相似三角形的应用例析
高中数学如何利用相似三角形解几何题

高中数学如何利用相似三角形解几何题在高中数学中,几何题是一个重要的考点,而相似三角形是解决几何问题的常用方法之一。
相似三角形是指两个三角形的对应角相等,并且对应边成比例。
利用相似三角形可以简化几何问题的解决过程,提高解题效率。
本文将以具体的题目为例,详细介绍如何利用相似三角形解决几何题,并给出一些解题技巧和指导。
首先,我们来看一个典型的相似三角形题目:【例题】如图,已知∠A=∠D,∠B=∠C,且AC平分∠DAB,证明:△ABC∽△DCB。
解析:根据题目中的已知条件,我们可以得到∠A=∠D,∠B=∠C,以及AC 平分∠DAB。
要证明△ABC∽△DCB,需要证明对应的角相等,并且对应的边成比例。
首先,我们证明∠A=∠D。
根据已知条件,AC平分∠DAB,所以∠DAC=∠BAC。
又因为∠BAC=∠C,所以∠DAC=∠C。
而∠DAC和∠C都是△DCB中的角,所以∠A=∠D。
接下来,我们证明∠B=∠C。
根据已知条件,AC平分∠DAB,所以∠DAC=∠BAC。
又因为∠DAC=∠A,所以∠BAC=∠A。
而∠BAC和∠A都是△ABC中的角,所以∠B=∠C。
综上所述,我们证明了△ABC和△DCB的对应角相等。
接下来,我们需要证明对应边成比例。
根据已知条件,AC平分∠DAB,所以根据平分线的性质,有$\frac{AD}{DB}=\frac{AC}{CB}$。
又因为∠A=∠D和∠B=∠C,所以根据相似三角形的定义,有$\frac{AD}{DB}=\frac{AC}{CB}$。
即对应边成比例。
综上所述,我们证明了△ABC∽△DCB。
明过程,提高解题效率。
下面,我们再来看一个应用相似三角形的例题。
【例题】如图,已知AB是直径,CD是弦,且∠ACB=30°,求∠CDA的度数。
解析:根据题目中的已知条件,我们可以得到AB是直径,CD是弦,且∠ACB=30°。
要求∠CDA的度数,可以利用相似三角形的性质来解决。
相似三角形的应用举例

O
7.如图:小明想测量一颗大树AB的高度,发现树 的影子恰好落在土坡的坡面CD和地面CB上,测得 CD=4m,BC=10m,CD与地面成30度角,且测得1米竹 杆的影子长为2米,那么树的高度是多少?
A
B
D C
8.为了测量路灯(OS)的高度,把一根长1.5 米的竹竿(AB)竖直立在水平地面上,测得 竹竿的影子(BC)长为1米,然后拿竹竿向远 离路灯方向走了4米(BB‘),再把竹竿竖立 在地面上, 测得竹竿的影长(B‘C‘)为1.8米, 求路灯离地面的高度.
1、判断两三角形相似有哪些方法?
1.定义: 2.定理(平行法): 3.判定定理一(边边边):
4.判定定理二(边角边):
5.判定定理三(角角):
2、相似三角形有什么性质?
对应角相等,对应边的比相等
胡夫金字塔是埃及现存规模最大的金字塔,被喻为 “世界古代七大奇观之一”。塔的4个斜面正对东南西北 四个方向,塔基呈正方形,每边长约230多米。据考证, 为建成大金字塔,共动用了10万人花了20年时间.原 高146.59米,但由于经过几千年的风吹雨打,顶端 被风化吹蚀.所以高度有所降低 。
解: 因为 ∠ADB=∠EDC,
AB BD 那么 EC DC
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
B
D
C
E
BD EC 120 50 解得AB 100(米) DC 60 答: 两岸间的大致距离为100米.
练习: 如图,测得BD=120m, DC=60m,EC=50m,求河 宽AB. A
O
O′
A
A′
B′
B
例1:如果O′B′=1,A′B′=2,AB= 274,求金字塔的高度OB. 解:由于太阳光是平行光线, 因此∠OAB=∠O′A′B′. 又因为 ∠ABO=∠A′B′O′=90°. 所以 △OAB∽△O′A′B′, OB∶O′B′=AB∶A′B′,
相似三角形的性质及应用(知识点串讲)(解析版)

