数学建模实例

合集下载

数学建模简单实例

数学建模简单实例
18
一些简单实例
% 用二分法求山崖高度 k = 0.05; g = 9.81; left = 0.0; right = 3.9; eps = 1.0; while (abs(eps) > 0.1) t2 = (left + right) / 2; t1 = 3.9 - t2; h2 = 340 * t2; h1 = g * (t1 + exp(-k * t1) / k) / k - g / k^2; eps = h1 - h2; if (eps > 0) left = t2; 运行结果为: else >> shanyagaodu1 right = t2; t2 = end 0.1871 end h= t2 63.6130 h = 340 * t2
2 2
A(0,b) 航母,速度V1
θ1 θ2
O
B(0,-b) 护卫舰,速度V2
X
令:
a2 1 2ab h 2 b, r 2 a 1 a 1
10
一些简单实例
则上式可简记成 :
x ( y - h) r y (tan 2 ) x b (护卫舰的路线方程) y (tan 1 ) x b (航母的路线方程)
n
25
an=0
一些简单实例
对第二问:假设还贷k个月后,利率发生了
变化。则第k个月后还应还给银行的总金额
为:
ak= a0(1+r)k-x[(1+r)k-1]/[(1+r)-1]
而我们可以将此总金额作为最初的贷款额,
而需还贷的时间则是n-k个月。
26
D L
间内,车辆仍将向前行驶一段距离 L。
4
一些简单实例

数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。

数学建模简单13个例子

数学建模简单13个例子

出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
则所提问题变为在自然数集上求解方程
7
(2ki 1) 26
i 1
于是,我们有了该问题的数学语言表达——数学模型
求解: 用反证法容易证明本问题的解不存在。
返回
3、相遇问题
某人平时下班总是按预定时间到达某处,然 然后他妻子开车接他回家。有一天,他比平时提早 了三十分钟到达该处,于是此人就沿着妻子来接他 的方向步行回去并在途中遇到了妻子,这一天,他 比平时提前了十分钟到家,问此人共步行了多长时 间?
1、从包汤圆(饺子)
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大? 定性分析
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么?
解法一: 将两天看作一天,一人两天的运动看作一天两人 同时分别从山下和山顶沿同一路径相反运功,因为两 人同时出发,同时到达目的地,又沿向一路径反向运 动,所以必在中间某一时刻t两人相遇,这说明某人在 两天中的同一时刻经过路途中的同一地点。

生活中的若干建模实例3

生活中的若干建模实例3

p1 p2 这时不公平程度可用 来衡量。 n1 n2 如 p1 120, p2 100, n1 n2 10 p1 p2 则 2 n1 n2
又如 p1 1020, p2 1000, n1 n2 10
pபைடு நூலகம் p2 不妨设 > n1 n2
p1 p2 则 2 n1 n2
显然 p1 - p2 只是衡量的不公平的绝对程度,但是
Q1最大,于是这1席应分给甲系.
Q3最大,于是这1席应分给丙系.
评注
1.席位的分配应对各方都要公平 2.解决问题 的关键在于建立衡量公平程度既合 理又简明的数量指标。 这个模型提出的相对不公平值 它是确定分配方案的前提.
rA , rB
§3 双层玻璃窗的功效问题
我们注意到北方有些建筑物的窗户是双层的,即 窗户装两层玻璃且中间留有一定空隙,如图所示 墙 墙
当总席位增加1席时,计算
Qi p i2 ni ( ni 1) , i =1,2, ,m
则增加的一席应分配给Q值大的一方. 这种席位分配的方法称为Q值法. 下面用Q值法重新讨论本节开始提出的甲乙 丙三系分配21个席位的问题.
先按照比例将整数部分的19 席分配完毕,有
n1 10,n2 6,n3 3
由假设(3),任何位置至少有三只脚着地,所以 对于任意的θ, f ( ), g( ) 至少有一个为0.
当θ=0时,不妨设
g(0) 0, f (0) 0
这样改变椅子的位置使四只脚同时着地就归结 为证明如下的数学命题:
已知f ( )和g ( )都是 的连续函数,对任意 , f ( ) g ( ) 0且g ( 0) 0,f ( 0) 0,则存在 0使 f ( 0 ) g ( 0 ) 0

