重庆市2001-2012年中考数学试题分类解析专题9:三角形

合集下载

【中考12年】浙江省温州市2001-2012年中考数学试题分类解析 专题9 三角形

【中考12年】浙江省温州市2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年某某某某中考数学试题分类解析汇编(12专题)专题9:三角形一、选择题1. (2001年某某某某3分)等腰三角形的一个底角是30°,则它的顶角是【】A.30° B.40° C.75° D.120°【答案】D。

【考点】等腰三角形的性质,三角形内角和定理。

【分析】根据等腰三角形底角相等的性质和三角形内角和定理,它的顶角是1800-2×300=1200。

故选D。

2. (2001年某某某某3分)在Rt△ABC中,∠C=90°,BC=4,AC=3,则tanA的值是【】A.43B.34C.35D.45【答案】A。

【考点】锐角三角函数定义。

【分析】根据正切函数定义,得tanA=BC4AC3=。

故选A。

3. (2002年某某某某4分)在△ABC中,点D、E分别在边AB,AC上,且DE∥BC,AE=3,EC=2,那么S△ADE:S△ABC等于【】A.2:3 B.3:5 C 9:4 D 9:25【答案】D。

【考点】相似三角形的判定和性质。

【分析】∵AE=3,EC=2,∴AE3 AC5=。

∵DE∥BC,∴△ADE∽△ABC。

∴22ADEABCS AE39S AC525∆∆⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭==。

故选D。

4. (2004年某某某某4分)如图,△ABC 中,∠C=90°,AB=5,BC=3,CA=4,那么sinA 等于【 】(A)43 (B) 34 (C) 53 (D)54 【答案】C 。

【考点】锐角三角函数定义, 【分析】根据正弦函数定义,得sinA=BC 3AB 5=。

故选C 。

5. (2006年某某某某4分)如图,在△ABC 中,∠C=90°,BC=5,AC=12,则 cosA 等于【 】A.512 B. 513 C. 125 D. 1213【答案】D 。