专题12 相似三角形的性质及应用知识网络重难突破知识点一相似三角形的性质①对应角相等,对应边成比例.②周长之比等于相似比;面积之比等于相似比的平方.③对应高线长之比、对应角平分线长之比、对应中线长之比都等于相似比.【典例1】(2020•衢州模拟)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为.【点拨】由四边形ABCD和四边形ACED都是平行四边形,易证得△BCP∽△BER,△ABP∽△CQP∽△DQR,又由点R为DE的中点,可求得各相似三角形的相似比,继而求得答案.【解析】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥CD,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BER,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.【点睛】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟记相似三角形的面积比等于相似比的平方是解题的关键.【典例2】(2019秋•河北区期末)如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.【点拨】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)依据△ADE∽△ABC,利用相似三角形的周长之比等于对应高之比,即可得到结论.【解析】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC;(2)由(1)可得△ADE∽△ABC,又∵AG⊥BC于点G,AF⊥DE于点F,∴△ADE与△ABC的周长之比==.【点睛】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.【变式训练】1.(2020春•甘州区校级月考)两个相似三角形面积比是4:9,其中一个三角形的周长为24cm,则另一个三角形的周长是()cm.A.16 B.16或28 C.36 D.16或36【点拨】根据相似三角形的性质求出相似比,得到周长比,根据题意列出比例式,解答即可.【解析】解:∵两个相似三角形面积比是4:9,∴两个相似三角形相似比是2:3,∴两个相似三角形周长比是2:3,∵一个三角形的周长为24cm,∴另一个三角形的周长是16cm或36cm,故选:D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.2.(2019秋•慈溪市期末)如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°【点拨】先求出∠B,根据相似三角形对应角相等就可以得到.【解析】解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C.【点睛】本题考查相似三角形的性质的运用,全等三角形的对应角相等,是基础知识要熟练掌握.3.(2019秋•奉化区期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB,若AB=3BD,则S△ADE:S△EFC的值为()A.4:1 B.3:2 C.2:1 D.3:1【点拨】由题意可证四边形BDEF是平行四边形,可得BD=EF,AD=2EF,通过证明△ADE∽△EFC,可求解.【解析】解:∵AB=3BD,∴AD=2BD,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴BD=EF,∴AD=2EF,∵DE∥BC,EF∥AB,∴∠AED=∠C,∠FEC=∠A,∴△ADE∽△EFC,∴S△ADE:S△EFC的=()2=4:1,故选:A.【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.4.(2020•下城区模拟)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.3【点拨】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【解析】解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5.(2019•纳溪区模拟)如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.9【点拨】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【解析】解:延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDE,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=7.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.6.(2020•杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【点拨】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解析】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.【点睛】本题考查了相似三角形的判定与性质、平行线的性质等知识;熟练掌握相似三角形的判定与性质是解题的关键.知识点二相似三角形的应用【典例3】(2019秋•解放区校级期中)一块直角三角形木板的面积为1.5m2,一条直角边AB为1.5m,怎样才能把它加工成一个无拼接的面积最大的正方形桌面?甲、乙两位木匠的加工方法如图所示,请你用所学的知识说明哪位木匠的方法符合要求(加工损耗不计,计算结果中的分数可保留)【点拨】结合相似三角形的判定与性质进而得出两个正方形的边长,进而求出面积比较得出答案.【解析】解:由AB=1.5m,S△ABC=1.5m2,可得BC=2m,由图甲,过点B作Rt△ABC斜边AC上的高,BH交DE于P,交AC于H.由AB=1.5m,BC=2m,得AC==2.5(m),由AC•BH=AB•BC可得:BH==1.2(m),设甲设计的桌面的边长为xm,∵DE∥AC,∴Rt△BDE∽Rt△BAC,∴=,即=,解得x=(m),由图乙,若设乙设计的正方形桌面边长为ym,由DE∥AB,得Rt△CDE∽Rt△CBA,∴=,即=,解得y=(m),∵x=,y=,∴x<y,即x2<y2,∴S正方形甲<S正方形乙,∴第二个正方形面积大【点睛】此题主要考查了相似三角形的应用,正确表示出正方形的边长是解题关键.【变式训练】1.(2019秋•嘉兴期末)如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【点拨】证明△CAB∽△CDE,然后利用相似比得到DE的长.【解析】解:∵AB∥DE,∴△CAB∽△CDE,∴=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.2.(2019秋•鹿城区月考)如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4 m B.m C.5m D.m【点拨】根据已知易得△ABM∽△DCM,可得对应高BH与HD之比,易得MH∥AB,可得△MDH∽△ADB,利用对应边成比例可得比例式,把相关数值代入求解即可.【解析】解:∵AB∥CD,∴△ABM∽△DCM,∴===,(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴==,∴=,解得MH=.故选:B.【点睛】此题主要考查了相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比;解决本题的突破点是得到BH与HD的比.3.(2019秋•滨江区期末)如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=30cm,EF=15cm,测得边DF离地面的高度AC=120cm,CD=600cm,则树AB的高度为420cm.【点拨】利用直角三角形DEF和直角三角形BCD相似求得BC的长,再加上AC的长即可求得树高AB.【解析】解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC:EF=DC:DE,∵DE=30cm,EF=15cm,AC=120cm,CD=600cm,∴,∴BC=300cm,∴AB=AC+BC=120+300=420cm,故答案为:420.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.4.(2020•秦皇岛一模)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC 高9m.①计算小亮在路灯D下的影长;②计算建筑物AD的高.【点拨】解此题的关键是找到相似三角形,利用相似三角形的性质,相似三角形的对应边成比例求解.【解析】解:①∵EP⊥AB,CB⊥AB,∴∠EP A=∠CBA=90°∵∠EAP=∠CAB,∴△EAP∽△CAB∴∴∴AB=10BQ=10﹣2﹣6.5=1.5;②∵FQ⊥AB,DA⊥AB,∴∠FQB=∠DAB=90°∵∠FBQ=∠DBA,∴△BFQ∽△BDA∴=∴∴DA=12.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出建筑物AB的高与小亮在路灯D下的影长,体现了方程的思想.巩固训练1.(2019秋•连州市期末)两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm【点拨】根据题意两个三角形的相似比是15:23,可得周长比为15:23,计算出周长相差8份及每份的长,可得两三角形周长.【解析】解:根据题意两个三角形的相似比是15:23,周长比就是15:23,大小周长相差8份,所以每份的周长是40÷8=5cm,所以两个三角形的周长分别为5×15=75cm,5×23=115cm.故选:C.【点睛】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2.(2018秋•临安区期末)如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,H 在BC上,当四边形EFGH是矩形,且EF=2EH时,则矩形EFGH的周长为()A.B.C.D.【点拨】通过证明△AEF∽△ABC,可得,可求EH的长,即可求解.【解析】解:如图,记AD与EF的交点为M,∵四边形EFGH是矩形,∴EF∥BC,∴△AEF∽△ABC,∵AM和AD分别是△AEF和△ABC的高,∴∴∴EH=,∴EF=,∴矩形EFGH的周长=2×(+)=故选:C.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,灵活运用相似三角形的性质是本题的关键.3.(2019秋•庐阳区校级期中)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:4,则S△DOE:S△AOC的值为()A.B.C.D.【点拨】由已知条件易求BE:BC=1:5;证明△DOE∽△AOC,得到DE:AC的值,由相似三角形的性质即可解决问题.【解析】解:∵S△BDE:S△CDE=1:4,∴BE:EC=1:4,∴BE:BC=1:5,∵DE∥AC,∴△DOE∽△AOC,∴DE:AC=BE:BC=1:5,∴S△DOE:S△AOC=()2=,故选:D.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:5是解决问题的关键.4.(2020•上城区一模)如图,△ABC中,D,E两点分别在边AB,BC上,若AD:DB=CE:EB=3:4,记△DBE的面积为S1,△ADC的面积为S2,则S1:S2=16:21.【点拨】过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,根据相似三角形的性质与判定即可求出答案.【解析】解:过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,∴EF∥CG,∴△BEF∽△BCG,∴,∵CE:EB=3:4,∴,∴,∴==,∴S1:S2=16:21,故答案为:16:21.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.5.(2019秋•江干区期末)如图,已知▱ABCD中,E是BC的三等分点,连结AE与对角线BD交于点F,则S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11.【点拨】由E是BC的三等分点,得到=,根据平行四边形的性质得到AD∥BC,AD=BC,根据相似三角形的性质得到==设S△BEF=k,S△ABF=3k,S△ADF=9k,求得S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,得到S四边形CDFE=12k﹣k=11k,于是得到结论.【解析】解:∵E是BC的三等分点,∴=,在▱ABCD中,∵AD∥BC,AD=BC,∴△ADF∽△EBF,∴==,∴S△BEF:S△ABF:S△ADF=1:3:9,设S△BEF=k,S△ABF=3k,S△ADF=9k,∴S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,∴四边形CDFE=12k﹣k=11k,∴S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11,故答案为:1:3:9:11.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质以及面积的计算方法;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.6.(2020•晋安区一模)如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为8.8m.【点拨】根据题意抽象出相似三角形,然后利用相似三角形的对应边的比相等列式计算即可.【解析】解:根据题意得:△ABM∽△CDM,∴AB:CD=BM:DM,∵AB=1.6m,BM:DM=2:11,∴1.6:CD=2:11,解得:CD=8.8m,故答案为:8.8.【点睛】本题考查了相似三角形的知识,解题的关键是根据实际问题抽象出相似三角形,难度不大.7.(2019秋•竞秀区期末)如图,路灯距地面的高度PO=8米,身高1.6米的小明在点A处测量发现,他的影长AM=2.4米,则AO=9.6米;小明由A处沿AO所在的直线行走8米到点B时,他的影子BN 的长度为0.4米.【点拨】如图,设OA=x,BN=y.利用相似三角形的性质构建方程组即可解决问题.【解析】解:如图,设OA=x,BN=y.∵EB∥OP∥F A,∴△MAF∽△MOP,△NBE∽△NOP,∴=,=,∴=,=,解得x=9.6,y=0.4,故答案为9.6,0.4.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.8.(2019秋•开江县期末)如图,学校操场旁立着一杆路灯(线段OP).小明拿着一根长2m的竹竿去测量路灯的高度,他走到路灯旁的一个地点A竖起竹竿(线段AE),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走了4m到达点B,又竖起竹竿(线段BF),这时竹竿的影长BD正好是2m,请利用上述条件求出路灯的高度.【点拨】根据相似三角形的性质即可得到结论.【解析】解:由于BF=DB=2m,即∠D=45°,∴DP=OP=灯高.在△CEA与△COP中,∵AE⊥CP,OP⊥CP,∴AE∥OP.∴△CEA∽△COP,∴.设AP=xm,OP=hm,则,①,DP=OP=2+4+x=h,②联立①②两式,解得x=4,h=10.∴路灯有10m高.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.9.(2019秋•余杭区期末)如图,在△ABC中,点D,E分别在边AC,AB上且AE•AB=AD•AC,连结DE,BD.(1)求证:△ADE∽△ABC.(2)若点E为AB中点,AD:AE=6:5,△ABC的面积为50,求△BCD的面积.【点拨】(1)由已知得出AE:AC=AD:AB,由∠A=∠A,即可得出:△ADE∽△ABC.(2)设AD=6x,则AE=5x,AB=10x,由已知求出AC==x,得出CD=AC﹣AD=x,得出=,由三角形面积关系即可得出答案.【解析】(1)证明:∵AE•AB=AD•AC,∴AE:AC=AD:AB,∵∠A=∠A,∴△ADE∽△ABC.(2)解:∵点E为AB中点,∴AE=BE,∵AD:AE=6:5,∴设AD=6x,则AE=5x,AB=10x,∵AE•AB=AD•AC,∴AC===x,∴CD=AC﹣AD=x,∴=,∵△ABC的面积为50,∴△BCD的面积=×50=14.【点睛】本题考查了相似三角形的判定与性质、三角形面积关系等知识;熟练掌握相似三角形的判定与性质是解题的关键.10.(2018秋•江干区期末)如图,在菱形ABCD中,点E在BC边上(不与点B、C重合),连接AE、BD 交于点G.(1)若AG=BG,AB=4,BD=6,求线段DG的长;(2)设BC=kBE,△BGE的面积为S,△AGD和四边形CDGE的面积分别为S1和S2,把S1和S2分别用k、S的代数式表示;(3)求的最大值.【点拨】(1)证明△BAG∽△BDA,利用相似比可计算出BG=,从而得到DG的长;(2)先证明△ADG∽△EBG,利用相似三角形的性质得=()2=k2,==k,所以S1=k2S,根据三角形面积公式得到S△ABG=,再利用菱形的性质得到S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)由于==1+﹣,然后根据二次函数的性质解决问题.【解析】解:(1)∵AG=BG,∴∠BAG=∠ABG,∵四边形ABCD为菱形,∴AB=AD,∴∠ABD=∠ADB,∴∠BAG=∠ADB,∴△BAG∽△BDA,∴=,即=,∴BG=,∴DG=BD﹣BG=6﹣=;(2)∵四边形ABCD为菱形,∴BC=AD=kBE,AD∥BC,∵AD∥BE,∴∠DAE=∠BEA,∠ADG=∠BEG∴△ADG∽△EBG,∴=()2=k2,==k,∴S1=k2S,∵==k,∴S△ABG=,∵△ABD的面积=△BDC的面积,∴S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)∵==1+﹣=﹣(﹣)2+,∴的最大值为.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.注意相似三角形面积的比等于相似比的平方.也考查了菱形的性质.。
相似三角形题型讲解解析

相似三角形题型讲解相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。
一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。
再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。
评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。
(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线, 求证:△ABC ∽△BCD分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。
借助于计算也是一种常用的方法。
证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72° 又BD 平分∠ABC ,则∠DBC=36°在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36° ∴△ABC∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD,∠BCE=∠BAD 求证:△DBE∽△ABCA B C DEF G 1234ABCD分析:由已知条件∠ABD=∠CBE,∠DBC公用。
所以∠DBE=∠ABC,要证的△DBE和△ABC,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。
相似三角形的性质及应用(解析版)