简单数学建模100例

简单数学建模100例

“学”以致用-----简单数学建模应用问题100例数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。

但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。

为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。

数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。

一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。

模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

简单数学建模实例

简单数学建模实例

简单数学建模实例随着社会和科技的发展,数学建模已经越来越成为各个领域的重要手段。

而简单数学建模实例的模拟与实验,也成为了学生学习数学和拓展实际应用的重要方式。

在此,我们将为大家介绍一些简单的数学建模实例。

(一)瓶子里的气体假设一个恒定体积的瓶子装满的气体,其中含有 x % 的氮气,y % 的氧气和 z % 的二氧化碳。

现在在瓶子中加入一定量的氧气,使得瓶子中氮气的百分比降至 v %。

问原瓶子中氧气的百分比是多少?这个问题只需要列出守恒方程即可:氧气的质量与氮气和二氧化碳的质量之和等于瓶子中气体的总质量。

再加上一个初始状态的方程,就可以得到两个关于 y 和 z 的一元二次方程,解它们即可。

(二)小球的弹性碰撞两个小球,一个重量为 m1,在速度为 v1 的情况下运动;另一个球的重量为 m2,在速度为 v2 的情况下静止。

两个小球弹性碰撞后,速度分别为 u1 和 u2。

问 u1 和 u2 在什么情况下相等?这个问题需要利用动能守恒和动量守恒的规律,分别列出两个守恒方程,然后解方程即可。

其中,动能守恒方程是指碰撞前后的总动能是守恒的;动量守恒方程是指碰撞前后的总动量也是守恒的。

(三)植物生长的模拟植物的生长是与光、水、温度等因素有关的,而光照强度、水分充足和温度适宜是保证植物生长的基本条件。

因此,我们可以利用数学方法,建立植物生长与光照强度、水分和温度之间的关系模型。

具体地说,我们可以将光照强度、水分和温度三个因素定量化,例如化学计量法,然后建立该物种的生长速度与光照强度、水分和温度之间的函数关系。

最后,可以通过改变各个因素来预测植物的生长速度。

(四)自然灾害预测自然灾害如洪水、地震、气象灾害等都是由物理或化学规律导致的,因此可以利用数学方法,预测或模拟这些自然灾害。

例如,可以通过建立地震发生的概率模型,分析地震的分布规律和发生的时间等信息,从而预警或预测地震。

在预测洪水方面,我们可以通过搜集洪水历史数据、雨量和地下水位等信息,建立预警模型。

数学建模各类实际问题实例

数学建模各类实际问题实例

一 北京飞至底特律的航程计算北京0A (北纬40°,东经116°),底特律坐标11A (北纬43°,西经83°), 纬度以北为正,南为负;经度以东为正,西为负。

而且以下计算中,飞机航线途中站点经纬度用表一的数据。

表一站点 A 0 A 1 A 2 A 3 A 4 A 5 纬度B (°) 40 31 36 53 62 59 经度L (°)116 122 140 -165 -150 -140 站点 A 6 A 7 A 8 A 9 A 10 A 11 纬度B (°) 55 50 47 47 42 43 经度L (°)-135-130-125-122-87-83设椭球体上任意两点10,2,1,0),,(),,(111 =+++i L B A L B A i i i i i i ,⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-=-=+++++).sin(),cos (cos )(),sin (sin )(1311221121i i i i i i i i i i L L n tgB L tgB L a b n tgB L tgB L a b n 其中a =6388千米,b =6367千米,21032221,||n n arctgn n n n =+=ϕ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++=++=2022202022220222)(sin )sin(sin )(sin cos )(sin b L n a L abn z L b L n a ab y Lb L n a ab x ϕϕϕϕ曲面上两点的弧长公式用|)()()(|21222dL L z L y L x S L L ⋅'+'+'=⎰。

