ADP 形成 ATP 的磷酸化作用,但不抑制电子传递,使电子 传递产生的自由能以热的形式散失掉 ,导致氧化过程与 磷酸化作用不偶联,这就是氧化磷酸化解偶联现象。能 对呼吸链产生氧化磷酸化解偶联作用的化学试剂叫解 偶联剂。最常见的解偶联剂有 DNP,含有一个酸性基 团的DNP 是脂溶性的,可以穿透线粒体内膜,并把一 个H+从膜外带入膜内,从而破坏了跨内膜的质子梯度, 抑制了 ATP的生成。解偶联时会促进电子传递的进行, O2的消耗加大。
线粒体复合物Ⅳ(细胞色素c氧化酶)的假想结构和膜局部结构
电子传递的方向(图片)
黄素蛋白中的FADH2 琥珀酸-Q还原酶 ↓ NAD→NADH-Q→Q→细胞色素→细胞色素c→ 还原酶 还原酶 细胞色素氧化酶→氧
图 5-11 植物线粒体内膜上的复合体及其电子传递 Ⅰ、Ⅱ、Ⅲ、Ⅳ分别代表复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ; UQ库代表存在于线粒体中 的泛醌库
被紧密结合的adp和pi转化生成atp此步骤不需消耗能量和构型改变3植物在遇到干旱或某些化学物质作用时会抑制adp形成atp的磷酸化作用但不抑制电子传递使电子传递产生的自由能以热的形式散失掉导致氧化过程与磷酸化作用不偶联这就是氧化磷酸化解偶联现象
证明线粒体的电子传递和氧化 磷酸化是由两2个不同的结构系 统来实现的
2.抑制剂(depressant)
抑制剂与解偶联剂的区别在于,这类试剂不仅抑
制ATP的形成,还同时抑制O2的消耗。这是因 为像寡霉素(oligomycin)这一类的化学物质可以 阻止膜间空间中的H+通过ATP合成酶的Fo进入 线粒体基质,这样不仅会阻止ATP生成,还会 维持和加强质子动力势,对电子传递产生反馈抑 制,O2的消耗就会相应减少。

2014 生物氧化—电子传递和氧化磷酸化

2014 生物氧化—电子传递和氧化磷酸化
ε。= ΔE° = RT/nF·lnKeq = 2.30 RT/nF·lgKeq
非标准状态下,根据实际参加反应物和产物浓度, 用能斯特方程式计算,求出反应的电动势。
第三节 电子传递链
1. 电子传递过程: 指还原型的辅酶(NADH、 FADH2)通过电子传递再氧化的过程。
电子传递链:由一系列具有氧化还原作用的载体组成,
电子、质子通过呼吸链中4个复合体概况
(四)电子传递抑制剂:
能够阻断呼吸链中某部位电子传递的物质。
电子传递的抑制剂: 1. 鱼藤酮 、安密妥 、杀粉蝶菌素
NADH || CoQ
2. 抗霉素A
Cytb || CytC1
3. 氰化物、硫化氢、叠氮化物、CO
铂酸-Q还原酶(复合体II)、细胞色素还原酶(复合体
III)、细胞色素C和细胞色素氧化酶(复合体IV ) 。
• 主链上形成三个复合物,包埋在线粒体内膜,每
一复合体包括几个电子或氢传递体,三个复合物之间 由两个小电子载体(CoQ和CytC)相连。
•有三个ATP形成位点.
氧化呼吸链各组分的顺序排列是由以下实验确定的
并且按其对电子亲和力递增的顺序排列, 即电子从 NADH(-0.32V)系列电子传递体 氧(+0.82V)的方向传递。
2. 电子传递链(呼吸链)的组成特点
• 呼吸链中的传递体大多和水不溶性蛋白相结合,多
数嵌合在线粒体内膜中。传递体包括氢传递体(电 子、质子)和电子传递体两大类。
• 组成包括:NAD-Q还原酶(复合体I )、CoQ、琥
第二节 氧化还原电势 (E°)
还原电位可以 通过电化学装 置定量地测定。 其原理可以通 过一对电子从 锌原子转移到 一个铜离子 (Cu2+)的简 单的氧化-还 原反应来说明。