【考点】勾股定理,锐角三角函数定义。

【分析】∵在△ABC 中,∠C=90°,BC=5,AC=12,∴根据勾股定理得2222AB BC AC 51213=+=+=。

2012年重庆市中考数学试卷及解析

2012年重庆市中考数学试卷及解析

年重庆市中考数学试卷一.选择题<本大题个小题,每小题分,共分)在每个小题地下面,都给出了代号为...地四个答案,其中只有一个是正确地,请将答题卡上题号右侧正确答案所对应地方框涂黑<或将正确答案地代号填人答题卷中对应地表格内)..<重庆)在﹣,﹣,,这四个数中,最小地数是< ).﹣.﹣..考点:有理数大小比较.解答:解:这四个数在数轴上地位置如图所示:由数轴地特点可知,这四个数中最小地数是﹣.故选..<重庆)下列图形中,是轴对称图形地是< )....考点:轴对称图形.解答:解:、不是轴对称图形,故本选项错误;、是轴对称图形,故本选项正确;、不是轴对称图形,故本选项错误;、不是轴对称图形,故本选项错误.故选..<重庆)计算地结果是< )....考点:幂地乘方与积地乘方.解答:解:原式.故选..<重庆)已知:如图,,是⊙地两条半径,且⊥,点在⊙上,则∠地度数为< ).°.°.°.°考点:圆周角定理.解答:解:∵⊥,∴∠°,∴∠°.故选..<重庆)下列调查中,适宜采用全面调查<普查)方式地是< ).调查市场上老酸奶地质量情况.调查某品牌圆珠笔芯地使用寿命.调查乘坐飞机地旅客是否携带了危禁物品.调查我市市民对伦敦奥运会吉祥物地知晓率考点:全面调查与抽样调查.解答:解:、数量较大,普查地意义或价值不大时,应选择抽样调查;、数量较大,具有破坏性地调查,应选择抽样调查;、事关重大地调查往往选用普查;、数量较大,普查地意义或价值不大时,应选择抽样调查.故选..<重庆)已知:如图,平分∠,点在上,∥.若∠°,则∠地度数为< ).°.°.°.°考点:平行线地性质;角平分线地定义.解答:解:∵∥,∠°,∴∠∠°,∵平分∠,∴∠∠×°°.故选..<重庆)已知关于地方程地解是,则地值为< )....考点:一元一次方程地解.解答:解;∵方程地解是,∴×﹣,解得.故选..<重庆)年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为,小丽与比赛现场地距离为.下面能反映与地函数关系地大致图象是< )....考点:函数地图象.解答:解:根据题意可得,与地函数关系地大致图象分为四段,第一段,小丽从出发到往回开,与比赛现场地距离在减小,第二段,往回开到遇到妈妈,与比赛现场地距离在增大,第三段与妈妈聊了一会,与比赛现场地距离不变,第四段,接着开往比赛现场,与比赛现场地距离逐渐变小,直至为,纵观各选项,只有选项地图象符合.故选..<重庆)下列图形都是由同样大小地五角星按一定地规律组成,其中第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则第⑥个图形中五角星地个数为< )....考点:规律型:图形地变化类.解答:解:第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则所以第⑥个图形中五角星地个数为×;故选..<重庆)已知二次函数地图象如图所示对称轴为.下列结论中,正确地是< )....考点:二次函数图象与系数地关系.解答:解:、∵开口向上,∴>,∵与轴交与负半轴,∴<,∵对称轴在轴左侧,∴﹣<,∴>,∴<,故本选项错误;、∵对称轴:﹣﹣,∴,故本选项错误;、当时,<,故本选项错误;、∵对称轴为﹣,与轴地一个交点地取值范围为>,∴与轴地另一个交点地取值范围为<﹣,∴当﹣时,﹣<,即<,故本选项正确.故选.二.填空题<本大题个小题,每小题分,共分)请将每小题地答案直接填在答题卡<卷)中对应地横线上,.<重庆)据报道,年重庆主城区私家车拥有量近辆.将数用科学记数法表示为.考点:科学记数法—表示较大地数.解答:解:×.故答案为:×..<重庆)已知△∽△,△地周长为,△地周长为,则与△地面积之比为.考点:相似三角形地性质.解答:解:∵△∽△,△地周长为,△地周长为,∴三角形地相似比是:,∴△与△地面积之比为:.故答案为::..<重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销地人数分别为:,,,,,,,则这组数据地中位数是.考点:中位数.解答:解:把这一组数据从小到大依次排列为,,,,,,,最中间地数字是,所以这组数据地中位数是;故答案为:..<重庆)一个扇形地圆心角为°,半径为,则这个扇形地面积为 <结果保留π)考点:扇形面积地计算.解答:解:由题意得,°,,故扇形π.故答案为:π..<重庆)将长度为厘地木棍截成三段,每段长度均为整数厘.如果截成地三段木棍长度分别相同算作同一种截法<如:,,和,,),那么截成地三段木棍能构成三角形地概率是.考点:概率公式;三角形三边关系.解答:解:因为将长度为厘地木棍截成三段,每段长度均为整数厘,共有种情况,分别是,,;,,;,,;,,;其中能构成三角形地是:,,一种情况,所以截成地三段木棍能构成三角形地概率是;故答案为:..<重庆)甲、乙两人玩纸牌游戏,从足够数量地纸牌中取牌.规定每人最多两种取法,甲每次取张或<﹣)张,乙每次取张或<﹣)张<是常数,<<).经统计,甲共取了次,乙共取了次,并且乙至少取了一次张牌,最终两人所取牌地总张数恰好相等,那么纸牌最少有张.考点:应用类问题.解答:解:设甲次取<﹣)张,乙次取<﹣)张,则甲<﹣)次取张,乙<﹣)次取张,则甲取牌<﹣)张,乙取牌<﹣)张则总共取牌:<﹣)<﹣)<﹣)<﹣)﹣<),从而要使牌最少,则可使最小,因为为正数,函数为减函数,则可使<)尽可能地大,由题意得,≤,≤,又最终两人所取牌地总张数恰好相等,故<﹣),而<<,﹣为整数,则由整除地知识,可得可为,,,①当时,﹣,因为≤,≤,所以这种情况舍去;②当时,﹣,因为≤,≤,所以这种情况舍去;③当时,﹣,此时可以符合题意,综上可得:要保证≤,≤,﹣,<)值最大,则可使,;,;,;当,时,最大,,继而可确定,<),所以﹣×张.故答案为:.三.解答题<共小题).<重庆)计算:.考点:实数地运算;零指数幂;负整数指数幂.解答:解:原式﹣..<重庆)已知:如图,,∠∠,∠∠.求证:.考点:全等三角形地判定与性质.解答:证明:∵∠∠,∴∠∠∠∠,即:∠∠,在△和△中,∴△≌△<),∴..<重庆)解方程:.考点:解分式方程.解答:解:方程两边都乘以<﹣)<﹣)得,<﹣)﹣,﹣﹣,,经检验,是原方程地解,所以,原分式方程地解是..<重庆)如图,在△中,∠°,点在边上,且△是等边三角形.若,求△地周长.<结果保留根号)考点:解直角三角形;三角形内角和定理;等边三角形地性质;勾股定理.解答:解:∵△是等边三角形,∴∠°,∵∠°,∴∠°﹣°﹣°°,∴,在△中,由勾股定理得:,∴△地周长是.答:△地周长是.四、解答题:<本大题个小题,每小题分,共分)解答时每小题必须给出必要地演算过程或推理步骤,请将解答书写在答题卡<卷)中对应地位置上..<重庆)先化简,再求值:,其中是不等式组地整数解.考点:分式地化简求值;一元一次不等式组地整数解.解答:解:原式•••,又,由①解得:>﹣,由②解得:<﹣,∴不等式组地解集为﹣<<﹣,其整数解为﹣,当﹣时,原式..<重庆)已知:如图,在平面直角坐标系中,一次函数地图象与反比例函数地图象交于一、三象限内地.两点,与轴交于点,点地坐标为<>,点地坐标为<,-),∠=.<)求该反比例函数和一次函数地解读式;<)在轴上有一点<点除外),使得△与△地面积相等,求出点地坐标.考点:反比例函数综合题.解答:解:<)过点作⊥轴,垂足为,∵<,﹣),∴,在△在,∠,即,解得,又∵点在第三象限,∴<﹣,﹣),将<﹣,﹣)代入中,得,∴反比例函数解读式为,将<,)代入中,得,∴<,),将<,),<﹣,﹣)代入中,得,解得,则一次函数解读式为;<)由得<﹣,),即,∵△△,∴,∴,即<﹣,)..<重庆)高中招生指标到校是我市中考招生制度改革地一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整地统计图:<)该校近四年保送生人数地极差是.请将折线统计图补充完整;<)该校年指标到校保送生中只有位女同学,学校打算从中随机选出位同学了解他们进人高中阶段地学习情况.请用列表法或画树状图地方法,求出所选两位同学恰好是位男同学和位女同学地概率.考点:折线统计图;扇形统计图;极差;列表法与树状图法.解答:解:<)因为该校近四年保送生人数地最大值是,最小值是,所以该校近四年保送生人数地极差是:﹣,折线统计图如下:<)列表如下:由图表可知,共有种情况,选两位同学恰好是位男同学和位女同学地有种情况,所以选两位同学恰好是位男同学和位女同学地概率是..<重庆)已知:如图,在菱形中,为边地中点,与对角线交于点,过作⊥于点,∠∠.<)若,求地长;<)求证:.考点:菱形地性质;全等三角形地判定与性质.解答:<)解:∵四边形是菱形,∴∥,∴∠∠,∵∠∠,∴∠∠,∴,∵⊥,∴,∵,∴,∴;<)证明:如图,∵为边地中点,∴,∴,在菱形中,平分∠,∴∠∠,在△和△中,∵,∴△≌△<),∴,延长交于点,∵∥,∴∠∠,∵∠∠,∴∠∠,∴,在△和△中,∵,∴△≌△<),∴,由图形可知,,∴..<重庆)企业地污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业地自身设备进行处理.某企业去年每月地污水量均为吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.至月,该企业向污水厂输送地污水量<吨)与月份<≤≤,且取整数)之间满足地函数关系如下表:至月,该企业自身处理地污水量<吨)与月份<≤≤,且取整数)之间满足二次函数关系式为.其图象如图所示.至月,污水厂处理每吨污水地费用:<元)与月份之间满足函数关系式:,该企业自身处理每吨污水地费用:<元)与月份之间满足函数关系式:;至月,污水厂处理每吨污水地费用均为元,该企业自身处理每吨污水地费用均为元.<)请观察题中地表格和图象,用所学过地一次函数、反比例函数或二次函数地有关知识,分别直接写出与之间地函数关系式;<)请你求出该企业去年哪个月用于污水处理地费用<元)最多,并求出这个最多费用;<)今年以来,由于自建污水处理设备地全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月地污水量都将在去年每月地基础上增加,同时每吨污水处理地费用将在去年月份地基础上增加<﹣),为鼓励节能降耗,减轻企业负担,财政对企业处理污水地费用进行地补助.若该企业每月地污水处理费用为元,请计算出地整数值.<参考数据:≈,≈,≈)考点:二次函数地应用.解答:解:<)根据表格中数据可以得出定值,则与之间地函数关系为反比例函数关系:,将<,)代入得:×,故<≤≤,且取整数);根据图象可以得出:图象过<,),<,)点,代入得:,解得:,故<≤≤,且取整数);<)当≤≤,且取整数时:<﹣)••<﹣)•<﹣),﹣﹣,∵﹣<,﹣,≤≤,∴当时,最大<元),当≤≤时,且取整数时,×<﹣)×<﹣﹣)<),﹣,∵﹣<,﹣,当≤≤时,随地增大而减小,∴当时,最大<元),∵>,∴去年月用于污水处理地费用最多,最多费用是元;<)由题意得:<)×××<﹣),设,整理得:﹣,解得:,∵≈,∴≈,≈﹣<舍去),∴≈,答:地值是..<重庆)已知:如图,在直角梯形中,∥,∠°,,,.为边上一点,以为边作正方形,使正方形和梯形在地同侧.<)当正方形地顶点恰好落在对角线上时,求地长;<)将<)问中地正方形沿向右平移,记平移中地正方形为正方形′,当点与点重合时停止平移.设平移地距离为,正方形′地边与交于点,连接′,′,,是否存在这样地,使△′是直角三角形?若存在,求出地值;若不存在,请说明理由;<)在<)问地平移过程中,设正方形′与△重叠部分地面积为,请直接写出与之间地函数关系式以及自变量地取值范围.考点:相似三角形地判定与性质;勾股定理;正方形地性质;直角梯形. 解答:解:<)如图①,设正方形地边长为,则,∵,,∴﹣﹣,∵∥,∴△∽△,∴,即,解得:,即;<)存在满足条件地,理由:如图②,过点作⊥于,则,,由题意得:′,′﹣,﹣,在△′中,′′<﹣)﹣,∵∥,∴△∽△,∴,即,∴﹣,在△′中,′′<﹣)﹣,过点作⊥于,∴﹣﹣<﹣),在△中,,<Ⅰ)若∠′°,则′′,即<﹣)<﹣),解得:,<Ⅱ)若∠′°,则′′,即﹣<﹣)<),解得:﹣,﹣﹣<舍去),∴﹣;<Ⅲ)若∠′°,则′′,即:﹣<﹣)<),此方程无解,综上所述,当或﹣时,△′是直角三角形;<)①如图③,当在上时,::,即::,∴,∴′﹣′﹣﹣﹣,∵﹣,∴,当≤≤时,△××,②当在上时,,∵•∠•<﹣)﹣,∴﹣﹣,∵,∴当<≤时,△﹣△﹣<﹣)<﹣)﹣﹣;③如图⑤,当在上时,′:′:,即′::,解得:′,∴﹣′﹣,∴,∵′′<﹣)﹣,∵′﹣′﹣,∴当<≤时,梯形﹣△××<﹣)﹣<﹣)<﹣)﹣﹣,④如图⑥,当<≤时,∵′′<﹣),<﹣),′′<﹣)<﹣),梯形梯形′﹣梯形′﹣.综上所述:当≤≤时,,当<≤时,﹣﹣;当<≤时,﹣﹣,当<≤时,﹣.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