试求北京至底特律的航程,你能对上述公式进行简化处理吗?精度如何?二 抢渡长江选手的竞游路线图用⎪⎪⎩⎪⎪⎨⎧=+=θθsin )(cos u dt dy y v u dt dx,初始条件为:⎪⎪⎩⎪⎪⎨⎧====HT y L T x y x )()(0)0(0)0( 画出)(x y y =的图像 。

简单数学建模应用例子

简单数学建模应用例子

5
建模实例
图中椅脚连线为正 方形ABCD,对角线 AC与x轴重合 椅子 绕中心点旋转角度 后,正方形ABCD转 至A`B`C`D`的位置, 所以对角线AC与x
2024/5/10
6
建模实例
轴的夹角 表示了椅子的位置。 其次要把椅子脚着地,用数学符号表示出 来,如果用某个变量表示椅脚与地面的竖 直距离,那么当这个距离为零时就是椅脚 着地了,椅子在不同的位置椅脚与地面的 距离不同,所以这个距离就是位置变量 的 函数。
2024/5/10
27
建模实例
阻滞增长模型(Logistic模型)
将增长率r表示为人口x(t)的函数r(x),按照前 面的分析,r(x)应是x的减函数。一个最简单的 假设是设 r(x)为x的线性函数, r(x)=r-sx, s>0, 这里r相当于x=0时的增长率,称为固有增长率, 它与指数模型中的增长率r不同,显然,对于 任意的x>0,增长率r(x)<r。为确定系数s的意 义,引入自然资源和环境条件所能容纳的最大 人口数量xm, 称为最大人口容量。
2024/5/10
15
建模实例
安全渡河条件下的状态集称为允许状态集合, 记作S,不难写出
S={(x,y)|x=0, y=0, 1, 2, 3; x=y=1,2} - (1)
记第k次渡船上的商人数为uk ,随从数为vk ,将 二维向量dk = (uk,vk)定义为决策,允许决集合 记作D,由小船的容量可知
2024/5/10
14
建模实例
用状态变量表示某一岸的人员状况,决策变量 表示船上的人员状况,可以找出状态随决策变 化的规律。问题转化为在状态的充许变化范围 内,确定每一步的决策,达到渡河的目标 模型的过成: 记第k次渡河前此岸的商人数为xk随从数为yk, k=1,2,……,xk , yk =0,1,2,3,将二维向量 sk=(xk,yk)定义为状态,

数学教学中的数学建模案例

数学教学中的数学建模案例

数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。

在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。

本文将介绍几个数学建模在数学教学中的典型案例。

案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。

为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。

首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。

然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。

通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。

在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。

学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。

这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。

案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。

如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。

我们可以以某个路口的交通流问题为例。

假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。

首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。

然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。

在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。

学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。

通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。

案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。

3.数学建模之优化模型实例

3.数学建模之优化模型实例

3.数学建模之优化模型实例3.优化模型实例数学建模资料优化建模例1 钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。

从钢管厂进货时得到的原料钢管都是19米长。

1) 现有一客户需要50根4米长、20根6米长和15根8米长的钢管。

应如何下料最节省?2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要1)中的三种钢管外,还需要10根5米长的钢管。