4.5相似三角形的性质及应用一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABCA B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点:相似三角形的性质是通过比例线段的性质推证出来的. 二、三角形的重心三角形三条中线的交点叫做三角形的重心,三角形的重心分每一条中线成1:2的两条线段.OEFDABC即12OD OE OF OA OB OC === . 要点:H OEFDAB C过点E 作EH ∥BC 交AD 于H ,根据三角形的中位线平行于第三边并且等于第三边的一半可得CD=2EH ,从而得到BD=2EH ,再根据△BDO 和△EHO 相似,利用相似三角形对应边成比例列出比例式计算即可得证1=2OE HE OB BD ,同理其他比例也可以得到. 三、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点:测量旗杆的高度的几种方法:平面镜测量法 影子测量法 手臂测量法 标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC 、BD 、CE 的距离(长度),根据相似三角形的性质,求出AB 的长.2.如乙图所示,可先测AC 、DC 及DE 的长,再根据相似三角形的性质计算AB 的长.要点:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置); 4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角. 一、单选题1.两三角形的相似比是2:3,则其对应角的角平分线之比是( ) A .2:3 B .2:3 C .4:9 D .8:27 【解答】B【提示】根据相似三角形对应角平分线的比等于相似比解答即可. 【详解】解:∵两三角形的相似比是2:3, ∴相似三角形对应角平分线的比是2:3,故选:B .【点睛】本题考查了相似三角形的性质,主要利用了相似三角形对应角平分线的比,对应高的比,对应中线的比都等于相似比的性质.2.已知ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2,若BC 边上的中线长为1,则EF 边上的中线长是( ) A .2 B .2 C .3D .4【解答】A【提示】由ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2可知:相似比为1:2,则对应中线的比为1:2,即可求出答案.【详解】∵ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2 ∴相似比为1:2 ∴其对应中线的比为1:2 ∵BC 边上的中线长为1 ∴EF 边上的中线长是2 故选:A【点睛】本题主要考查了相似三角形的相似比的相关知识点,熟练掌握相似三角形面积比、相似比、对应边的高线、中线的比的关系是解题的关键,属于基础知识题.3.如图点D 、E 分别在△ABC 的两边BA 、CA 的延长线上,下列条件能判定ED ∥BC 的是( ).A .AD DEAB BC =; B .AD AE AC AB =;C .AD AB DE BC ⋅=⋅; D .AD AC AB AE ⋅=⋅. 【解答】D【提示】根据选项选出能推出ADE ABC ∆∆∽,推出D B ∠=∠或E C ∠=∠的即可判断. 【详解】解:A 、∵AD DEAB BC =,EAD BAC ∠=∠,不符合两边对应成比例及夹角相等的相似三角形判定定理. 无法判断ADE ∆与ABC ∆相似,即不能推出//DE BC ,故本选项错误;B 、AD AE AC AB =EAD BAC ∠=∠, ADE ACB ∴∆∆∽,E B ∴∠=∠,D C ∠=∠,即不能推出//DE BC ,故本选项错误;C 、由AD AB DE BC ⋅=⋅可知AB DEBC AD =,不能推出DAE BAC ∆∆∽,即不能推出D B ∠=∠,即不能推出两直线平行,故本选项错误;D 、∵AD AC AB AE ⋅=⋅,AD AEAB AC ∴=,EAD BAC ∠=∠, DAE BAC ∴∆∆∽,D B ∴∠=∠,//DE BC ∴,故本选项正确;故选:D .【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似. 4.已知ABC 与DEF 相似,且A D ∠=∠,那么下列结论中,一定成立的是( ) A .B E ∠=∠ B .AB ACDE DF =C .相似比为AB DED .相似比为BCEF【解答】D【提示】根据相似三角形的性质对不同的对应角和对应边进行分类讨论.【详解】解:∵B 可以与E 对应,也可以与F 对应,∴∠B=∠E 或∠B=∠F ,A 不一定成立; 同上,AB 可以与DE 对应,也可以与DF 对应,∴AB AC DE DF =或AB ACDF DE =,B 不一定成立;同上,AB 可以与DE 对应,也可以与DF 对应,∴相似比可能是AB DE ,也可能是ABDF ,C 不一定成立;∵∠A=∠D ,即∠A 与∠D 是对应角,∴它们的对边一定是对应比,即BC 与EF 是对应比,∴相似比为BCEF ,∴D 一定成立, 故选D .【点睛】本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的. 5.如图,小明站在 C 处看甲、乙两楼楼顶上的点 A 和点 E .C ,E ,A 三点在同一直线上,B ,C 相距 20 米,D ,C 相距 40 米,乙楼的高 BE 为 15 米,小明的身高忽略不计,则甲楼的高 AD 为 ( )A .40 米B .20 米C .15 米D .30 米【解答】D【提示】证明ADC EBC ∽△△,利用相似三角形的性质解答即可. 【详解】解:由题意可知:90ADC ∠=︒,90EBC ∠=︒,C ∠是公共角,∴ADC EBC ∽△△, ∴AD DCEB BC =, ∵20m BC =,40m DC =,15m BE =, ∴40=15=30m 20DC AD EB BC =⨯⨯.故选:D【点睛】本题考查相似三角形的判定及性质,解题的关键是熟练掌握相似三角形的判定及性质. 6.如图,在Rt △ABC 中,90ACB ∠=,CD AB ⊥垂足为D ,那么下列结论错误的是( )A .22AC BD BC AD ⋅=⋅B .22BC BD CD AB ⋅=⋅C .AD BC AC CD ⋅=⋅ D .CD BC AC BD ⋅=⋅ 【解答】B【提示】根据直角三角形的性质与相似三角形的判定可知△ADC ∽△CDB ∽△ACB ,利用相似三角形的对应线段成比例即可求解. 【详解】∵∠ACB=90°,CD ⊥AB , ∴△ADC ∽△CDB ∽△ACB ∴AC2=AD·AB ,BC2=BD·AB ,故22AC BD BC AD ⋅=⋅,A 正确,B 错误;∵△ADC ∽△CDB∴AD AC CDCD BC BD == ∴AD BC AC CD ⋅=⋅,CD BC AC BD ⋅=⋅,C,D 选项正确; 故选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质及相似三角形的判定.7.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1【解答】C【提示】首先证明AG :AB=CH :BC=1:3,推出GH ∥AC ,推出△BGH ∽△BAC ,可得223924ADC BAC BGHBGHS S BA SSBG ()()====,13ADG ADCSS=,由此即可解决问题.【详解】∵四边形ABCD 是平行四边形 ∴AD=BC ,DC=AB , ∵AC=CA , ∴△ADC ≌△CBA , ∴S △ADC=S △ABC ,∵AE=CF=14AC ,AG ∥CD ,CH ∥AD ,∴AG :DC=AE :CE=1:3,CH :AD=CF :AF=1:3, ∴AG :AB=CH :BC=1:3, ∴GH ∥AC , ∴△BGH ∽△BAC , ∴223924ADC BAC BGHBGHS S BA S SBG ()()====,∵13ADG ADCS S=,∴913434ADG BGHS S=⨯=.故选C .【点睛】本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.8.如图,在正方形ABCD 中,ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC 、CP 、AC 与BF 相交于点H ,下列结论中错误的是( )A .AE=2DEB .CFP APHC .CFP APCD .2CP PH PB =⋅【解答】C【提示】A.利用直角三角形30度角的性质即可解决问题. B.根据两角相等两个三角形相似即可判断.C.通过计算证明∠DPB≠∠DPF ,即可判断.D.利用相似三角形的性质即可证明. 【详解】解:∵四边形ABCD 是正方形, ∴∠D=∠DAB=90°, ∵△ABP 是等边三角形, ∴∠PAB=∠PBA=∠APB=60°, ∴∠DAE=30°, ∴AE=2DE ,故A 正确; ∵AB ∥CD ,∴∠CFP=∠ABP=∠APH=60°,∵∠PHA=∠PBA+∠BAH=60°+45°=105°, 又∵BC=BP ,∠PBC=30°, ∴∠BPC=∠BCP=75°, ∴∠CPF=105°,∴∠PHA=∠CPF ,又易得∠APB=∠CFP=60°, ∴△CFP ∽△APH ,故B 正确; ∵∠CPB=60°+75°=135°≠∠DPF , ∴△PFC 与△PCA 不相似,故C 错误; ∵∠PCH=∠PCB-∠BCH=75°-45°=30°, ∴∠PCH=∠PBC , ∵∠CPH=∠BPC , ∴△PCH ∽△PBC ,∴PC PHPB PC =,∴PC2=PH•PB ,故D 正确, 故选:C .【点睛】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图所示,D 、E 分别是ABC ∆的边AB 、BC 上的点,且//DE AC ,AE 、CD 相交于点O .若45::2DOE COA S S ∆∆=,则BDES ∆与CDE S ∆的比是( )A .1:2B .1: 3C .2:3D .2:5 【解答】C【提示】利用相似三角形的性质解决问题即可. 【详解】解:∵//DE AC , ∴DEO CAO ∆∆∽, ∵45::2DOE COA S S ∆∆=,∴2425DE AC ⎛⎫=⎪⎝⎭,∴25DE AC =, ∵//DE AC , ∴25BE DE BC AC ==, ∴23BE EC =,∴BDES ∆与CDE S ∆的比2:3=,故选:C .【点睛】本题主要考查的是相似三角形的性质和判定,熟练掌握相似三角形的性质和判定定理是解题的关键.10.如图,正方形ABCD 和正方形CGFE 的顶点,,C D E 在同一条直线上,顶点, ,B C G 在同一条直线上.O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH 交EC 于点N .则BCCG 的值为( )A .31-B .3C .21-D .2【解答】C【详解】∵四边形ABCD 和四边形CGFE 是正方形,,,BC DC CE CG BCE DCG ∴==∠=∠.在BCE和DCG △中,,,(),,BC DC BCE DCG BCE DCG SAS BEC BGH CE CG =⎧⎪∠=∠∴∴∠=∠⎨⎪=⎩≌.90BGH CDG ∠+∠=︒,,90CDG HDE BEC HDE ∠=∠∴∠+∠=︒.GH BE ∴⊥.GH 平分,EGC BGH EGH ∠∴∠=∠.()BGH EGH ASA ∴≌.BH EH ∴=.又O 是EG 的中点,//HO BG ∴.D C DHN G ∴∽△△.DN HN DC CG ∴=.设HN a =,正方形ECGF 的边长是2b ,则2BC a =,22,,22b a aCD a NC b a b -==∴=,即2220a ab b +-=,解得(12)a b =-+或(12)a b =--(舍去),则221,212a BCb CG =-∴=-.二、填空题11.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________. 【解答】3:5【提示】根据相似三角形的性质:相似三角形对应边上的中线之比等于相似比即可得出答案. 【详解】∵两个相似三角形的面积比是9:25 ∴两个相似三角形的相似比是3:5 ∴对应边上的中线的比为3:5 故答案为:3:5.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 12.如图,△ABC ∽△CBD ,AB=9,BD=25,则BC=______.【解答】15【提示】根据相似三角形的性质列出比例式,代入计算即可求解. 【详解】解:∵△ABC ∽△CBD ,∴AB CBCB BD =,即2BC AB BD =⨯, AB=9,BD=25,2292522515BC AB BD ∴=⨯=⨯==,15BC =∴, 故答案为:15【点睛】本题考查了相似三角形的性质,根据相似三角形的性质列出比例式是解题的关键. 13.一个三角形三边长度之比为2:5:6,另一个与它相似的三角形最长边为24,则三角形的最短边为_________. 【解答】8【提示】首先设与它相似的三角形的最短边的长为x ,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【详解】解:设与它相似的三角形的最短边的长为x ,则 2624x =,∴8x =;∴三角形的最短边为8. 故答案为:8.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的对应边成比例定理的应用.14.如图,在矩形ABCD 中,E 是BC 的中点,连接AE ,过点E 作EF AE ⊥交DC 于点F .若4AB =,6BC =,则DF 的长为______.【解答】74【提示】结合矩形的性质证明BAECEF ∆∆可求得CF 的长,再利用DF CD DF =-可求解.【详解】解:四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE⊥,90AEF∴∠=︒,90AEB CEF∴∠+∠=︒,BAE CEF∴∠=∠,BAE CEF∴∆∆,::AB CE BE CF∴=,E是BC的中点,6BC=,3BE CE∴==,4AB=,4:33:CF∴=,解得94CF=,97444DF CD DF∴=-=-=.故选:7 4.【点睛】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAE CEF∆∆是解题的关键.15.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压_____cm.【解答】32【提示】首先根据题意画出图形,然后根据△APM∽△BPN有AP AMBP BN=,然后再利用动力臂AP与阻力臂BP之比为4:1和8BN≥即可求出AM的最小值.【详解】解:如图:AM、BN都与水平线垂直,即AM∥BN;∴△APM∽△BPN;∴APBP=AMBN,∵杠杆的动力臂AP与阻力臂BP之比为4:1,∴AMBN=41,即AM=4BN;∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A 向下压32cm . 故答案为:32.【点睛】本题主要考查相似三角形的判定及性质的应用,掌握相似三角形的判定及性质是解题的关键. 16.如图,已知,20,60AB BC ACBAD DAE AD DE AE ︒︒==∠=∠=,则DAC ∠的度数为_________.【解答】40°【提示】由AB BC ACAD DE AE ==可判定△ABC ∽△ADE ,得到∠BAC=∠DAE ,再根据20BAD ︒∠=,60DAE ︒∠=,可得出∠DAC 的度数.【详解】解:∵AB BC ACAD DE AE ==, ∴~ABC ADE , ∴60BAC DAE ︒∠=∠=, 又∵20BAD ︒∠=, ∴40DAC ︒∠=. 故答案为:40°.【点睛】本题考查了相似三角形的判定和性质,解题的关键是能根据AB BC ACAD DE AE ==判定出△ABC ∽△ADE.17.如图,已知在ABC 中,90C ∠=︒,10AB =,1cot 2B =,正方形DEFG 的顶点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长为_____.【解答】207【提示】作CM ⊥AB 于M ,交GF 于N ,由勾股定理可得出AB ,由面积法求出CM ,证明△CGF ∽△CAB ,再根据对应边成比例,即可得出答案. 【详解】作CM ⊥AB 于M ,交GF 于N ,如图所示: ∵Rt △ABC 中,∠C =90°,AB =10,1cot B 2=,∴设BC =k ,则AC =2k ,AB2=AC2+BC2,即:102=(2k )2+k2,解得:k =25, ∴BC =25,AC =45, ∴CM =AC BC AB ⋅=452510⨯=4,∵正方形DEFG 内接于△ABC , ∴GF =EF =MN ,GF ∥AB , ∴△CGF ∽△CAB ,∴CN GF =CM AB ,即4EF EF410-=, 解得:EF =207;故答案为:207.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.18.如图,在ABC 中,90ACB ∠=︒,AC BC =,点E 是边AC 上一点,以BE 为斜边往BC 侧作等腰Rt BEF △,连接,CF AF ,若6AB =,四边形ABFC 的面积为12,则AE =_________,AF =_________.【解答】 234【提示】如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,由面积和差关系可求3BCF S ∆=,通过证明ABE CBF ∆∆∽,可得2()ABE BCF S AB S BC∆∆=,可求2EH =,由勾股定理可求AE ,BE ,EF 的长,通过证明BEH EFQ ∆∆∽,可得2BE EH BH EF QF EQ ===,可求22EQ =,2QF =,由勾股定理可求解.【详解】解:如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,90ACB ∠=︒,AC BC =,2AB BC ∴,=6AB ,32AC BC ∴==四边形ABFC 的面积为12,12ABC BCF S S ∆∆∴+=, 3BCF S ∆∴=,等腰Rt BEF ∆,2BE BF ∴,45EBF∠=︒,=45ABC ∠︒,ABE CBF ∴∠=∠,2AB BE BC FB == ABE CBF ∴∆∆∽,∴2()ABE BCF S AB S BC ∆∆=, 326ABE S ∆∴=⨯=,∴162AB EH ⨯=,2EH ∴=,45CAB ∠=︒,EH AB ⊥,45CAB AEH ∴∠=∠=︒,2AH EH ∴==,222AE EH ==,4BH ∴=,2CE =,2221825BE CE BC ∴=+=+=,10EF ∴=,180AEH BEH FEB QEF ∠+∠+∠+∠=︒, 90BEH FEQ ∴∠+∠=︒,且90BEH EBH ∠+∠=︒EBH QEF ∴∠=∠,且90Q BHE ∠=∠=︒,BEH EFQ ∴∆∆∽, ∴2BE EH BHEF QF EQ ===, 22EQ ∴=,2QF =, 42AQ ∴=,2232234AF AQ QF ∴=+=+=,故答案为:22,34.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,利用相似三角形的性质求出EH 的长是本题的关键.三、解答题19.如图,在ABP 中,C ,D 分别是,AP BP 上的点.若4,5,6,3CD CP DP AC BD =====.(1)求证:ABP DCP ∽△△; (2)求AB 的长. 【解答】(1)见解析(2)AB=8【提示】(1)△ABP与△DCP有公共角,分别计算PDPC与APBP的值,得到PD PCPA PB=,根据相似三角形的判定定理得出结论;(2)运用相似三角形的性质计算即可.(1)证明:∵CD=CP=4,DP=5,AC=6,BD=3,∴AP=AC+CP=6+4=10,BP=BD+DP=3+5=8,∴54PDPC=,10584APBP==,∴PD APPC BP=,即PD PCPA PB=,∵∠DPC=∠APB,∴△ABP∽△DCP;(2)解:∵△ABP∽△DCP,∴AB PBCD PC=,即844AB=,∴AB=8.【点睛】本题考查了相似三角形的判定与性质,属于基础题.解决问题的关键是掌握:有两边对应成比例且夹角相等的两个三角形相似.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【解答】(1)见解析(2)1:3【提示】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE∽△BCA,利用相似比得到AE=12x,则DE=32x,从而可计算出AE:DE.(1)解:证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴AE ABAB BC=,即2AE xx x=,∴AE=12x,∴DE=AD-AE=32x,∴AE:DE=13:22x x=1:3.【点睛】本题考查了三角形相似的判定与性质,应注意利用图形中已有的公共角、公共边等条件,同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.如图,为了测量平静的河面的宽度EP,在离河岸D点3.2米远的B点,立一根长为1.6米的标杆AB,在河对岸的岸边有一根长为4.5米的电线杆MF,电线杆的顶端M在河里的倒影为点N,即PM PN=,两岸均高出水平面0.75米,即0.75DE FP==米,经测量此时A、D、N三点在同一直线上,并且点M、F、P、N N共线,点B、D、F共线,若AB、DE、MF均垂直与河面EP,求河宽EP是多少米?【解答】河宽为12米【提示】连接DF ,根据题意可得出四边形DEPF 为矩形,由ADB NDF ∽△△可求得DF ,便可解决问题.【详解】解:如图,连接DF ,∵点B 、D 、F 共线,DE 、MF 均垂直与河面EP ,且0.75DE FP ==, 4.5MF =, ∴四边形DEPF 为矩形, ∴DF EP =,∴ 4.50.75 5.25PN FM FP =+=+=, ∴ 5.250.756FN PN FP =+=+=, ∵AB 、DE 、MF 均垂直与河面EP , ∴90ABD NFD ∠=∠=︒, ∵ADB NDF ∠=∠, ∴ADB NDF ∽△△; ∴AB NFBD DF =, ∵ 1.6AB =, 3.2BD =, ∴1.663.2DF =,∴12DF =, ∴12EP =(米). 答:河宽EP 是12米.【点睛】本题主要考查了相似三角形的性质与判定,矩形的判定和性质等知识.关键是构造和证明三角形相似.22.如图,已知AD ,BC 相交于点E ,且△AEB ∽△DEC ,CD =2AB ,延长DC 到点G ,使CG =12CD ,连接AG .(1)求证:四边形ABCG 是平行四边形;(2)若∠GAD =90°,AE =2,CG =3,求AG 的长. 【解答】(1)证明见解析; (2)35AG =【提示】(1)根据相似三角形的性质可得AB ∥CD ,再由CD =2AB ,CG =12CD ,可得AB =CG ,即可证明;(2)由平行四边形的性质可得AG ∥BC ,可得∠AEB =90°,再由CG =3可得AB =3,利用勾股定理可得BE ,再由相似三角形的性质可得CE ,从而得出BC ,即可求解. (1)证明:∵△AEB ∽△DEC , ∴∠B =∠BCD , ∴AB ∥CD , 即AB ∥CG ,∵CD =2AB ,CG =12CD ,∴AB =CG ,∴四边形ABCG 是平行四边形; (2)解:∵四边形ABCG 是平行四边形,AE =2,CG =3, ∴AG ∥BC ,AG =BC ,AB =CG =3, ∵∠GAD =90°, ∴∠AEB =90°,在Rt △ABE 中,由勾股定理可得:BE 22AB AE -即BE =22325-=,∵△AEB ∽△DEC , ∴12BE AB CE CD ==, ∴CE =25,∴BC =BE+CE =35, ∴AG =BC =35.【点睛】本题考查相似三角形的性质,勾股定理,平行四边形的判定与性质,解题的关键是熟练掌握相似三角形的性质,勾股定理的运用,平行四边形的判定与性质.23.如图,在△ABC 中,AD 是角平分线,点E 是边AC 上一点,且满足ADE B ∠=∠.(1)证明:ADB AED ∆∆;(2)若3AE =,5AD =,求AB 的长. 【解答】(1)见解析(2)253【提示】(1)证出∠BAD=∠EAD .根据相似三角形的判定可得出结论; (2)由相似三角形的性质可得出AD ABAE AD =,则可得出答案. (1)∵AD 是∠BAC 的角平分线, ∴∠BAD=∠EAD . ∵∠ADE=∠B , ∴△ADB ∽△AED . (2)∵△ADB ∽△AED , ∴AD ABAE AD =,∵AE=3,AD=5, ∴535AB =, ∴253AB =. 【点睛】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.24.已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:2CF GF EF =⋅.【解答】见解析【提示】根据平行四边形的性质得到AD BC ∥,AB CD ∥,得到△DFG ∽△BFC ,△DFC ∽△BFE ,根据相似三角形的性质列出比例式,计算即可. 【详解】证明:∵四边形ABCD 是平行四边形, ∴AD BC ∥,AB CD ∥,∴△DFG ∽△BFC ,△DFC ∽△BFE ∴GF DF CF BF =,CF DFEF BF =, ∴GF CFCF EF =, 即2CF GF EF =⋅.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,已知cm,cm,23,36,117AD a AC b BC AC B D ===∠∠=︒=︒,ABC DAC △∽△.(1)求AB 的长;(2)求DC 的长; (3)求BAD ∠的度数.【解答】(1)32cm a ;(2)2cm3b ;(3)153︒【提示】(1)由ABC DAC △∽△,可得:,AB BCAD AC =再代入数据可得答案;(2)由ABC DAC △∽△,可得:,AC BCDC AC =再代入数据可得答案;(3)由ABC DAC △∽△,可得:117,36,BAC D B DAC ∠=∠=︒∠=∠=︒再利用角的和差可得答案; 【详解】解:(1)23,,BC AC AD a ==3,2BC AC ∴= ABC DAC △∽△,,AB BCAD AC ∴= 3,2AB a ∴= 3.2AB a ∴=(2) ABC DAC △∽△,,AC BCDC AC ∴= 而3,,2BC AC b AC == 3,2b DC ∴=2.3DC b ∴=(3) ABC DAC △∽△,36,117,B D ∠=︒∠=︒117,36,BAC D B DAC ∴∠=∠=︒∠=∠=︒11736153.BAD BAC DAC ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边成比例是解题的关键.26.如图,在四边形ABCD 中,AC ,BD 交于点F .点E 在BD 上,且BAE CAD ∠=∠,AB ACAE AD =.(1)求证:ABC AED ∽△△. (2)若20BAE ∠=︒,求∠CBD 的度数. 【解答】(1)证明见解析 (2)20︒【提示】(1)根据两边对应成比例,且夹角相等,两个三角形相似,即可证明.(2)根据(1)中ABC AED ∽△△,得出ADB ACB ∠=∠,再根据对顶角相等,AFD BFC ∠=∠,证得AFD BFC ∽△△,得出CBD CAD BAE ∠=∠=∠,即可求解. (1)∵BAE CAD ∠=∠∴BAE EAF CAD EAF ∠+∠=∠+∠, ∴BAC DAE ∠=∠, AB ACAE AD =,∵在ABC 和AED △中, AB ACAE AD BAC DAE ⎧=⎪⎨⎪∠=∠⎩,∴ABC AED ∽△△. (2)∵ABC AED ∽△△, ∴ADB ACB ∠=∠,又∵AFD BFC ∠=∠,对顶角相等,∴AFD BFC ∽△△, ∴CBD CAD ∠=∠,∵BAE CAD ∠=∠,20BAE ∠=︒,∴20CAD ∠=︒, 故答案为:20︒.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 27.如图,四边形ABCD 为正方形,且E 是边BC 延长线上一点,过点B 作BF ⊥DE 于F 点,交AC 于H 点,交CD 于G 点.(1)求证:△BGC ∽△DGF ; (2)求证:GD AB DF BG ⋅=⋅; (3)若点G 是DC 中点,求GFCE 的值.【解答】(1)见解析 (2)见解析 (3)5GF CE=【提示】(1)由正方形性质和题干已知垂直条件得直角相等,后由对顶角相等,进而得到△BGC ∽△DCF .(2)由第一问的结论可得到相似比,既有DG BC DF BG ⋅=⋅,然后因为正方形四边相等,进行等量代换即可求出证明出结论.(3)通过ASA 判定出△BGC ≌△DEC ,进而根据第一问结论可得△BGC ∽△DGF ,然后通过相似比设未知数,赋值CG x =,即可求出GFCE 的值.(1)证明:∵四边形ABCD 是正方形 ∴90BCD ADC ∠=∠=︒ ∵BF DE ⊥ ∴90GFD ∠=︒ ∴BCD GFD ∠=∠,又∵BGC DGF ∠=∠, ∴△BGC ∽△DCF . (2)证明:由(1)知△BGC ∽△DGF , ∴BG BCDG DF =, ∴DG BC DF BG ⋅=⋅ ∵四边形ABCD 是正方形, ∴AB BC =∴DG AB DF BG ⋅=⋅. (3)解:由(1)知△BCC ∽△DGF , ∴FDG CBG ∠=∠,在△BGC 与△DEC 中,,{,=,CBG CDE BCG DCE BC CD ∠=∠∠=∠ ∴△BGC ≌△DEC (ASA ) ∴CG EC = ∵G 是CD 中点 ∴CG DG = ∴::GF CE CF DC = ∵△BGC ∽△DGF ∴::GF DG CG BG =在Rt △BGC 中,设CG x =,则2BC x =,BC =∴CG BG =∴GF CE=【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,相似三角形判定和性质等知识点,熟练运用相似三角形判定和性质是解题的关键.28.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE ∽;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求PMN ∠的度数及MNPM 的值;(3)在(2)的条件下,若2BC =PMN 面积的最大值.【解答】(1)证明见解析;(2)135PMN ∠=;=2MN PM 3)14 【提示】(1)根据两边对应成比例,夹角相等判定即可.(2)PMN ∠的值可以根据中位线性质,进行角转换,通过三角形内角和定理求解即可,MNPM 的比值转换为AFCE 的比值即可求得.(3)过点P 作PQ 垂直于NM 的延长线于点Q ,12PMN S MN PQ =△,将相关线段关系转化为CE ,可得关系218PMN S CE =△,观察图象,当2CE BC == 【详解】(1)证明:∵90ACB ∠=︒,AC BC = ∴2AB BC =,45ABC BAC ∠=∠= ∵BE 垂直于射线CD , ∴90,BEF ∠= 又∵EF BE =∴2FB EB =,45FBE EFB ∠=∠= ∵+ABC ABE ABE FBE ∠∠=∠+∠ 即:ABF CBE ∠=∠又∵2AB BFCB BE == ∴ABF CBE ∽(2)解:∵点P 、M 、N 分别为线段AC 、AE 、EF 的中点∴//PM CN ,//MN AF ,11,22PM CE MN AF== ∴MPN CNP ∠=∠,CNM EFA ∠=∠∴+MPN MNP CNP MNP CNM EFA ∠∠=∠+∠=∠=∠ 又∵ABF CBE ∽ ∴90AFB CEB ∠=∠= 又∵45EFB ∠=∴904545EFA AFB BFE ∠=∠-∠=-= ∴+45MPN MNP ∠∠=又∵++180MPN MNP PMN ∠∠∠= ∴18045135PMN ∠=-=又∵12=12AFMN AFPM CECE = 又∵ABF CBE ∽ ∴=2AF AB CE CB = ∴=2MNPM(3)如下图:过点P 作PQ 垂直于NM 的延长线于点Q , 135,PMN ∠=︒ 45,PMQ MPQ ∴∠=︒=∠,PQ ∴= 111221222228216PMNS MN PQ AF PM AF CE AF CE ==⨯⨯==△又∵BC =∴AF =∴221168PMN S CE ==△∴当CE 取得最大值时,PMN 取得最大值, ,BE CE ⊥E ∴在以BC 的中点为圆心,BC 为直径的圆上运动,∴当CE CB ==CE 最大,∴11=2=84S ⨯, 【点睛】本题考查的是三角形相似和判定、以及三角形面积最大值的求法,根据题意找见相关的等量是解题关键.。
相似三角形在物理学上的应用