电子传递链与氧化磷酸化

电子传递链与氧化磷酸化

铁-硫蛋白的Fe-S中心
仅指无机S
自学 2Fe-2S型
4Fe-4S型
参与单电子转移: Fe-S簇中只有1个 Fe被氧化或还原
蓝细菌Anabaena 7120的铁氧还蛋白 为2Fe-2S型
7
19-2
自学
泛醌 (Q/CoQ)
- 完全还原需要2H,经由 半醌基中间物形式以两步 反应完成 - 质体醌(叶绿体)和甲基萘 醌(细菌)也具有类似的在 膜结合e–传递链中携带e– 的功能 - 为脂溶性小分子,能在 线粒体内膜的脂双层中 自由扩散,从而在内膜 上其他移动性较低的e– 载体间传递还原当量 既能携带e–也能携带H+,
E’o = 0.045V
E’o = -0.32V (E’o = 0.031V) E’o = 0.816V ⊿E’o = 1.14V ∆G’o≈-220 kJ/mol 16 (cf. p335)
总矢量反应式(NADH型)
NADH + 11HN+ + ½O2 NAD+ + 10HP+ + H2O
1916
- 只添加ADP和Pi时, 呼吸(O2耗)和ATP 合成都很小
- 添加e–供体如琥珀酸 则立即显著增加
- 加入氰化物后又随即 被抑制
干扰ATP合酶使其合成受阻 H+不能返回基质 H+梯度加 大导致H+泵停转 e–流停止
30
G21.3 1
解偶联剂 (uncoupler)
使e–传递和ATP 合成相互分离
Dinitrophenol
2,4-二硝基苯酚 (DNP)
- 疏水性小分子(弱酸)
- 具有可解离H+ - 不影响e–传递和H+泵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 电子传递与氧化磷酸化
一、名词解释
1、生物氧化
2、呼吸链
3、氧化磷酸化
4、P/O
二、填空
1、真核细胞的呼吸链主要存在于________________,而原核细胞的呼吸链存在于________________。

2、NADH呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。

3、在呼吸链中,氢或电子从_________的载体依次向_________的载体传递。

4、典型的呼吸链包括_________和_________两种。

5、解释氧化磷酸化作用机制被公认的学说是_________,它是英国生物化学家_________于1961年首先提出的。

6、化学渗透学说主要论点认为:呼吸链组分定位于_________内膜上。

其递氢体有_________作用,因而造成内膜两侧的_________
差,同时被膜上_________合成酶所利用、促使ADP + Pi → ATP
7、动物体内高能磷酸化合物的生成方式有_________和_________两种。

8、可以使用________________学说很好地解释F1/F0-ATP合成酶的催化机理。

9、F1/F0-ATP合成酶合成一分子ATP通常需要消耗________________个质子。

10、鱼藤酮、抗霉素A和CN-、CO的抑制部位分别是________________、________________和________________。

三、单项选择题
1、F1/F o-ATPase的活性中心位于
A、α亚基
B、β亚基
C、γ亚基
D、δ亚基
E、ε亚基
2、下列哪一种物质最不可能通过线粒体内膜?
A、Pi
B、苹果酸
C、柠檬酸
D、丙酮酸
E、NADH
3、下列氧化还原系统中标准氧化还原电位最高的是
A、延胡索酸/琥珀酸
B、CoQ/CoQH2
C、细胞色素a(Fe2+/Fe3+)
D、细胞色素b(Fe2+/Fe 3+)
E、NAD+/NADH
4、下列反应中哪一步伴随着底物水平的磷酸化反应?
A、葡萄糖→葡萄糖-6-磷酸
B、甘油酸-1,3-二磷酸→甘油酸-3-磷酸
C、柠檬酸→α-酮戊二酸
D、琥珀酸→延胡索酸
E、苹果酸→草酰乙酸
5、氢原子经过呼吸链氧化的终产物是:
A、H2O2
B、H2O
C、H+
D、CO2
E、O2
6、下列化合物中哪一个不是呼吸链的成员?
A、CoQ
B、细胞色素
C、辅酶I
D、FAD
E、肉毒碱
7、线粒体氧化磷酸化解偶联是意味着:
A.线粒体氧化作用停止 B.线粒体膜ATP酶被抑制
C.线粒体三羧酸循环停止 D.线粒体能利用氧,但不能生成ATP
8、肝细胞胞液中的NADH进入线粒体的机制是:
A.肉碱穿梭 B.柠檬酸-丙酮酸循环 C.3-磷酸甘油穿梭 D.苹果酸-天冬氨酸穿梭
9、下列有关呼吸链的叙述哪些是正确的?
A、体内最普遍的呼吸链为NADH氧化呼吸链
B、呼吸链的电子传递方向从高电势流向低电势
C、如果不与氧化磷酸化偶联, 电子传递就中断
D、氧化磷酸化发生在胞液中
10、关于电子传递链的下列叙述中哪个是不正确的?()
A、线粒体内有NADH+H+呼吸链和FADH2呼吸链。