重庆市2001-2012年中考数学试题分类解析专题2:代数式和因式分解

重庆市2001-2012年中考数学试题分类解析专题2:代数式和因式分解

一、选择题1. (重庆市2001年4分)若(a m +1b n +2)·(a 2n -1b 2m )=a 5b 3,则m +n 的值为【 】.A .1B .2C .3D .-32. (重庆市2001年4分)如果表示a 、b 两个实数的点在数轴上的位置如图所示,那么化简()2a b a b -++的结果等于【 】.A .2aB .2bC .-2aD .-2b3. (重庆市2001年4分)已知1a 1a -=,则1a a+的值为【 】. A .5± B .5 C .3± D .5或1 【答案】B 。

【考点】完全平方公式,分类思想的应用。

【分析】根据绝对值的性质去掉绝对值号,然后利用完全平方公式转化未知的式子变成已知的式子,求解即可:当a 为正数时,则1a 1a -=,21a 1a ⎛⎫-= ⎪⎝⎭,即221a 3a +=,∴2222111a a a 25a a a⎛⎫⎛⎫+=+=++= ⎪ ⎪⎝⎭⎝⎭,1a 5a +=。

当a 为负数时,则1a 1a +=,21a 1a ⎛⎫+= ⎪⎝⎭,即221a 1a +=-,不成立,舍去。

综上,1a 5a+=。

故选B 。

4. (重庆市2002年4分)下列各式中,计算正确的是【 】A 326x x x ⋅=B 32x x x -=C 23(x)(x)x -⋅-=-D 623x x x ÷=5. (重庆市2002年4分)若x<2,化简2(x 2)3x -+-的正确结果是【 】 A -1 B 1 C 2x -5 D 5-2x 【答案】D 。

【考点】二次根式的性质,绝对值的性质。

【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并:∵x <2,∴2(x 2)2x -=-,3x 3x -=-。

∴原式2x 3x 52x =-+-=-。

故选D 。

6. (重庆市2003年4分)小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是【 】 输入…12345…输出 …12 25 310 417 526…A .861 B .863 C .865 D .867【答案】C 。

2012年重庆市中考数学知识点总复习以及大题分解

2012年重庆市中考数学知识点总复习以及大题分解

试卷结构1、内容结构与比例:数与代数 50% 空间与图形 35% 统计与概率 15%二、一、有理数1、有理数有理数的意义,会比较有理数的大小2、借助数轴理解相反数绝对值的意义,会求相反数与绝对值3、掌握有理数的加、减、乘、除、乘方以及简单的混合运算4、运用有理数运算律简化运算,并解决简单问题二、实数1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根2、了解开方与乘方互为逆运算,知道实数与数轴上的点一一对应3、用有理数估计一个无理数的大致范围4、了解近似数的概念并会进行近似数的运算5、了解二次根式的概念及其加减乘除运算法则,会用它们进行有关的实数的简单四则运算(不要求分母有理化)三、代数式1、能分析简单问题的数量关系,并用代数式表示2、会求代数式的值,能根据简单的实际问题,探索所需的公式,并会进行计算四、整式与分式1、了解整数指数幂的意义和基本性质,会用科学计数法表示数2、了解正式的概念,会进行简单的正式加减运算,会进行简单的整式乘法运算3、会推导乘法公式:(a+b)(a—b)=a2-b2 (a+b)2=a2+2ab+b2,并能进行简单计算4、会提公因式、分式法进行因式分解5、了解分式的概念,会运用分式的基本性质进行约分和通分,会进行简单的分式加减乘除运算1、能够用等式表示具体问题中的数量关系2、用观察、画图等的手段估计方程解的过程3、会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程4、理解配方法5、根据具体问题实际意义,检验结果是否合理6、能用不等式表示具体问题中的大小关系7、会解简单的一元一次方程不等式(不等式组),并能在数轴上表示出解集8、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题1、了解函数的概念和3中表示方法2、结合图像,对简单实际问题中的函数关系进行分析3、能确定自变量的取值范围,并求出函数值4、结核函数关系的分析,尝试对变量的变化规律进行初步预测5、根据已知条件确定函数的表达式6、会画一次函数的图像并理解kx+b=y(k不等于0)的性质7、理解正比例函数8、用一次函数结局实际问题9、会用描点法画出二次函数的图像,并从图像上认识二次函数的性质1、会比较角的大小,认识度分秒,并进行简单换算2、了解平行线及其性质3、了解补角、余角对顶角4、了解垂线、垂线段的概念5、会做垂线6、了解垂直平分线及其性质7、了解三角形的有关性质(内角、外角、中线、高、角平分线),了解三角形的稳定性质8、了解全等三角形的概念9、了解等腰三角形的相关概念10、了解直角三角形的概念11、会用勾股定理解决问题12、了解四边形的概念13、等腰梯形14、圆(弧、玄、圆心角),了解点与圆、直线与圆的位置关系15、圆心角、圆周角16、三角形的内心与外心17、了解切线18、计算弧长和扇形面积、圆锥的侧面积和全面积19、会做线段、角、角平分线、线段垂直平分线20、做三角形21、作圆22、判断简单物体的三视图及其侧面展开图23、轴对称24、作轴对称25、图形的平移26、图形的旋转27、图形的相似28、图形与坐标29、证明1、统计:个体、样本2、扇形统计图表示数据3、加权平均数4、会计算极差、方差,并明确其意义5、计算简单事件发生的频率第一章 数与代数第二章 方程与不等式第三章 函数第四章 空间与图形第五章 概率与统计考点一、有理数 1.有理数: (1)凡能写成)0p q ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(相反数的证明) 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (aa 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3)0a 1aa >⇔=;0a 1aa <⇔-=; (4)|a|是重要的非负数,即|a|≥0=5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 7.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).9.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 10.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .11.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .12.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n=-a n或(a -b)n=-(b-a)n,当n 为正偶数时:(-a)n=a n或(a-b)n =(b-a)n.13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0⇔a=0,b=0;14.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.15.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 考点二、实数1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