相似三角形在物理学上的应用相似三角形在实际中的应用非常广泛,尤其与物理学的联系非常紧密.下面举例说明相似三角形在物理学上的实际应用.【例1】如图所示,慢慢将电线杆竖起,如果所用力F的方向始终竖直向上,则电线杆竖起过程中所用力的大小将.A.变大B.变小C.不变D.无法判断解析:由物理知识可知,电线杆竖起的过程,实质上相当于以O为支点,以F 为动力,以电线杆重力G为阻力的杠杆运动.在电线杆竖起的过程中,动力臂OA,阻力臂OB是逐渐变化的.∵AA′∥BB′,∴△OBB′∽△OAA′∴=而是定值,即也是定值.由杠杆平衡条件F·OA=G·OB,得F=G·因此,动力F 大小不变.故选C答案:C【例2】小华做小孔成像实验.如图,问蜡烛与成像板间的小孔纸板放在何处时,蜡烛焰AB是像A′B′的一半长,已知蜡烛与成像板间的距离为l解:由相似三角形可知△ABO∽△A′B′O,△AEO∽△A′FO∴=,=∴==∴=,=∴OE=EF=l故小孔纸板应放在距蜡烛l处.1.如图,△ABC被DE、FG分成面积相等的三部分即S1=S2=S3,且DE∥FG ∥BC,BC=,FG-DE等于.A.-1 B.-C.-D.2-解析:由相似三角形的性质,得DE∶FG∶BC=1∶∶设DE=,FG=,BC=,则=∴=∴DE=,FG=2∴FG-DE=2-答案:D2.如图,在Rt△ABC中,∠C=90°,且AC=CD=1,又E,D为CB的三等分点.1问图中是否存在相似三角形,若存在,找出并证明相似的三角形;若不存在,试说明理由;2比较∠ADC与∠AEC+∠B的大小,试说明理由.解:1存在△ADE∽△BDA证明:∵AC=CD=DE=EB=1,又∠C=90°,∴AD=则==,=∴=而∠ADE=∠BDA,∴△ADE∽△BDA2由1知△ADE∽△BDA,∴∠DAE=∠B又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B。
相似三角形应用举例完整版课件

