相似三角形的应用习题精选
相似三角形练习题及答案
相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。
相似三角形具有相同的形状,但是尺寸不同。
理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。
下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。
练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。
若DE = 9cm,求DF和EF的长度。
练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。
练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。
练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。
点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。
求△ADE和△ABC的周长比。
练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。
答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。
设DF = x,EF = y。
根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。
练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。
设PR = x。
根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。
练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。
相似三角形典型例题30道
相似三角形典型例题30道1: 在△ABC中,DE是平行于BC的线段,且AD/DB = 2/3。
求DE/BC的比值。
2: 已知△PQR与△XYZ相似,PQ = 6,XY = 9,求QR 与YZ的比值。
3: 在△ABC中,D、E分别是AB、AC上的点,且DE平行于BC,已知AD = 3,DB = 6,求AE与EC的比值。
4: 已知两个相似三角形的面积比为4:9,求它们对应边的比。
5: 在△XYZ中,MN是平行于XY的线段,且XM = 4,MY = 6,求MN/XY的比值。
6: 在△ABC中,AD是BC的中线,且AE是AB的延长线,若AE与BC相交于点F,求AF与FB的比值。
7: 在△DEF中,GH平行于EF,已知DE = 8,DF = 10,求GH/EF的比值。
8: 在一个相似三角形中,若大三角形的周长是36,小三角形的周长是24,求它们的面积比。
9: 在△JKL中,MN平行于JK,若JM = 3,MK = 5,求MN/JK的比值。
10: 如果两个相似三角形的对应边长分别为5和15,求它们的面积比。
11: 在△ABC中,AD是BC的中线,且DE平行于BC,已知AD = 4,BC = 8,求DE的长度。
12: 已知相似三角形的对应边长比为1:4,求它们的周长比。
13: 在△PQR中,S是PQ的中点,若ST平行于QR,求PS与PQ的比值。
14: 在相似三角形中,若小三角形的每条边长为5,大三角形的对应边长为15,求它们的面积比。
15: 在一个三角形中,若一条边的延长线与另一边的平行线相交,则形成的两小三角形与原三角形相似,求相似比。
16: 在△XYZ中,若XY = 10,XZ = 15,YZ = 12,求△XYZ的周长。
17: 已知△ABC与△DEF相似,若AB = 4,DE = 8,求AC与DF的比值。
18: 在△GHI中,JK平行于GH,若GJ = 5,GH = 20,求JK的长度。
19: 在相似三角形中,若一个三角形的面积是36,另一个三角形的面积是144,求其对应边的比。
相似三角形的应用练习题(带答案
是矩形,
∵四边形
是正方形,
∴
,
∵
,
,
∴
,
∴ ∴四边形
, 为正方形.
( 2 )仿照勤奋小组同学的作法作图,如图 与图 所示,矩形
即为所作.
图
图
( 3 )如图 ,作
的高 ,交 于 ,
∵
的面积
,
∴
,
∵
,
设
,则
,
,
,
∵
,
∴
,
∴
,
∴
,
解得
,
∴
,
∴
,
∴矩形
的面积
,
同理,在矩形
中,若
,可求出
,
∴
,
,
∴矩形
的面积
.
.
,
,
.若点 是 边上的一点,将
, 交 于,
,则
,
D
10
【答案】
;
【解析】 作
于,
∵
,
,
∴
,
∴
,
∴
,
由折叠及
得:
,
∴易得
,
∴
,
又∵
,
∴
,
∴
,
∴
.