【中考12年】重庆市2001-中考数学试题分类解析 专题1 实数

【中考12年】重庆市2001-中考数学试题分类解析 专题1 实数

【中考12年】重庆市2001-2012年中考数学试题分类解析 专题1 实数一、选择题1. (重庆市2001年4分)据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元.若一年按365天计算,用科学记数法表示我国一年因土地沙漠化造成的经济损失为【 】.A .5.475×1011(元)B .5.475×1011(元)C .0.5475×1011 (元)D .5475×1011 (元)2. (重庆市2003年4分)下列各组数中,互为相反数的是【 】A .2与 12B .21-()与1C .1-与21-()D .2与2-3.(重庆市2004年4分)计算()32--的结果为【 】A 、-5B 、5C 、1D 、-1【答案】B 。

【考点】有理数的减法。

【分析】有理数减法运算法则,减去一个数等于加上它的相反数:2-(-3)=2+3=5。

故选B 。

4. (重庆市2004年4分)化简132121++-的结果为【 】A 、23+B 、23-C 、322+D 、223+【答案】A 。

【考点】二次根式的加减法。

【分析】先分母有理化,再合并同类二次根式即可:原式11+=A 。

5. (重庆市大纲卷2005年4分)5的相反数是【 】A 、-5B 、5C 、51D 、51-6.(重庆市大纲卷2005年4分)下列四个数中,大于-3的数是【 】A 、-5B 、-4C 、-3D 、-27. (重庆市课标卷2005年4分)计算1-2的结果是【 】A .1B .-1C .3D .-3【答案】B 。

【考点】有理数的减法。

【分析】根据有理数的减法法则直接计算:1-2=1+(-2)=-1。

故选B 。

8.(重庆市课标卷2005年4分)9的算术平方根是【 】A .3B .-3C .±3 D. 189.(重庆市课标卷2005年4分)据国家商务部消息,2005年一季度,我国进口总额达2952亿美元.用科学记数法表示这个数是【 】A .2.952×102亿美元B .0.2952×103亿美元C .2.952×103亿美元D .0.2952×104亿美元10. (重庆市2006年4分)3的倒数是【 】A.-3B.3C.13 D.13- 【答案】C 。

重庆市2001-2012年中考数学试题分类解析专题3:方程(组)和不等式(组)

重庆市2001-2012年中考数学试题分类解析专题3:方程(组)和不等式(组)

一、选择题1. (重庆市2001年4分)下面是某同学在一次测验中解答的填空题:(1)若x 2=a 2,则x =a .(2)方程2x (x -1)=x -l 的解为x =0.(3)若直角三角形有两边长分别为3和4,则第三边的长为5. 其中答案完全正确的题目个数为【 】. A .0个 B .1个 C .2个 D .3个2. (重庆市2002年4分)已知关于x 的不等式2x a 3-≥-的解集如图所示,则a 的值等于【 】A 0B 1C -1D 2 【答案】B 。

【考点】解一元一次不等式,在数轴上表示不等式的解集。

【分析】把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值:由2x a 3-≥-,解得a 3x 2-≥。

∵在数轴上表示的不等式的解集为:x≥-1,∴a 312-=-,解得a=1。

故选B 。

3. (重庆市2002年4分)朝日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排坐B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未满,则A 队有出租车【 】辆 A 11 B 10 C 9 D 84. (重庆市2003年4分)下列一元二次方程中,没有实数根的是【 】A .2x 2x 10+-=B .2x 22x 20++=C .2x 22x+10+=D .2x x 20++= 【答案】D 。

【考点】一元二次方程根的判别式。

【分析】判断上述方程的根的情况,只要计算每个方程的判别式△=b2-4ac 的值的符号即可:选项A :∵22b 4ac 24118∆=-=-⨯⨯-=()>0,∴有两个不相等的实根; 选项B :∵22b 4ac 224120∆=-=-⨯⨯=(),∴有两个相等的实根;选项C :∵22b 4ac 224114∆=-=-⨯⨯=()a >0,∴有两个不等的实根;选项D :∵22b 4ac 14127∆=-=-⨯⨯=-,∴方程没有实数根。

重庆市2001-2012年中考数学试题分类解析专题9:三角形

重庆市2001-2012年中考数学试题分类解析专题9:三角形

一、选择题1. (重庆市2001年4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是【 】.A .带①去B .带②去C .带③去D .带①和②去2. (重庆市2002年4分)如图,⊙O 为△ABC 的内切圆,∠C=90度,OA 的延长线交BC 于点D ,AC=4,CD=1,则⊙O 的半径等于【 】A54 B45 C43 D65【答案】A 。

【考点】三角形的内切圆与内心,相似三角形的判定和性质。

【分析】设圆O 与AC 的切点为M ,圆的半径为r ,如图,连接OM 。

∵∠C=90°,∴CM=r。

∵△AOM∽△ADC,∴OM:CD=AM :AC ,即r:1=(4-r):4,解得r=45。

故选A。

3. (重庆市2003年4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为【】A.152B.154C.3 D.834. (重庆市2003年4分)如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为【】A.1个 B.2个 C.3个 D.4个5. (重庆市2003年4分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=15,则AD 的长是【 】A B .2 C .1 D .6. (重庆市2004年4分)如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为【 】A 、311 B 、113 C 、119 D 、9117. (重庆市2004年4分)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为【 】A 、π米B 、π2米C 、π34米 D 、π23米8. (重庆市大纲卷2005年4分)如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则DMN S ∆∶ANMES 四边形等于【 】A 、1∶5 B、1∶4 C、2∶5 D、2∶7 【答案】A 。