解:太阳光是平行的光线,因此:∠BAO=∠EDF. 又 ∠AOB=∠DFE=90°. ∴△ABO∽△DEF.
因此金字塔的高为134m.
【跟踪训练】
如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测
得AB=1.6m,BC=12.4m,则建筑物CD的高是( B )
A.9.3m
1.(乐山·中考)某校数学兴趣小组为测量学校旗杆AC的高度,在 点F处竖立一根长为1.5m的标杆DF,如图所示,量出DF的影子EF 的长度为1m,再量出旗杆AC的影子BC的长度为6m,那么旗杆AC 的高度为(D )
A.6m
B.7m
C.8.5m
D.9m
2.某校宣传栏后面2m处种了一排树,每隔2m一棵,共种了6 棵,小勇站在距宣传栏中间位置的垂直距离3m处,正好看 到两端的树,其余的4棵均被挡住,那么宣传栏的长为 ___6___m(不计宣传栏的厚).
3.(内江·中考)如图,为了测量某
棵树的高度,小明用长为2m的竹竿做
测量工具,移动竹竿,使竹竿、树的
顶端的影子恰好落在地面的同一点.此
时,竹竿与这一点距离相距6m,与树
相距15m,则树的高度为__7___m. 4.(德州·中考)如图,小明在A时测
B时
A时
得某树的影长为2m,B时又测得该树的
影长为8m,若两次日照的光线互相垂
A
B
D
E
C
A
B
D
E
C
【例题】
例3 如图左、右并排的两棵大树的高分 别是AB=8m和CD=12m,两树根部的距 离BD=5m,一个身高1.6m的人沿着正对 这两棵树的一条水平直路l从左向右前进, 当他与左边较低的树的距离小于多少时, 就不能看到右边较高的树的顶端点C?
“相似三角形”在物理中的应用