B、电子从NADH传递到氧的过程中有3个ATP生成。

C、呼吸链上的递氢体和递电子体完全按其标准氧化还原电位从低到高排列。

D、线粒体呼吸链是生物体唯一的电子传递体系。

11、线粒体外NADH经α-磷酸甘油穿梭作用,进入线粒体内实现氧化磷酸化,其p/o值为
A、0 B.2 C、1.5 D.2 E、2.5 F、3
12、如果质子不经过F1/F0-ATP合成酶回到线粒体基质,则会发生:
A、氧化
B、还原
C、解偶联、
D、紧密偶联
13、离体的完整线粒体中,在有可氧化的底物存时下,加入哪一种物质可提高电子传递和氧气摄入量:
A、更多的TCA循环的酶
B、ADP
C、FADH2
D、NADH
14、呼吸链中的电子传递体中,不是蛋白质而是脂质的组分为:
A、NAD+
B、FMN
C、CoQ
D、Fe·S
15、下述哪种物质专一性地抑制F0因子:
A、鱼藤酮
B、抗霉素A
C、寡霉素
D、缬氨霉素
16、二硝基苯酚能抑制下列细胞功能的是:
A、糖酵解
B、肝糖异生
C、氧化磷酸化
D、柠檬酸循环
17、下列关于化学渗透学说的叙述哪一条是不对的:
A、吸链各组分按特定的位置排列在线粒体内膜上
B、各递氢体和递电子体都有质子泵的作用
C、H+返回膜内时可以推动ATP酶合成ATP
D、线粒体内膜外侧H+不能自由返回膜内
18、呼吸链的各细胞色素在电子传递中的排列顺序是:
A、c1→b→c→aa3→O2;
B、c→c1→b→aa3→O2;
C、c1→c→b→aa3→O2;
D、b→c1→c→aa3→O2;
19、人体内二氧化碳生成方式是:
A、O2与C的直接结合
B、O2与CO的结合
C、有机酸的脱羧
D、一碳单位与O2结合
20、铁硫蛋白的作用是:
A、递氢
B、递氢兼递电子
C、只脱去底物的电子
D、传递电子
E、以上都不是
21、CO影响氧化磷酸化的机理在于:
A、使ATP水解为ADP和Pi加速
B、解偶联作用
C、使物质氧化所释放的能量大部分以热能形式消耗
D、影响电子在细胞色素b与C1之间传递
E、影响电子在细胞色素aa3与O2之间传递
四、是非题
1、ATP在高能化合物中占有特殊的地位,它起着共同的中间体的作用。