【标注】【知识点】翻折问题与勾股定理;相似A字型
3. 如图,矩形
的顶点 在 轴的正半轴上,点 、点 分别是边 、 上的两个点.将
沿 折叠,使点 落在 边上的三等分点 上(点 靠近点 ),过点 作
,使 , 位于边 上, , 分别位于边 , 上.(在备用图中完成,不写作法,保
留作图痕迹)
( 3 )解决问题: 在( )的条件下,已知
相似三角形经典练习题(4套)附带答案
练习(一)一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。
题3 题7 题84. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。
5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2A. 104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:题3 题4 题5①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。
相似三角形经典题(含答案)
相似三角形典型习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FC AB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x xx -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形因此,正方形的面积为3612-或121348156-.。
中考数学专题训练:相似三角形模型的运用(附参考答案)
中考数学专题训练:相似三角形模型的运用(附参考答案)1.如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC=12.4,则CD的长是( )A.14 B.12.4C.10.5 D.9.32.如图,把△ABC绕点A旋转得到△ADE,当点D刚好落在边BC上时,连接CE,设AC,DE相交于点F,则图中相似三角形的对数是( )A.3对B.4对 C.5对D.6对3.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使边AD与对角线BD 重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形的面积比为( )A.112B.19C.18D.164.如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC,GA,交于点O,GA与BC交于点P,连接OD,OB,则下列结论一定正确的是( )①EC⊥AG;②△OBP∽△CAP;③BO平分∠CBG;④∠AOD=45°.A.①③ B.①②③C.②③ D.①②④5.如图,BD,CE为△ABC的高,且BD与CE交于点O.(1)求证:△AEC∽△ADB;(2)若∠A=40°,求∠BOC的度数.的值.6.)如图,AG∥BD,AF∶FB=1∶2,BC∶CD=2∶1,求GEED7.如图,在正方形ABCD中,点E为对角线AC,BD的交点,AF平分∠DAC交BD 于点G,交DC于点F.(1)求证:△AEG∽△ADF;(2)判断△DGF的形状并说明理由;(3)若AG=1,求GF的长.8.如图,等边三角形ABC的边长为3,点P为边BC上的一点,点D为边AC上的一点,连接AP,PD,∠APD=60°.(1)求证:①△ABP∽△PCD;②AP2=AD·AC.(2)若PC=2,求CD和AP的长.9.如图,点P是正方形ABCD边AB上一点(点P不与点A,B重合),连接PD,将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求∠PBE的度数;的值.(2)若△PFD∽△BFP,求APAB10.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在同一条直线上,连接AF并延长交边CD于点M.(1)求证:△MFC∽△MCA;(2)求证:△ACF∽△ABE;(3)若DM=1,CM=2,求正方形AEFG的边长.参考答案1.C 2.B 3.C 4.D5.(1)证明略(2)∠BOC=140°6.GEED =327.(1)证明略(2)△DGF是等腰三角形,理由略(3)GF=√2-1 8.(1)①证明略②证明略(2)CD=23AP=√79.(1)∠PBE=135°(2)APAB 的值为1210.(1)证明略(2)证明略(3)正方形AEFG的边长为3√55。
利用相似三角形求解问题的练习题
利用相似三角形求解问题的练习题相似三角形是几何学中重要的概念之一,应用相似三角形的性质可以帮助我们解决许多问题。
以下是一些利用相似三角形求解问题的练习题,希望能帮助读者更好地理解和掌握这一概念。
练习题一:已知直角三角形ABC,其中∠C为直角,AB=5cm,AC=12cm。
在AB边上选一点D,连接CD并延长至与BC边交于点E。
若BD=DE,求CE的长度。
解答:由于∠C为直角,则∠CAB和∠CBA分别为对角ABC和ACB的对应角,即∠CAB∽∠ACB。
又因为BD=DE,所以可以得到∠BDC=∠CDE,同理有∠CBD=∠CED。
根据相似三角形的性质,可以得到以下比例关系:AB/AC = BD/CE代入已知数值,可得:5/12 = BD/CE解方程,可得:CE = (12/5) * BD由题目可知BD=DE,所以BD=5cm,代入可得:CE = (12/5) * 5 = 12cm所以CE的长度为12cm。