物理相似三角形在物理题中的应用理科综合的考试说明能力要求的其中一项能力就是应用数学知识处理物问题,在中学物理解题中,常常用到三角形的有关知识,如三角函数关系、正弦定理、余弦定理、矢量三角形、相似三角形等。
引子例一:如图所示,竖直绝缘墙壁上的Q处有一固定的质点A,在Q的正上方的P点用丝线悬另一质点B,A、B两质点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A、B两质点的带电荷量逐渐减少,在电荷漏电完之前悬线对悬点P的拉力大小()A. 变小B. 变大C. 不变D. 无法确定“相似三角形”在物理中的应用“相似三角形”的主要性质是对应边成比例,对应角相等。
在物理中,一般地,当涉及到矢量运算,又构建了三角形时,可考虑用相似三角形。
下面以静力学为例说明其应用。
例1. 如图1所示,支架ABC,其中,在B点挂一重物,,求AB、BC上的受力。
例2. 如图3所示,长为5m的细绳的两端分别系于竖立的地面上相距为4m的两杆的顶端A、B上,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N的物体。
平衡时,绳中的张力T=_________N。
例3. 两根等长的轻绳,下端结于一点挂一质量为m的物体,上端固定在天花板上相距为S的两点上,已知两绳能承受的最大拉力均为T,则每根绳长度不得短于多少?例4. 如图7所示,在半径为R的光滑半球面上高h处悬挂一定滑轮,重力为G 的小球用绕过滑轮的绳子被站在地面上的人拉住,人拉动绳子,在与球面相切的某点缓缓运动到接近顶点的过程中,试分析小球对半球的压力和绳子拉力如何变化。
图7例1.解:受力分析如图2所示,杆AB受到拉力作用为,杆BC受到支持力为,这两个力的合力与重力G等大反向,显然由矢量构造的三角形与图1中相似,由对应边成比例得:把代入上式,可解得,。
例2. 解:受力分析,如图4所示。
因轻质挂钩光滑,所以AO 、BO 两段绳的拉力相等,设均为T ,且这两个力的合力与重力G 等大反向。
相似三角形性质与运用

一、如何证明三角形相似例1、如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽∽。
本例除公共角∠G外,由BC∥AD可得∠1=∠2,所以△AGD∽△EGC。
再∠1=∠2(对顶角),由AB∥DG可得∠4=∠G,所以△EGC∽△EAB。
例2、已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°又BD平分∠ABC,则∠DBC=36°在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36°∴△ABC∽△BCD例3:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC证明:在△CBE和△ABD中,∠CBE=∠ABD, ∠BCE=∠BAD∴△CBE∽△ABD∴BCAB=BEBD即:BC BE = AB BD在△DBE和△ABC中∠CBE=∠ABD, ∠DBC公用∴∠CBE+∠DBC=∠ABD+∠DBC∴∠DBE=∠ABC且BCBE = AB BD∴△DBE∽△ABCAB CDEFG1234AB CD例4、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形?请证明你的结论。
分析:本题要找出相似三角形,那么如何寻找相似三角形呢?下面我们来看一看相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形EB C(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形。
ABCDE12AABB C CDDEE12412(3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。
观察本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及△EAF与△ECA解:设AB=a,则BE=EF=FC=3a,由勾股定理可求得AE=a2,在△EAF与△ECA中,∠AEF为公共角,且2==AEECEFAE所以△EAF∽△ECA(两边对应成比例且夹角相等的两个三角形相似)二、如何应用相似三角形证明比例式和乘积式例1、△ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,BEACD12AB CDEFKAB CDE F求证:DF •AC=BC •FE证明:过D 点作DK ∥AB ,交BC 于K ,∵DK ∥AB ,∴DF :FE=BK :BE 又∵AD=BE ,∴DF :FE=BK :AD ,而BK :AD=BC :AC 即DF :FE= BC :AC ,∴DF •AC=BC •FE例2:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。
完整版相似三角形应用举例

课题27.2.3 相似三角形应用举例(一)课型新授课授课时间教师教学多媒体媒体能熟练利用相似三角形的判判定理和性质解决实责问知识技术方面题。
领悟在“测高”的过程中,运用建立相似三角形模型的授课数学思虑目标方面数学建模思想。
能认真观察图形,找出实责问题中的相似三角形模型并问题解决方面解决简单的实责问题。
提升解析论证的能力。
授课重点利用相似三角形解决问题授课难点正确、合理地建立相似三角形模型解决实责问题自主研究与合作交流相结合。
引导学生认真观察图形,解析实责问题中的数量关系并正确建立相似三角形模型。
授课中注意敬爱学生学法指导的主体地位,激励学生充分着手操作,演示,猜想,证明及计算。
帮助学生更好地领悟数学建模的数学思想方法。
授课方法情境式授课法、研究式授课法课时1 课时安排授课过程设计设计教学程序及教学内容师生行为意图创如图,小区门口的栏杆短臂长1m,长臂长 16m,当短臂端点下降 0.5m 时,设学生独立长臂端点高升 ______m。
情分析、解决问由简单境题。
的相似三角请学生指形在实责问题中的应用出哪两个三角下手,让学揭形相似,怎样证生感知相似示得,最后怎样利三角形的知在本质生活中,我们测量高度时,经识贴近生课常要借助相似三角形。
用相似三角形活。
题揭穿课题—— 27.2.3 相似三角形的的性质解决问应用举例。
题。
测一、知识认知量同一时辰,物体在太阳光下的影子与旗物体的高度之间的比是固定的。
杆二、思虑研究每周我们都要举行升旗仪式,每次看着国旗迎风飞扬,我们的爱国之情便会由心而生。
你能测得旗杆的高度吗?(一)构造相似三角形。
利用身高,人影与杆影求得旗杆高度。
学生独立思考后以小组合作交流方式交换意见,并追求解决测方案。
量问题 1:两个三角形相似吗?怎样证旗得?杆问题 2:怎样利用两个相似三角形计算旗杆高度呢?(二)利用标杆,测旗杆高度。
探索方法问题 1:给出标杆高度和人眼离地面的距离,你能计算FH的长度吗?问题 2:这种方法与第一种方法有什一方面为后续相似三角形的本质应用做知识储备。
初三数学相似三角形典型例题(附解析)