【中考12年】安徽省2001-2012年中考数学试题分类解析 专题9 三角形

【中考12年】安徽省2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年安徽省中考数学试题分类解析汇编专题9:三角形一、选择题1. (2001安徽省4分)如图,已知AC=BD,要使△ABC≌△DCB,只需添加的一个条件是▲ 。

【答案】AB=CD(答案不独一)。

【考点】开放型,全等三角形的判定。

【分析】要使△ABC≌△DCB,根据三角形全等的判定方法添加合适的条件即可:∵AC=BD,BC=BC,∴可添加∠ACB=∠DBC或AB=CD分别利用SAS,SSS判定△ABC≌△DCB。

2. (2002安徽省4分)在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC 的度数是▲ .【答案】15°。

【考点】线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理。

【分析】∵AB=AC,∠A=50°,∴∠ABC=∠C=(180°-50°)÷2=65°。

∵DE为AB的中垂线。

∴AD=BD。

∴∠ABD=∠A=50°。

∴∠CBD=∠ABC-∠ABD=15°。

3. (2005安徽省大纲4分)如图,在△ABC中,∠A=30°,tanB=32,AC=23,则AB=【】A、4B、5C、6D、7【答案】B。

【考点】解直角三角形,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,作CD⊥AB于点D,由题意知,CD=ACsinA=ACsin30°=3,∴AD=ACcos30°=3。

∵tanB=CD3BD2,∴BD=2。

∴AB=AD+BD=2+3=5。

故选B。

4. (2006安徽省大纲4分)在Rt△ABC中,∠C=90°,若AB=5,BC=3,则cosB=【】A.45B.35C.43D.43【答案】B。

【考点】锐角三角函数的定义。

【分析】根据余弦的定义知,BC3cosBAB5==。

故选B。

5. (2007安徽省4分)如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP=【】A.4011B.407C.7011D.704【答案】A。

2012年中考数学试题分类解析汇编专题9:三角形

2012年中考数学试题分类解析汇编专题9:三角形

2012年中考数学试题分类解析汇编专题9:三角形一、选择题1. (2012湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A.B.C.D.【答案】B。

【考点】网格问题,勾股定理,相似三角形的判定。

【分析】根据勾股定理,AB=22,BC=2,AC=10,∴△ABC的三边之比为2:22:10=1:2:5。

A、三角形的三边分别为2,10,32,三边之比为2:5:3,故本选项错误;B、三角形的三边分别为2,4,25,三边之比为1:2:5,故本选项正确;C、三角形的三边分别为2,3,13,三边之比为2:3:13,故本选项错误;D、三角形的三边分别为5,13,4,三边之比为5:13:4,故本选项错误.故选B。

2.(2012湖北荆门3分)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为【】A. 2 B.2C.D.3【答案】C。

【考点】等边三角形的性质,角平分线的定义,锐角三角函数,特殊角的三角函数值,线段垂直平分线的性质。

【分析】∵△ABC是等边三角形,点P是∠ABC的平分线,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF•cos30°=2×3=32。

∵FQ是BP的垂直平分线,∴BP=2BQ=23。

在Rt△BEF中,∵∠EBP=30°,∴PE=12BP=3。

故选C。

3. (2012湖北天门、仙桃、潜江、江汉油田3分)如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为【】A.2 B.3 C.3D.3+1【答案】A。

【考点】全等三角形的判定和性质,等腰三角形的性质,平行线分线段成比例,等边三角形的性质。

2012年重庆市中考数学试卷及答案详细解析(word版)

2012年重庆市中考数学试卷及答案详细解析(word版)

2012年重庆市中考数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.22.(2012•重庆)下列图形中,是轴对称图形的是()A.B.C.D.3.(2012•重庆)计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab24.(2012•重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°5.(2012•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.(2012•重庆)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.(2012•重庆)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.58.(2012•重庆)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.9.(2012•重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50B.64C.68D.7210.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣.下列结论中,正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上,11.(2012•重庆)据报道,2011年重庆主城区私家车拥有量近38000辆.将数380000用科学记数法表示为_________.12.(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为_________.13.(2012•重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_________.14.(2012•重庆)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为_________(结果保留π)15.(2012•重庆)将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是_________.16.(2012•重庆)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有_________张.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.17.(2012•重庆)计算:.18.(2012•重庆)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.(2012•重庆)解方程:.20.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(2012•重庆)先化简,再求值:,其中x是不等式组的整数解.22.(2012•重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.23.(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD 于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且月份x(月) 1 2 3 4 5 6输送的污水量y1(吨)12000 6000 4000 3000 2400 20007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.2012年重庆市中考数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2考点:有理数大小比较。

2012年全国中考数学压轴题分类解析汇编_专题9_几何综合问题

2012年全国中考数学压轴题分类解析汇编_专题9_几何综合问题

2012年全国中考数学压轴题分类解析汇编专题9:几何综合问题(答案部分)24. (2012湖北恩施12分)【答案】解:(1)证明:连接OB ,∵OB=OA,CE=CB ,∴∠A=∠OBA,∠CEB=∠ABC。

又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°。

∴∠OBA+∠ABC=90°。

∴OB⊥BC。

∴BC 是⊙O 的切线。

(2)连接OF ,AF ,BF ,∵DA=DO,CD⊥OA,∴△OAF 是等边三角形。

∴∠AOF=60°。

∴∠ABF=12∠AOF=30°。

(3)过点C 作CG⊥B E 于点G ,由CE=CB , ∴EG=12BE=5。

易证Rt△ADE∽Rt△CGE, ∴sin∠ECG=sin∠A=513, ∴EG 5CE ==13sin ECG 13=∠。

∴CG 12===。

又∵CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE 得AD DE CG GE =,即AD 2125=,解得24AD 5=。

∴⊙O 的半径为2AD=485。

【考点】等腰(边)三角形的性质,直角三角形两锐角的关系,切线的判定,圆周角定理,勾股定理,相似三角形的判定和性质,锐角三角函数定义。

【分析】(1)连接OB ,有圆的半径相等和已知条件证明∠OBC=90°即可证明BC 是⊙O 的切线。

(2)连接OF ,AF ,BF ,首先证明△OAF 是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF 的度数。

(3)过点C 作CG⊥BE 于点G ,由CE=CB ,可求出EG=12BE=5,由Rt△ADE∽Rt△CGE 和勾股定理求出DE=2,由Rt △ADE∽Rt△CGE 求出AD 的长,从而求出⊙O 的半径。

25. (2012黑龙江哈尔滨10分)【答案】解:(1)证明:∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°。

2012重庆中考数学试题及答案

2012重庆中考数学试题及答案

2012重庆中考数学试题及答案2012年重庆中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -1B. 0C. 1D. -2答案:C2. 如果一个角的度数是30°,那么它的余角是:A. 30°B. 45°C. 60°D. 90°答案:C3. 圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A5. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A6. 根据题目所给信息,以下哪个选项是错误的?A. 2x + 3 > 5B. 2x - 3 < 5C. 3x + 2 ≥ 7D. 4x - 1 ≤ 3答案:D7. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 都不是答案:C8. 一个数的倒数是1/2,那么这个数是:A. 2B. 1C. 1/2D. -1/2答案:A9. 如果一个数的立方根是2,那么这个数是:A. 8B. 4C. 2D. 1答案:B10. 以下哪个选项是正确的不等式?A. 3 > 4B. 3 ≥ 3C. 3 < 2D. 3 ≤ 5答案:B二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。