练习题二:在平面直角坐标系中,已知三角形ABC,其中A(-2,4)、B(1,2)、C(4,-2),直线DE与x轴和y轴分别交于点D(5,0)和E(0,-4),求证:△ABC∽△ADE,并计算其相似比。
解答:首先,计算△ABC和△ADE的边长:△ABC的边长:AB = √[(1-(-2))^2 + (2-4)^2] = √[3^2 + (-2)^2] = √13BC = √[(4-1)^2 + (-2-2)^2] = √[3^2 + 4^2] = 5AC = √[(4-(-2))^2 + (-2-4)^2] = √[6^2 + (-6)^2] = 6√2△ADE的边长:AD = √[(-2-5)^2 + (4-0)^2] = √[(-7)^2 + 4^2] = √65DE = √[(-2-0)^2 + (4-(-4))^2] = √[(-2)^2 + 8^2] = 2√4 = 4AE = √[(-2-0)^2 + (4-0)^2] = √[(-2)^2 + 4^2] = 2√5可以发现,AB/AD = 1/√5,BC/DE = 5/4,AC/AE = √2/√5。
相似三角形经典例题(练习)
一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF AC=BC FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM⊥BC 于点E ,交BA 的延长线于点D 。
例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
过D 点作DG∥AB 交FC 于G 则△AEF∽△DEG。
(平行于三角形一边的直线截其它两边或两边的延长线所得三角形与原三角形相似) (1)∵D 为BC 的中点,且DG∥BF∴G 为FC 的中点则DG 为△CBF 的中位线,(2)将(2)代入(1)得:三、如何用相似三角形证明两角相等、两线平行和线段相等。
边AB 和AD 上的点,且。
求证:例8:已知:如图E 、F 分别是正方形ABCD 的∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线,••DG AFDE AE =BF DG 21=FBAF BF AF DE AE 221==31==AD AF AB EB A B C D E FG 1234ABC D AB C D E FK A B CD E FCDRAC E ABCDEFO 123ABCDFGE求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BF(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
《相似三角形》经典练习题(附答案)
相似三角形经典练习题(附答案)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q 从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C 出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
完整版相似三角形性质与判定专项练习30题有答案
相似三角形性质和判定专项练习30题(有答案) 1 已知:如图,在△ ABC中,点D在边BC上,且/ BAC= / DAG , / CDG= / BAD2.如图,已知在△ ABC中,/ ACB=90 °点D在边BC上,CE丄AB , CF丄AD , E、 (1)求证:AC2=AF?AD;F分别是垂足.(1)求证:丄丄厶;AB AC(2)当GC丄BC 时,求证:/ BAC=90 °4. 如图,在平行四边形ABCD中,过B作BE丄CD,垂足为点E,连接AE , F为AE上一点,且 / BFE= / C.(1)求证:△ ABF EAD ;(2)若AB=4 , / BAE=30 ° 求AE 的长.E5. 已知:如图,△ ABC 中,/ ABC=2 / C, BD 平分/ABC . 求证:AB?BC=AC?CD .6. 已知△ ABC , / ACB=90 ° AC=BC,点E、F 在AB 上,/ ECF=45 ° 设厶ABC 的面积为S,说明AF?BE=2S7 •等边三角形 ABC 的边长为6,在AC , BC 边上各取一点 E , F ,连接AF ,BE 相交于点P . (1) 若 AE=CF ;① 求证:AF=BE ,并求/ APB 的度数; ② 若AE=2,试求 AP?AF 的值;(2) 若AF=BE ,当点E 从点A 运动到点C 时,试求点P 经过的路径长.9. 已知:如图,在 △ ABC 中,AB=AC , DE // BC ,点F 在边AC 上, DF 与BE 相交于点 G ,且/ EDF= / ABE . 求证:(1) △ DEFBDE ; (2) DG?DF=DB?EF .&如图所示,AD , BE 是钝角△ ABC 的边BC , AC 上的高,求证:AD =AC BE =BC3 C10. 如图,△ ABC 、△ DEF 都是等边三角形,点 D 为AB 的中点,E 在BC 上运动,DF 和EF 分别交AC 于G 、H 两点,BC=2,问E 在何处时CH 的长度最大?12 .如图,已知等边三角形 △ AEC ,以AC 为对角线做正方形 ABCD (点B 在厶AEC 内,点D 在厶AEC 夕卜).连接 EB ,过E 作EF 丄AB ,交AB 的延长线为 F .