2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : b c :d )中, a 、 d 叫外项, db 、c 叫内项, a 、c 叫前项,b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、d 的比例中项。
把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。
2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。
AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
《相似三角形应用举例》 知识清单

《相似三角形应用举例》知识清单一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。
相似三角形对应边的比值称为相似比。
二、相似三角形的判定1、两角分别相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相似。
三、相似三角形的性质1、相似三角形的对应角相等,对应边成比例。
2、相似三角形的对应高、对应中线、对应角平分线的比等于相似比。
3、相似三角形的周长比等于相似比,面积比等于相似比的平方。
四、相似三角形的应用举例(一)测量高度1、测量旗杆高度例如,在旗杆旁边立一根已知长度的标杆,测量出标杆的影长和旗杆的影长。
由于在同一时刻,太阳光线是平行的,所以标杆和旗杆与地面形成的夹角相等,那么标杆和旗杆与其各自影长所构成的两个直角三角形相似。
设旗杆高度为 h,标杆长度为 a,标杆影长为 b,旗杆影长为 c,则有:a/b = h/c,通过这个比例关系可以求出旗杆的高度 h。
2、测量建筑物高度在距离建筑物一定距离的地方,放置一个已知高度的物体(如测量杆),然后分别测量出物体的影长和建筑物的影长,利用相似三角形的性质计算出建筑物的高度。
(二)测量距离1、测量河流宽度可以在河对岸选定一个目标点,然后在河的这一边选定两个点,使这两个点和对岸的目标点构成一个三角形。
再在这一边另选一个点,测量出这个点到刚才选定的两个点的距离以及这个点与对岸目标点所形成的夹角。
通过这些数据,可以利用相似三角形计算出河流的宽度。
2、测量不能直接到达的两点之间的距离比如,要测量 A、B 两点之间的距离,但 A、B 两点之间有障碍物不能直接测量。
可以在 A、B 两点之外找一个能同时看到 A、B 两点的点 C,测量出 AC、BC 的长度以及∠ACB 的度数。
根据三角形的余弦定理,可以求出 AB 的长度。
(三)在航海中的应用1、确定船只的位置通过观测两个已知位置的灯塔与船只所形成的角度,结合灯塔之间的距离以及相似三角形的知识,可以确定船只的位置。
(完整版)相似三角形法分析动态平衡问题)

相似三角形法分析动态平衡问题( 1)相似三角形: 正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角 形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而 达到求未知量的目的。
( 2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用 相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法, 解题的关键是正确的受 力分析,寻找力三角形和结构三角形相似。
例 1、半径为 R 的球形物体固定在水平地面上, 球心正上方有一光滑的小滑轮, 滑轮到球面B 的距离为 h ,轻绳的一端系一小球,靠放在半球上的 A 点,另一端绕过定滑轮后用力拉 住,使小球静止,如图 1-1 所示,现缓慢地拉绳,在使小球由 球的支持力 N 和绳对小球的拉力 T 的大小变化的情况是( )解析: 如图 1-2 所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始 终处于平衡状态,其中重力 mg 不变,支持力 N ,绳子的拉力 T 一直在改变,但是总形成 封闭的动态三角形(图 1-2 中小阴影三角形) 。
由于在这个三角形中有四个变量:支持力 N 的大小和方向、绳子的拉力 T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球 面的球心)形成的三角形也是一个动态的封闭三角形(图 1-2 中大阴影三角形) ,并且始终 与三力形成的封闭三角形相似,则有如下比例式:T mg NL h R R可得: T Lmg 运动过程中 L 变小, T 变小。
hRRN mg 运动中各量均为定值,支持力 N 不变。
正确答案 D 。
hR例 2、如图 2-1 所示,竖直绝缘墙壁上的 Q 处由一固定的质点 A ,在 Q 的正上方的A 到B 的过程中,半球对小A 、 N 变大, T 变小B 、 N 变小, T 变大C 、N 变小, T 先变小后D 、N 不变, T 变小P点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成角,由于漏电使A 、B两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P的拉力T 大小()A、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析: 有漏电现象, F AB 减小,则漏电瞬间质点 B 的静止状态被打破,必定向下运动。
(详细版)相似三角形的性质和应用

(详细版)相似三角形的性质和应用
1. 相似三角形的性质
相似三角形是指具有相同形状但尺寸不同的三角形。
相似三角形的性质如下:
- 对应角相等性质:如果两个三角形的对应角相等,则它们是相似三角形。
- 对应边成比例性质:相似三角形的对应边的长度成比例。
2. 相似三角形的应用
相似三角形的性质在实际生活和数学问题中有广泛的应用,以下是一些常见的应用场景:
- 测量高度:通过相似三角形的性质,我们可以利用测量出的一个三角形的高度来计算另一个相似三角形的高度。
这在实际中可以用于测量高楼、山峰等的高度。
- 图形设计:相似三角形的性质可以用于图形设计中的缩放问题。
通过改变三角形的大小来实现图形的缩放效果。
- 工程测量:在土木工程中,相似三角形的性质可以用于测量地形的坡度、直角三角形的边长等。
3. 实例分析
为了更好地理解相似三角形的性质和应用,以下是一个实际问题的分析:
假设有一根高大的电线杆,测得其高度为30米。
为了确定杆子的阴影长度,我们利用测量出的相似三角形来推算。
测量阴影的长度为10米,而测量器与杆子的距离为4米。
根据相似三角形的性质,可以建立如下比例关系:(30高度/4距离) = (阴影长度/10距离)。
通过解这个比例关系,我们可以计算出杆子的阴影长度为75米。
以上是相似三角形的性质和应用的一些简要介绍,通过理解和运用相似三角形的性质,我们可以解决许多实际问题,提高数学和几何的应用能力。
(Word count: 229 words)。
(实例版)相似三角形的实际案例分析

(实例版)相似三角形的实际案例分析
概述
本文将分析一个实际案例,以展示相似三角形在实际生活中的
应用。
案例背景
假设有一座高达800米的山峰,其山顶到山脚的距离为5千米。
一名山地运动员希望从山顶直线下降到山脚,但他希望选择一条符
合相似三角形原理的路径,以确保安全且最短的下降距离。
原理分析
假设该运动员选择的下降路径与山脚到山顶的直线的夹角为θ度,我们需要找到一个比例因子k,使得相似三角形的边长比例和
角度相同。
根据相似三角形的原理,我们可以得到以下关系式:k = 800 / 5 = 160
因此,该运动员选择下降路径时,每下降1千米,他需要向下
移动160米。
案例分析
基于上述原理,该运动员可选择以下路径:从山顶向下移动1
千米,然后向下移动160米,再向下移动1千米,再向下移动160米,如此重复,直到到达山脚。
通过使用相似三角形的原理,该运动员可以在保持安全的同时,以最短的距离下降到山脚。
如果没有使用相似三角形原理,他可能
需要根据山坡的陡度选择更长的路径。
结论
该案例展示了相似三角形在实际生活中的应用。
通过理解并应
用相似三角形的原理,我们可以在问题求解中找到最优解决方案。
在处理与比例和角度相关的问题时,相似三角形是一个强大且实用
的工具。
相似三角形的周长与面积应用例析