答案:±412. 一个数的立方是-8,这个数是______。

答案:-213. 如果一个角的补角是40°,那么这个角是______。

答案:140°14. 一个直角三角形的斜边长度是13,一条直角边是5,另一条直角边的长度是______。

答案:1215. 如果一个数的绝对值是8,那么这个数是______。

答案:±816. 一个数的平方根是2.5,那么这个数是______。

重庆市2001-2012年中考数学试题分类解析专题4:图形的变换

重庆市2001-2012年中考数学试题分类解析专题4:图形的变换

一、选择题1. (重庆市2003年4分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD 沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于【】A.48 B.106C.127D.242【答案】C。

2. (重庆市2006年4分)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是【】A.3B.4C. 5D. 6【答案】B。

【考点】由三视图判断几何体。

【分析】从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体。

故选B。

△绕直角边AC旋转一周,所得几何体的3. (重庆市2007年4分)将如图所示的Rt ABC主视图是【】A.B.C.D.4. (重庆市2008年4分)如图是由4个大小相同的正方体搭成的几何体,其主视图是【】A、B、C、D、5. (重庆市2009年4分)由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是【】A.B.C.D.【答案】A。

【考点】简单组合体的三视图。

【分析】找到从左面看所得到的图形即可:从左面看可得到第一层为2个正方形,第二层左面有一个正方形。

故选A。

6. (重庆市2009年4分)观察下列图形,则第n 个图形中三角形的个数是【 】A .2n 2+B .4n 4+C .4n 4-D .4n7. (重庆市2009年4分)如图,在等腰Rt ABC △中,8C 90AC =∠=,°,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE .连接DE 、DF 、EF .在此运动变化的过程中,下列结论: ①DEF △是等腰直角三角形; ②四边形CDFE 不可能为正方形, ③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变; ⑤△CDE 面积的最大值为8. 其中正确的结论是【 】A .①②③B .①④⑤C .①③④D .③④⑤【答案】B。

重庆市2001-2012年中考数学试题分类解析专题6:函数的图像与性质

重庆市2001-2012年中考数学试题分类解析专题6:函数的图像与性质

一、选择题1. (重庆市2002年4分)已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是【 】A B C D2. (重庆市2004年4分)二次函数2y ax bx c =++的图象如图,则点M (b ,ca)在【 】A 、第一象限B 、第二象限C 、第三象限D 、第四象限3. (重庆市大纲卷2005年4分)抛物线()2y x 23=-+的顶点坐标是【 】 A 、(-2,3) B 、(2,3) C 、(-2,-3) D 、(2,-3) 【答案】B 。

【考点】二次函数的性质。

【分析】由抛物线的顶点式()2y x 23=-+直接得出顶点坐标是(2,3)。

故选B 。

4. (重庆市课标卷2005年4分) 已知反比例函数y =a 2x-的图象在第二、四象限,则a 的取值范围是【 】A .a ≤2B .a ≥2C .a <2D .a >25. (重庆市2011年4分)已知抛物线()2y ax bx c a 0=++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是【 】A 、a >0B 、b <0C 、c <0D 、a +b +c >0【答案】D 。

【考点】二次函数图象与系数的关系。

【分析】A 、∵抛物线的开口向下,∴a <0,选项错误;B 、∵抛物线的对称轴在y 轴的右侧,∴a ,b 异号,由A 、知a <0,∴b >0,选项错误;C 、∵抛物线与y 轴的交点在x 轴上方,∴c >0,选项错误;D 、x =1,对应的函数值在x 轴上方,即x =1,y a+b+c 0>=,选项正确。

故选D 。

6. (重庆市2012年4分)已知二次函数2y ax bx c(a 0)=++≠的图象如图所示对称轴为1x 2=-。

下列结论中,正确的是【 】A .abc 0>B .a b 0+=C .2b c 0>+D .4a c 2b <+C 、从图象可知,当x 0=时,y a b c 2b c 0<=++=+。

重庆市2001-2012年中考数学试题分类解析专题12:押轴题

重庆市2001-2012年中考数学试题分类解析专题12:押轴题

一、选择题1. (重庆市2001年4分)已知,在△ABC 中,∠C=90°,斜边长为217,两直角边的长分别是关于x 的方程x 2—3(m +21)x +9m =0的两个根,则△ABC 的内切圆面积是【 】. A .4π B .23π C .47π D .49π2. (重庆市2002年4分)一居民小区有一正多边形的活动场。

为迎接“AAPP”会议在重庆的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2m 的扇形花台,花台都以多边形的顶点为圆心,以多边形的内角为圆心角,花台占地面积共为12π2m 。

若每个花台的造价为400元,则建造这些花台共需资金【 】 A 2400元 B 2800元 C 3200元 D 3600元 【答案】C 。

【考点】扇形面积,多边形内角和定理。

【分析】应用多边形的内角和为(n -2)180°,扇形的面积公式求解:设每个扇形的圆心角为x ,多边形为n 边形, 则花台占地面积总面积=()2n 2180212360ππ-⨯=,解得n=8。

∴建造这些花台共需资金=400×8=3200元。

故选C 。

3. (重庆市2003年4分)在平行四边形ABCD 中,AB=6,AD=8,∠B 是锐角,将△ACD 沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于【】A.48 B...4. (重庆市2004年4分)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为【】A B C D、1a 4⎫⎪⎭5. (重庆市大纲卷2005年4分)如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB于点N ,则DM N S ∶ANM E S 四边形等于【 】A 、1∶5 B、1∶4 C、2∶5 D、2∶7【答案】A 。

2012年重庆中考数学试卷(解析版)

2012年重庆中考数学试卷(解析版)

2012年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内). 1.(2012重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .2 考点:有理数大小比较。

解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3. 故选A . 2.(2012重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。

解答:解:A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选B .3.(2012重庆)计算()2ab 的结果是( )A .2abB .b a 2C .22b a D .2ab 考点:幂的乘方与积的乘方。

解答:解:原式=a 2b 2. 故选C . 4.(2012重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20° 考点:圆周角定理。

解答:解:∵OA⊥OB, ∴∠AOB=90°, ∴∠ACB=45°. 故选A . 5.(2012重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 考点:全面调查与抽样调查。

解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查; B 、数量较大,具有破坏性的调查,应选择抽样调查; C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查. 故选C . 6.(2012重庆)已知:如图,BD 平分∠ABC,点E 在BC 上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30° 考点:平行线的性质;角平分线的定义。

重庆市近五年中考数学试题分析

重庆市近五年中考数学试题分析

重庆市近五年中考数学试题分析近五年重庆市中考数学试题与重庆市教科院发布的考试说明基本一致,试卷的结构稳定,考查的内容每年有少量变化,从题型到考试内容基本固定,在13年,选择题和解答题变化较大。