2、NADH和NADPH都可以直接进入呼吸链。

3、解偶联剂可抑制呼吸链的电子传递。

4、电子通过呼吸链时,按照各组分氧还电势依次从还原端向氧化端传递。

5、呼吸链中Cytaa3的铁离子和铜离子将电子传给氧。

6、辅酶Q、FAD在呼吸链中也可用作单电子传递体起作用。

7、呼吸链中的细胞色素系统均结合在内膜上,不能溶于水。

8、呼吸链中各电子传递体都和蛋白质结合在一起。

9、在生物体内NADH+H+和NADPH+H+的生理生化作用是相同的。

10、呼吸链各组分中只有Cytc是线粒体内膜的外周蛋白
11、琥珀酸脱氢酶的辅基FAD与酶蛋白之间以共价键结合。

五、问答题
1、简述化学渗透学说的主要内容,其最显著的特点是什么?
2、糖的有氧氧化包括哪几个阶段 ?
3、试述呼吸链中各种酶复合物的排列顺序及“质子泵”部位。

5、简述生物氧化中水和CO2的生成方式.
6、线粒体外生成的NADH在有氧情况下,如何进入线粒体内彻底氧化?并写出其氧化过程。

(一)磷酸甘油穿梭系统
胞液中的NADH在两种不同的α-磷酸甘油脱氢酶的催化下,以α-磷酸甘油为载体穿梭往返于胞液和线粒体之间,间接转变为线粒体内膜上的FADH2而进入呼吸链,这种过程称为磷酸甘油穿梭(glycerol phosphate shuttle)。

在线粒体外的胞液中,糖酵解产生的磷酸二羟丙酮和NADH+H+,在以NAD+为辅酶的α-磷酸甘油脱氢酶的催化下,生成α-磷酸甘油,α-磷酸甘油可扩散到线粒体内,再由线粒体内膜上的以FAD 为辅基的α-磷酸甘油脱氢酶(一种黄素脱氢酶)催化,重新生成磷酸二羟丙酮和FADH2,前者穿出线粒体返回胞液,后者FADH2将2H传递给CoQ,进入呼吸链,最后传递给分子氧生成水并形成ATP(见图6-14)。

由于此呼吸链和琥珀酸的氧化相似,越过了第一个偶联部位,因此胞液中NADH+H+中的两个氢被呼吸链氧化时就只形成2分子ATP,比线粒体中NADH+H+的氧化少产生1分子ATP,也就是说经过这个穿梭过程每转一圈要消耗1个ATP。

电子传递之所以要用FAD作为电子受体是因为线粒体内NADH的浓度比细胞质中的高,如果线粒体和细胞质中的α-磷酸甘油脱氢酶都与NAD+连接,则电子就不能进入线粒体。

利用FAD能使电子逆着NADH+H+梯度而从细胞质转移到线粒体中,转入的代价是每对电子要消耗1分子ATP。

这种穿梭作用存在于某些肌肉组织和神经细胞,因此这种组织中每分子葡萄糖氧化只产生36分子的ATP
(二)苹果酸-天冬氨酸穿梭系统
苹果酸-天冬氨酸穿梭系统(malate-aspartate shuttle)需要两种谷-草转氨酶、两种苹果酸脱氢酶和一系列专一的透性酶共同作用。

首先,NADH在胞液苹果酸脱氢酶(辅酶为NAD+)催化下将草酰乙酸还原成苹果酸,然后苹果酸穿过线粒体内膜到达内膜衬质,经衬质中苹果酸脱氢酶(辅酶也为NAD+)催化脱氢,重新生成草酰乙酸和NADH+H+;NADH+H+随即进入呼吸链进行氧化磷酸化,草酰乙酸经衬质中谷-草转氨酶催化形成天冬氨酸,同时将谷氨酸变为α-酮戊二酸,天冬氨酸和α-酮戊二酸通过线粒体内膜返回胞液,再由胞液谷-草转氨酶催化变成草酰乙酸,参与下一轮穿梭运输,同时由α-酮戊二酸生成的谷氨酸又回到衬质(见图6-15)。

上述代谢物均需经专一的膜载体通过线粒体内膜。

线粒体外的NADH+H+通过这种穿梭作用而进入呼吸链被氧化,仍能产生3分子ATP,此时每分子葡萄糖氧化共产生38分子ATP。

在原核生物中,胞液中的NADH能直接与质膜上的电子传递链及其偶联装配体作用,不存在穿梭作用,因而当每分子葡萄糖完全氧化成CO2和H2O时,总共能生成38分子的ATP。

相关文档
最新文档