1相似三角形的周长与面积一、知识点归纳㈠相似三角形(或多边形)周长的比等于相似比;㈡相似三角形对应中线的比,对应角平分线的比,对应边上高的比都等于相似比. 二、周长比等于相似比例1:已知△ABC ∽△C B A '''是的中线,AD 是△ABC 的中线,D A ''是△C B A '''的中线,若21=''D A AD ,且△ABC 的周长为20 cm ,则△C B A '''的周长为_______. 解析:因为△ABC ∽△C B A ''',所以他们周长的比等于它们的相似比,对应边中线的比等于相似比,即相似比k=21=''D A AD ,21='''∆∆周长周长C B A ABC ,已知△ABC 周长为20 cm , 故△C B A '''的周长=2×20=40 cm.相似三角形(多边形)的周长比等于相似比. 这里注意的是,也可以推广相似比的性质,即相似三角形对应高的比等于相似比,相似三角形对应中线和对应角的角平分线的比等于相似比. 由此也可以这么说:相似三角形所有对应线段的比等于相似比.例 2 如图,在△ABC 中,DE ∥BC ,BE ⊥AC, DF ⊥AC,若DE=2,BC=4,BE=2324ADE DE ABC BC ==V V 的周长的周长,且△ABC 的周长为12,求△ADE 的周长及DF 的长.分析:由题意,易得△ADE ∽△ABC ,进而利用相似三角形的周长比、对应高的比等于相似比来求未知量.解:由DE ∥BC ,得△ADE ∽△ABC ,所以,又因为△ABC 的周长为12,△ADE 的周长为12×24=6. 因为BE ⊥AC, DF ⊥AC ,即DF ⊥AE ,又因为AE 与AC 分别是相似三角形的对应边, 所以24DF DE BE BC ==, 所以DF =BE×24=3. 点评:运用性质时,要注意“对应”两字,不是对应的高线、中线、角平分线的比不等于相似比.二、灵活运用相似三角形面积的比等于相似比的平方相似三角形(多边形)面积的比等于相似的比的平方. 应用这一性质要注意二点(1)面积比不是等于相似比;(2)反映的是对应的两个相似三角BEDCAHG FP图12形之间的面积关系.例3:如图,矩形EFGH 内接于△ABC ,AD ⊥BC 于D ,交EH 于P ,若矩形的周长为24,BC=10,AP=16,求BPC S ∆.解析:欲求BPC S ∆,已知底边BC 只需求高PD 即可,而高PD 等于矩形EFGH 的一边,且是△ABC 的高AD 的一部分,因为EH ∥BC ,故有△AEH ∽△ABC ,可利用相似三角形对应边的比等于对应高的比来解决问题.设PD=x ,则EF=x.∵矩形EFGH 的周长为24. ∴EF+EH=12,EH=12‒ x , 又EH ∥BC , ∴△AEH ∽△ABC , ∴AD AP BC EH =.∴xx +=-16161012. ∴,0)8)(4(,03242=+-=-+x x x x ∴8,421-==x x (不合题意舍去). ∴x=4, 即PD=4. ∴.204102121=⨯⨯=⋅=∆PD BC S BPC 方法探究:与相似三角形有关的计算问题,一般要利用相似三角形的性质,本题就是利用相似三角形对应边的比等于对应高的比列方程求解.例4 两个三角形的相似比为2:3,它们的面积之和为78,则较大三角形的面积为________.解析:设较小的三角形面积为1S ,较大的三角形面积为2S ,由于两个三角形相似,则,9432221=⎪⎭⎫ ⎝⎛=S S 由合性质有:994211+=+S S S ,把7821=+S S 代入得913782=S , ∴.54139782=⨯=S例5 如图,把△ABC 沿AB 边平移到△C B A '''的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC 面积的一半,若AB=2,则此三角形移动的距离A A '是多少?解析:由题意知∠A=∠C A B ''',∠BO A '=∠ABC ,∴△BO A '∽△ABC ,21=∆'∆ABC BO A S S ,∴,2,1,21=='='AB B A AB B A ∴12-='A A. '图2C C '3方法探究:由平移不改变图形的形状和大小,因而得到△BO A '∽△ABC ,再根据△BO A '的面积为△ABC 面积的一半,知△BO A '与△ABC 的相似比为1: 2,从而可得到B A '的长,再求A A '即可.例5 如图,在△ABC 中,BC>AC,点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF,若四边形BDFE 的面积为6,求△ABD 的面积.分析:由题意,易得EF ∥BD ,21=BD EF , 并推出 △AEF ∽△ABD ,2)21(=∴∆∆ABD AEF S S , 即261()2ABD ABD S S ∆∆-=,从而可求出△ABD 的面积.解: CF ACB ∠Q 平分,∴ 12∠=∠. 又∵ DC AC =,∴ CF 是△ACD 的中线, ∴ 点F 是AD 的中点.∵ 点E 是AB 的中点, ∴ EF ∥BD, ∴ △AEF ∽△ABD ,21=BD EF , 2)21(=∴∆∆ABD AEF S S ,∵6AEF ABD ABD BDFE S S S S ∆∆∆=-=-四边形, ∴261()2ABD ABD S S ∆∆-= ,∴ 8ABD S ∆=, 即 ABD ∆的面积为8.点评:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比.不要犯由EF ︰BD=1︰2, 得S △AEF ︰S △ABD =1︰2,或S △AEF ︰S 四边形BDFE =1︰2,之类的错误.四、相似三角形的周长与面积的实际应用例5:一块直角三角形木版的一条直角边AB 为1.5 m ,面积为1.52m ,要把它加工成一个面积最大的正方形桌面,小明打算按图3进行加工,小华准备按图4进行裁料,他们谁的加工方案符合要求?EDCBAFDCBAG HE图4FM21FEDCBA图34解析:要比较哪个加工方案符合要求,就是要比较两个方案加工出来的正方形桌面的面积大小,利用相似三角形的性质求出正方形的边长即可.小明的方案中:设正方形BFED 的边长为x m ,则,5.15.121=⨯⨯BC ∴BC=2(m). 由DE ∥AB ,得△CDE ∽△CBA , ∴76,5.122,==-=x x x BA DE CB CD (m). 小华的方案中:设正方形的边长为y(m),AC 上的高BH 交DE 于M ,则,5.15.121=⨯⨯BC ∴BC=2(m).由勾股定理,222AC BC AB =+∴AC=5.225.122=+(m). 由,2121BC AB BH AC ⋅=⋅得565.225.1=⨯=⋅=AC BC AB BH (m). ∵DE ∥AC , ∴△BDE ∽△BAC , ∴,AC DE BH BM =∴.5.22.12.1yy =- ∴y=3730(m). ∵x >y , ∴22y x φ. 故采用小明的方案加工出的桌面的面积最大符合要求.方法探究:解决这类合理下料问题的方法步骤是:①出符合题意的图形;②用相似三角形的性质求内接正方形的边长;③出面积并进行合理决策.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的应用例析
相似三角形是平面几何中的重要的内容之一,其应用十分广泛.举例说明如下.
1、测量底部不能到达的建筑物的高
例1 如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).
2、测量池塘宽
例2如图,有一池塘要测量两端AB的距离,可先在平地上取一个可以直接到达A和B
的点C,连接AC并延长至D,使AC并延长至D,使
1
5
CD CA
=,连接BC并延长至E,使
1
5
CE CB
=,
连接ED,如果量出25m
DE=,那池塘宽多少
A B
C
E D
3、利用影长测量建筑物的高度
例3高4m的旗杆在水平地面上的影子长6m,此时测得附近一个建筑物的影子长24m,求该建筑物的高度.
4、测量电线杆的高
例4如图,一人拿着一支刻有厘米刻度的小尺,站在距电线杆约30m的地方,把手臂向前伸直,小尺竖直,看到尺上约12个刻度恰好遮住电线杆,已知手臂长约60cm,求电线杆的高.
5、测量台阶
例5 汪老师要装修自己带阁楼的新居(右图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1. 75m.他量得客厅高 AB= 2. 8m,楼梯洞口宽AF=2m.阁楼阳台宽EF = 3m.请你帮助汪老师解决下列问题:(1)要使墙角F到楼梯的竖直距离FG为,楼梯底端C到墙角D的距离CD是多少米(2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶小于 20c m,每个台阶宽要大于20c m,问汪老师应该将楼梯建儿个台阶为什么
参考答案
例1:
【分析】根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,
在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,
∴CD//AB,可证得:△ABE∽△CDE,
∴BD DE DE AB CD += ①
同理:BD
GD HG HG AB FG ++= ② 又CD =FG =1.7m ,由①、②可得:
BD GD HG HG BD DE DE ++=+ 即BD
BD +=+10533,解之得:BD =7.5m , 将BD =7.5代入①得:AB=5.95m≈6m.
答:路灯杆AB 的高度约为6m .
【点评】 本题通过多次平行线,利用相似三角形解决.把实际问题转化为相似问题,建立数学模型,做到学以致用.
例2:
【分析】这个问题的实质是△ECD∽△BCA,利用两个三角形相似求池塘宽
DE AB CD AC AB DE ===155,.
解: CD CA CE CB ==1515,
∴
==CD CA CE CB 15 又∵∠ECD=∠BCA ∴△ECD∽△BCA
∴==DE AB CD AC 15
∴==⨯=AB DE m 5525125().
【点评】 通过测量池塘宽,能够综合运用三角形相似的判定条件和性质解决问题,发展数学应用意识,加深对相似三角形的理解和认识.
例3:
【分析】 画出上述示意图,即可发现:
△ABC ∽△A ′B ′C ′ 所以
B A AB //=
C B BC //, 于是得,BC =B A AB
/
/×B /C /=16(m ). 即该建筑物的高度是16m .
例4:
【分析】 本题所叙述的内容可以画出如图那样的几何图形,即DF=60cm=,GF=12cm=,
CE=30m ,求BC .由于△ADF∽△AEC,AC AF EC DF =,又△AGF∽△ABC,∴ BC GF AC AF =,∴ BC GF EC DF =,从而可以求出BC 的长.
解: ∵AE⊥EC,DF∥EC,
∴∠ADF=∠AEC,∠DAF=∠EAC,
∴△ADF∽△AEC.
∴AC AF EC DF =.
又GF⊥EC,BC⊥EC,
∴GF∥BC,∠AFG=∠ACB,∠AGF=∠ABC,
∴△AGF∽△ABC,
∴BC GF AC AF =,
∴BC GF EC DF =.
又∵ DF=60cm=,GF=12cm=,EC=30m ,
∴ BC=6m.
即电线杆的高为6m .
【点评】 “测量电线杆的高”问题本身就是利用数学问题去处理实际问题,还有许多实际问题都可以用数学问题来解决,运用相似三角形相似的相关知识解决在生活中的一些实际问题;必须要正确地理解知识的内涵,比如手臂向前伸直与地面平行,刻度平行于电线杆,由此构造“相似三角形对应成比例的线段”.在应用过程中,要时时围绕三角形相似这一宗旨.
例5:
【分析】 (1)根据题意有AF∥BC,∴∠ACB=∠GAF,又∠ABC=∠AFG=90º, ∴△ABC∽△GFA.
∴FG
AB AF BC =得BC=(m),CD=2+=(m). (2)设楼梯应建n 个台阶,则>,<,解得14<n <16,
∴楼梯应建15个台阶.。