选择题由过去的10道增加到12道,解答题从10个减至8个。

25题减少了原来比较复杂上的计算和跟数学知识联系不紧密的背景材料,减少了相关阅读量。

由于13年的雅安地震,反比例函数解答题改为一元二次方程运用题。

总体难度逐年有所增加。

1、题型与题量:全卷均为满分150分,三种题型,26个题,其中选择题10个,填空题6个,解答题10个,解答题中第三大题4个小题,每小题6分,第四大题4个小题,每小题10分,第五大题2个小题,共22分。

三种题型的分值比是40:24:86。

占比略为26%、16%、58%。

试卷总体难度安排略为6:2:2,容易题安排在1—7、11—14、17—22小题;中档题安排在8—9、15、23—24小题;较难题为10、16、25、26小题。

2、考察知识情况:3、评析:重庆市近五年的中考数学试题体现了新课程理念的基本要求,在学生已有知识经验和与知识体系相关的现实背景中,考查了基础知识和基本技能、数学活动过程、数学思考、解决问题能力,试题突出考查了学生运用数学知识解决实际问题的能力,加大了对学生后继学习潜能的考查,对方程与不等式、函数与图象、图形变换与坐标、统计与概率等重点内容进行了重点考查,无偏题、怪题,这些数学试题还对学生的情感、态度、价值观的形成起到了积极的引导与影响作用,让学生切实感受到了现实生活中存在大量数学知识信息,数学在现实世界中有着广泛的应用。

试题引导了学生关注社会,关注生活,体现了数学的运用价值,考查了学生在生活中运用数学的意识。

天津市2001-2012年中考数学试题分类解析 专题9 三角形

天津市2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年天津市中考数学试题分类解析汇编(12专题)专题9:三角形一、选择题1.(天津市2002年3分)sin450的值等于【 】(A )12 (B (C (D )1 【答案】B 。

【考点】特殊角的三角函数值。

【分析】根据特殊角度的三角函数值解答即可:sin45°=2B 。

2.(天津市2002年3分)如图,在ΔABC 中,AB=AC,∠A=360,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有【 】(A )6个 (B )7个 (C )8个 (D )9个 【答案】D 。

【考点】等腰三角形的判定和性质,三角形内角和定理,角平分线的性质。

【分析】由已知条件,根据等腰三角形的性质和判定,角的平分线的性质,三角形内角和等于180°得到各个角的度数,应用度数进行判断即可:∵AB=AC,∠A=36°,∴△ABC 是等腰三角形,且∠ABC=∠ACB=00180362=72°。

∵BD 是∠ABC 的角的平分线,∴∠ABD=∠DBC=12∠ABC=36°=∠A。

∴AD=BD。

∴△ADB 是等腰三角形。

同理,△AEC 是等腰三角形。

∵∠DBC=36°,∠ACB=72°,∴∠BDC=180°-72°-36°=72°=∠ACB。

∴BD=BC。

∴△BDC 是等腰三角形。

同理,△BCE 是等腰三角形。

∵∠FBC=∠FCB=36°, ∴BF=CF。

∴△BCF 是等腰三角形。

∵∠BEF=∠BFE=∠CDF=∠CFD=72°,∴BE=BF,CD=CF 。

∴△BEF,△CDF 是等腰三角形。

∴共8个等腰三角形。

故选D 。

3.(天津市2003年3分)sin30°的值等于【 】(A )12 (B )2 (C (D )1 【答案】D 。

【中考12年】重庆市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)

【中考12年】重庆市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)

【中考12年】某某市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)一、选择题1. (某某市2001年4分)下面是某同学在一次测验中解答的填空题:(1)若x 2=a 2,则x =a .(2)方程2x (x -1)=x -l 的解为x =0.(3)若直角三角形有两边长分别为3和4,则第三边的长为5. 其中答案完全正确的题目个数为【 】. A .0个 B .1个 C .2个 D .3个2. (某某市2002年4分)已知关于x 的不等式2x a 3-≥-的解集如图所示,则a 的值等于【 】A 0B 1C -1D 2 【答案】B 。

【考点】解一元一次不等式,在数轴上表示不等式的解集。

【分析】把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值:由2x a 3-≥-,解得a 3x 2-≥。

∵在数轴上表示的不等式的解集为:x≥-1, ∴a 312-=-,解得a=1。

故选B 。

3. (某某市2002年4分)朝日“世界杯”期间,某某球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排坐B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未满,则A 队有出租车【 】辆 A 11 B 10 C 9 D 84.(某某市2003年4分)下列一元二次方程中,没有实数根的是【 】A .2x 2x 10+-=B .2x 22x 20++=C .2x 22x+10+=D .2x x 20++= 【答案】D 。

【考点】一元二次方程根的判别式。

【分析】判断上述方程的根的情况,只要计算每个方程的判别式△=b2-4ac 的值的符号即可:选项A :∵22b 4ac 24118∆=-=-⨯⨯-=()>0,∴有两个不相等的实根;选项B :∵22b 4ac 224120∆=-=-⨯⨯=(),∴有两个相等的实根;选项C :∵22b 4ac 224114∆=-=-⨯⨯=()a >0,∴有两个不等的实根;选项D :∵22b 4ac 14127∆=-=-⨯⨯=-,∴方程没有实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1. (重庆市2001年4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是【 】.A .带①去B .带②去C .带③去D .带①和②去2. (重庆市2002年4分)如图,⊙O 为△ABC 的内切圆,∠C=90度,OA 的延长线交BC 于点D ,AC=4,CD=1,则⊙O 的半径等于【 】A54 B45 C43 D65【答案】A 。

【考点】三角形的内切圆与内心,相似三角形的判定和性质。

【分析】设圆O 与AC 的切点为M ,圆的半径为r ,如图,连接OM 。

∵∠C=90°,∴CM=r。

∵△AOM∽△ADC,∴OM:CD=AM :AC ,即r:1=(4-r):4,解得r=45。

故选A。

3. (重庆市2003年4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为【】A.152B.154C.3 D.834. (重庆市2003年4分)如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为【】A.1个 B.2个 C.3个 D.4个5. (重庆市2003年4分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=15,则AD 的长是【 】A B .2 C .1 D .6. (重庆市2004年4分)如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为【 】A 、311 B 、113 C 、119 D 、9117. (重庆市2004年4分)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为【 】A 、π米B 、π2米C 、π34米 D 、π23米8. (重庆市大纲卷2005年4分)如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则DMN S ∆∶ANMES 四边形等于【 】A 、1∶5 B、1∶4 C、2∶5 D、2∶7 【答案】A 。