应如何下料最节省?数学建模资料优化建模问题1)的求解问题分析首先,应当确定哪些切割模式是可行的。

所谓一个切割模式,是指按照客户需要在原料钢管上安排切割的一种组合。

例如,我们可以将19米长的钢管切割成3根4米长的钢管,余料为7米显然,可行的切割模式是很多的。

其次,应当确定哪些切割模式是合理的。

通常假设一个合理的切割模式的余料不应该大于或等于客户需要的钢管的最小尺寸。

在这种合理性假设下,切割模式一共有7种,如表1所示。

数学建模资料优化建模表1 钢管下料的合理切割模式4米钢管根数6米钢管根数8米钢管根数余料(米) 4 0 0 3 3 1 0 1 2 0 1 3模式1 模式2 模式3 模式4 模式5 模式6 模式71 1 0 02 13 00 1 0 23 1 1 3数学建模资料优化建模问题化为在满足客户需要的条件下,按照哪些种合理的模式,切割多少根原料钢管,最为节省。

而所谓节省,可以有两种标准,一是切割后剩余的总余料量最小,二是切割原料钢管的总根数最少。

下面将对这两个目标分别讨论。

数学建模资料优化建模模型建立决策变量用xi 表示按照第i种模式(i=1, 2, 。

, 7) 切割的原料钢管的根数,显然它们应当是非负整数。

决策目标以切割后剩余的总余料量最小为目标,则由表1可得Min Z13x1 x2 3x3 3x4 x5 x6 3x7(32)以切割原料钢管的总根数最少为目标,则有Min Z 2 x1 x2 x3 x4 x5 x6 x7(33)下面分别在这两种目标下求解。

数学建模建模实例

数学建模建模实例
min f = ∑∑ cij xij
s.t.
m n
n
i =1 j =1
∑x
j =1 m i =1
ij
≤ ai = bj
i=1,2,…,m J=1,2,…,n i=1,…,m;j=1,…,n
∑x
ij
xij ≥ 0
ห้องสมุดไป่ตู้
5.当销量之和大于产量之和时 这类运输问 当销量之和大于产量之和时,这类运输问 当销量之和大于产量之和时 题称为销大于产的运输问题,其数学模型为 销大于产的运输问题 题称为销大于产的运输问题 其数学模型为
min f = ∑∑ cij xij
s.t.
m n
∑x
j =1 m i =1
n
i =1 j =1
ij
= ai = bj
i=1,2,…,m J=1,2,…,n i=1,…,m;j=1,…,n
∑x
ij
xij ≥ 0
1.产地产量之和与销地销量之和相等的运输 产地产量之和与销地销量之和相等的运输 产地产量之和与销地销量之和 产销平衡运输问题. 问题称为产销平衡运输问题 问题称为产销平衡运输问题 2.约束条件数是产地数与销地数之和 约束条件数是产地数与销地数之和m+n 约束条件数是产地数与销地数之和 3.决策变量数是产地数与销地数之积 决策变量数是产地数与销地数之积m n 决策变量数是产地数与销地数之积 4. 产量之和大于销量之和时 有产大于销的运 产量之和大于销量之和时,有产大于销的运 输问题,其数学模型为 输问题 其数学模型为
f =21x11+25x12+7x13+15x14+51x21+51x2237x23+15x24 约束条件: 约束条件 x11+x12+x13+x14=2000 x21+x22+x23+x24=1100 x11+x21=1700 x12+x22=1100 x13+x23=200 x14+x24=100 xij ≥ 0, i=1,2; j= 1,2,3,4

数学建模优化建模实例【精选】

数学建模优化建模实例【精选】

x1=80,x2= 150,x3=0,最优值z=610 8
• 若生产某类汽车,则至少生产80辆,求生产计划。
方法2:引入0-1变量,化为整数规划
x1=0 或 80 x2=0 或 80 x3=0 或 80
x1 My1, x1 80 y1, y1 {0,1} M为大的正数,
x2 My2, x2 80 y2, y2 {0,1} 可取1000
4
25
20
合计
100
135
成本(千元/千箱)
5.0 5.1 5.4 5.5
• 剩余产品需要支付贮存费,每周0.2千元/千箱;
应如何安排计划,在满足每周市场需求的条件下,使 四周的总费用最小 ?
11
问题分析
周次 1 2 3 4
合计
需求 15 25 35 25 100
能力 30 40 45 20 135
现有量 600 60000
• 制订月生产计划,使工厂的利润最大。
• 由于各种条件限制,如果生产某一类型汽车,则至少 要生产80辆,那么最优的生产计划应作如何改变。
6
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
成本 5.0 5.1 5.4 5.5
• 除第4周外每周的生产 能力超过每周的需求; • 生产成本逐周上升; •前几周应多生产一些。
模 • 饮料厂在第1周开始时没有库存;
型 • 从费用最小考虑, 第4周末不能有库存;
假 设
• 周末有库存时需支出一周的存贮费;
3500
2850
如何装运, 使本次飞行 获利最大?