【考点】三角形中位线定理,相似三角形的判定和性质,特殊元素法的应用。

【分析】∵DE 是△ABC 的中位线,∴DE∥BC,DE=12BC 。

若设△ABC 的面积是1,根据DE∥BC,得△ADE∽△ABC, ∴S △ADE =14。

连接AM ,根据题意,得S △ADM =12S △ADE =18。

∵DE∥BC,DM=14BC ,∴DN=14BN 。

∴DN=13BD=13AD 。

∴S △DNM =13S △ADM =124,∴S 四边形ANME =11424=524。

∴S △DMN :S 四边形ANME =124:524=1:5。

故选A 。

9. (重庆市2008年4分)若△ABC∽△DEF,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为【 】A 、2∶3 B、4∶9 C、2∶3 D 、3∶2二、填空题1. (重庆市2001年4分)已知,如图,在△ABC 中,AB =15cm ,AC =12cm ,AD 是∠BAC 的外角平分线,DE∥AB 交AC 的延长线于点E ,那么CE = ▲ cm .【答案】48。

2. (重庆市2001年4分)如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连结DC,以DC为边作等边△DCE.B、E在C、D的同侧,若AB=2,则BE=▲ .3. (重庆市2002年4分)如图,雨后初晴,一学生在运动场上玩耍,从他前面2m远一块小积水处,他看到了旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生的眼部高度是1.5米,那么旗杆的高度是▲ m。

4. (重庆市2002年4分)已知:如图在△ABC 中,∠A=300,tgB=31,BC=10,则AB 的长为 ▲ 。

【答案】。

【考点】解直角三角形,锐角三角函数定义,特殊角的三角函数值,勾股定理。

【分析】作CD⊥AB,把三角形分解成两个直角三角形,在Rt△BCD 中求CD 的长,进而求出BD ;在Rt△ACD 中利用∠A 的正切求出AD 的长:作CD⊥AB 于D 。

设CD=x ,根据题意BD=3x 。

∴222x 3x 10+=(),解得x=1。

∴BD=3。

∵∠A=30°,x tanA AD=∴AB=AD+BD=5. (重庆市大纲卷2005年3分)如图,在△ABC 中,DE∥BC,若AD AB13=,DE =2,则BC的长为 ▲ 。

6. (重庆市大纲卷2005年3分)如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB的长度为80米,那么点B离水平面的高度BC的长为▲ 米。

7. (重庆市2009年4分)已知△ABC与△DEF相似且面积比为4∶25,则△ABC与△DEF的相似比为▲ .8. (重庆市2010年4分)已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为▲ .【答案】2:3。

【考点】相似三角形的性质。

【分析】根据相似三角形周长和对应线段的比等于相似比的性质直接得结论:△ABC与△DEF的周长比=△ABC与△DEF的相似比=△ABC与△DEF对应中线的比=2:3。

9. (重庆市2011年4分)如图,△ABC中,DE∥BC, DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为▲.10. (重庆市2012年4分)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为▲ .【答案】9:1。

【考点】相似三角形的性质。

【分析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴三角形的相似比是3:1。

∴△ABC与△DEF的面积之比为9:1。

三、解答题1. (重庆市2001年8分)台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【答案】解:(1)∵台风中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,∴距台风中心160千米时的地区受台风影响。

如图,由点A作AD⊥BC,垂足为D。

∵ AB=220,∠B=30°,∴ AD=110(千米)。

由题意,当A点距台风中心不超过160千米时,将会受到台风的影响。

故该城市会受到这次台风的影响。

(2)由题意,当A点距台风中心不超过160千米时,将会受到台风的影响,则AE=AF=160。

当台风中心从E处移到F处时,该城市都会受到这次台风的影响。

由勾股定理得:D E=∴ EF=∵ 该台风中心以15千米/时的速度移动,=(小时)。

15(3)当台风中心位于D处时,A市所受这次台风的风力最大,其最大风力为12-11020=6.5(级)。

2. (重庆市2002年10分)如图,A、B是两幢地平高度相等、隔岸相望的建筑物,B楼不能到达,由于建筑物密集,在A的周围没有开阔地带,为了测量B的高度只能充分利用A 楼的空间,A的各层楼都可到达且能看见B,现仅有的测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线间的夹角)。

(1)请你设计一个测量B楼高度的方法,要求写出测量步骤和必须的测量数据(用字母表示),并画出测量图形;(2)用你测量的数据(用字母表示),写出计算B楼高度的表达式。

【答案】解:(1)①在A的一层测的其对于B楼楼顶的仰角为α;②在A的二层测的其对于B楼楼顶的仰角为β;③用皮尺测得一层到二层的距离为a;计算可得B楼的高度。

(2)设B楼的高度为h,则h h aD F C Etan tanαβ-==,,∵CE=DF,∴可得atanhtan tanααβ=-。

故B楼的高度为atanhtan tanααβ=-。

【考点】解直角三角形的应用(仰角俯角问题),【分析】(1)在A楼上不同的高度选取两点,分别求出其对于B的仰角,再利用仰角构造两个直角三角形。

(2)借助公共边,解即可得B楼的高度。

3. (重庆市课标卷2005年10分)如图,在△ABC中,点E在BC上,点D在AE上,已知∠ABD=∠ACD,∠BDE=∠CDE.求证:BD=CD4. (重庆市课标卷2005年10分)如图,不透明圆锥体DEC放在直线BP所在的水平面上,且BP过底面圆的圆心,其高为,底面半径为2m.某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.【答案】解:(1)过点D 作DF 垂直BC 于点F 。

由题意,得DF=EF=2,BE=4,在Rt△DFB 中,tan∠B=D F B F 243==+,∴∠B=30°。

(2)过点A 作AH 垂直BP 于点H 。

∵∠ACP=2∠B=60°,∴∠BAC=30°。

∴AC=BC=8。

在Rt△ACH 2=∴光源A 距平面的高度为4m 。

5. (重庆市2006年10分)如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC, 且 AE∥BC. 求证:(1)△AEF≌△BCD;(2) EF∥CD.【答案】证明:(1)∵AE∥BC,∴∠A=∠B。

又∵AD=BF,∴AF=AD+DF=BF+FD=BD。

又∵AE=BC ,∴△AEF≌△BCD(SAS )。

(2)∵△AEF≌△BCD,∴∠EFA=∠CDB。

∴EF∥CD。

【考点】全等三角形的判定和性质,平行线的判定和性质。

【分析】(1)要证△AEF≌△BCD,由已知得AE∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD,又因AE=BC,所以△AEF≌△BCD。

(2)根据全等即可求出EF∥CD。

6. (重庆市2007年10分)已知:如图,点B,F,C,E在同一直线上, AC,DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)A B C D E F△≌△;(2)DF=GC.7. (重庆市2007年10分)已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,边结AD、BD,过D作DH⊥AB,垂足为H,交AC于E.(1)若△ABD是等边三角形,求DE的长;(2)若BD=AB,且tan∠HDB=34,求DE的长.8. (重庆市2010年6分)已知:如图,在Rt△ABC中,∠C=90°,AC= 3 .点D为BC边上一点,且BD=2AD,∠ADC=60°求△ABC的周长(结果保留根号)【答案】解:在Rt△ADC中,∵sin∠ADC=A CA D,∴AD=AC32sin AD C sin60==∠︒。

相关文档
最新文档