数学建模实验报告经典实例

数学建模实验报告经典实例

《数学建模》实验报告计算过程如下, 结果如下:画图程序命令如下:函数图象如下:实验题目二: 编写利用顺序Guass消去法求方程组解的M-函数文件,并计算方程组的解解: M-函数文件如下:方程组的计算结果如下:实验题目三: 编写“商人们安全过河”的Matlab程序解: 程序如下:function foot=chouxiang%%%%%%%%%%%%%%%%%%%%%% 程序开始需要知道商人数, 仆人数, 船的最大容量n=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');if nn>nn=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 决策生成jc=1; % 决策向量存放在矩阵“d”中, jc为插入新元素的行标初始为1for i=0:nnnfor j=0:nnnif (i+j<=nnn)&(i+j>0) % 满足条件D={(u,v)|1<=u+v<=nnn,u,v=0,1,2}d(jc,1:3)=[i,j 1]; %生成一个决策向量后立刻将他扩充为三维(再末尾加“1”)d(jc+1,1:3)=[-i,-j,-1]; % 同时生成他的负向量jc=jc+2; % 由于一气生成两个决策向量,jc指标需要往下移动两个单位endendj=0;end再验证:程序结果说明在改变商人和仆人数目, 其他条件不变的条件下。

可能无法得到结果。

程序结果说明在改变商人和仆人数目,其他条件不变的条件下。

可能无法得到结果。

两个数学建模实例

两个数学建模实例

3. 每天油价250美元/吨,日固定开支1000美元。
上一页
下一页
主 页
返 回
两个数学建模实例
模型建立
一次航行所需费用:总油耗+固定开支
希望总花费最小。
1)容易算出每天工作的时数:
L 9.6(h / 天), v0 8 v0 20 n mile / h
50 k 3 20
2)比例系数:
上一页
两个数学建模实例 例1:录像机计数器的用途
一盘录像带从头到尾,时间用了183分30秒,计 数器读数从0000变到6152。能否建立计数器读数与 录像带转过时间的关系?由此计数器可以起到记录 时间的作用。请看下列的工作原理图。
右轮盘 左轮盘 主动轮 录象带
0000
计数器
磁头
压轮
上一页
下一页
主 页
返 回
盘半径为 r;
上一页 下一页 主 页 返 回
两个数学建模实例
模型建立
建立 t 与 n 之间的关系有多种途径,譬如:
一、当右轮盘转到第i圈时,其半径为r + wi,周长为 2π(r + wi),m圈的总长度恰好等于录象带转过的长度 vt。(w << r)即
2 (r wi) vt,
i 1
下一页
主 页
返 回
两个数学建模实例
模型建立
总油耗:
L 50v3 T1 3 250 9.6 v 20
L T2 1000 9.6 v
固定开支:
总费用:
L 50v3 L min T T1 T2 3 250 1000 9.6 v 20 9.6 v
m
且m kn

常用数学建模方法及实例

常用数学建模方法及实例

常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。

常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。

一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。

它常用于资源分配、生产计划、供应链管理等领域。

例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。

产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。

工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。

公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。

二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。

整数规划常用于离散决策问题。

例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。

公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。

它广泛应用于经济、金融和工程等领域。

例3:公司通过降低售价和增加广告费用来提高销售额。

已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。

已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。

四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。

例4:求解最短路径问题。

已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。

求从起始城市到目标城市的最短路径。

五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。

数学建模的简单实例

数学建模的简单实例

,
x4
,
x5
)
xi xi
1,2,3,4,5,6, xi1 4, i
i
1,2,3,4,5;
1,2,3,4
求A
9
模型的递推解法
问题的工艺要求只牵涉相邻两槽中弹子个数的差异 因此, 可以考虑前n 1槽已构成锁具, 再添加第n个槽
时仍能构成锁
构造集合
An
(
x1
,
x2 ,,
xn )
xi xi
1,2,3,4,5,6, xi1 5, i
新建B5 不建B5
;
y jk B j到C k的运量;
16
2 55
5 55
min z
cij xij
dkj ykj e11 e2 2 e3 3 e5 5
s.t.
i1 j1
k 1 j6
55
xij Qi i 1,2, (生产能力限制)
j 1
55
2
ykj xik , k 1,2,3,4,5, (仓库输出限制)
3
方桌问题的数学模型
已知: f ( )及g( )非负连续 且对有f ( ) g( ) 0
求证: 存在, 使f ( ) g( ) 0
4
证明: 为确定起见, 无妨设g(0) 0
1、 若f (0) 0, 取 0, 即得证。 2、 若f (0) 0, 构造函数h( ) f ( ) g( )
)在


间[0,
2
]上








部条

于 是存 在 (a, b)使h( ) f ( ) g( ) 0 又由已知有f ( ) g( ) 0

利用数学模型解决生活实际问题实例

利用数学模型解决生活实际问题实例

利用数学模型解决生活实际问题实例随着科学技术特别是信息技术的高速发展,数学的应用价值越来越受到人们的重视。

利用数学知识解决生活中的实际问题已成为当今数学界普遍关注的课题。

因此,学生只掌握书本知识已不能满足社会的需求。

教师应引导学生把所学的数学知识与生活中的实际问题相结合,开展数学建模活动应成为数学教学的重要方法之一。

所谓数学建模是用数学方法建立数学模型。

数学模型是反映特定的具体实体的内在规律性的数学结构,它是从客观原型中抽象概括出来的完全形式化和符号化了的模型,它比原形简单,又高于原形。

因此,利用数学建模解决数学问题,往往会收到事半功倍的效果,下面举例对其加以浅析。

【图1】例1:(如图1),是一块长方形绿地,如果绿地长AB=40米,宽BC=20米,那么A、C两点间的距离是多少?解析:要解决上述问题,只需以AB、BC为直角边,AC为斜边建立一个直角三角形数学模型(如图2所示),然后利用勾股定理进行计算。

【图2】例2:一个游戏题,甲、乙、丙、丁与小强五位同学一起比赛下象棋,到现在为止,甲赛了四盘,乙赛了三盘,丙赛了两盘,丁赛了一盘,小强赛了几盘?解析:此题若建立数学模型,画出图形,答案将一目了然。

用点A、B、C、D、E分别表示甲、乙、丙、丁、小强,两人间的比赛用线段连接,那么根据题意,可建立如图3所示的数学模型,这样,小强赛了几盘的问题就转变成了从E点出发连了几条线段的问题。

由图3可知,从E点出发的线段有两条,所以小强只赛了两盘。

【图3】例3:某校参加数学竞赛的学生中有120名男生、80名女生,参加英语竞赛的有120名女生、80名男生,已知该校共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么参加了数学竞赛而没有参加英语竞赛的女生有多少人?解析:这个问题的已知条件比较复杂,但倘若我们画出如图4所示的数学模型,用A、B两个圆分别表示参加数学竞赛的男、女生人数,C、D两个圆分别表示参加英语竞赛的男、女生人数,那么问题将迎刃而解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。

以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。

2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。

3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。

4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。

5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。

6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。

7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。

相关文档
最新文档