(1) 猜测直线BE 和直线AC 的位置关系,并证明你的猜想. (2) 证明:△ BEF ABC ,并求出相似比.OA?OB=OC?OD .13. 已知:如图, △ ABC 中,点D 、E 是边AB 上的点,(1)求证:△ CEDACD ; 2CD 平分 / ECB ,且 BC =BD ?BA .O ,当/ A= / C 时,求证: A D14. 如图,△ ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且 / BAD= / BGD= / C,联结AG .(1)求证:BD?BC=BG ?BE ;(2)求证:/ BGA= / BAC .15. 已知:如图,在△ ABC中,点D是BC中点,点E是AC中点,且AD丄BC, BE丄AC , BE, AD相交于点G , 过点B 作BF // AC交AD的延长线于点F, DF=6 .(1)求AE的长;(2)求邑匹的值.^AFBG16 .如图,△ ABC 中,/ ACB=90 ° D 是AB 上一点,M 是CD 中点,且/ AMD= / BMD , AP // CD 交BC 延长线于P 点,延长BM交PA于N点,且PN=AN .(1)求证:MN=MA ;(2)求证:/ CDA=2 / ACD .连接AE ,若AB=6 , AE=5时,求线段 AG 的长.17. 已知:如图,在 △ ABC 中,已知点 D 在BC 上,联结 AD ,使得/ CAD= / B , DC=3且S A ACD : S A ADB = 1 : 2. (1)求AC 的值;(2) 若将△ ADC 沿着直线AD 翻折,使点 C 落点E 处,AE 交边BC 于点F ,且AB // DE ,求18. 在△ ABC 中,D 是BC 的中点,且 AD=AC , DE 丄BC ,与AB 相交于点E , EC 与AD 相交于点F . (1)求证:△ ABC FCD ;(2) 若 DE=3 , BC=8,求△ FCD 的面积.19 .如图,△ ABC 为等边三角形, D 为BC 边上一点,以 AD 为边作/ ADE=60 ° DE 与厶ABC 的外角平分线 交于点E . (1)求证:/ BAD= / FDE ;CE的20. 如图所示,△ ABC 中,/ B=90 °点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点 Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果P , Q 分别从A , B 同时出发,经几秒,使 △ PBQ 的面积等于8cm 2?21. 已知:如图,△ ABC 是等边三角形,D 是AB 边上的点,将 DB 绕点D 顺时针旋转60。
相似三角形题经典(含答案)
相似三角形一、选择填空题 1、如图1,已知AD 与BC 相交于点O,AB//CD,如果∠B=40°,∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°2、如图,在矩形ABCD 中,点E 为边BC 的中点,AE BD ⊥,垂足为点O ,则ABBC的值等于 .3.如图,在ABC △中,P 是AC 上一点,连结BP ,要使ABP ACB △∽△,则必须有ABP ∠= 或APB ∠= 或ABAP= . 4、如图,正方形ABCD 的边长为2,AE =EB ,MN =1,线段MN 的两端分别在CB 、CD 上滑动,那么当CM =________时,△ADE 与△MN C 相似.5.已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MCAM的值是________.6.如图,等边△ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 上一点;若∠APD =60°,则CD 长是 A.43 B.23 C.21 D.32 7、如图,正方形ABCD 中,E 是AD 的中点, BM ⊥CE,AB=6,则BM=______.图4 图6 图78、如下图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )9.如图,四边形ABCD 是矩形,DH ⊥AC ,如果AH=9cm ,CH=4cm ,那么ABCD S 四边形=( )A B C D O 图1 A B O E C DA PCB DP C ABAB CA .752cmB .762cmC .772cmD .782cm图9 图10图1110、如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则:DMN CEM S S △△等于( ) A.1:2B.1:3C.1:4D.1:511.如图,△ABC 中,PQ ∥BC ,若3=∆APQ S ,6=∆PQB S ,则=∆cQB S ( ) A .10 B .16 C .9 D .1812、如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADEDBCE SS :=:8,四边形那么:AE AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 213、已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( )A .2B .3C .6D .5414、如图,线段AB 、CD 相交于E ,AD EF BC ∥∥,若12AE EB =∶∶,1ADES =,则AEFS等于 ( )A.4 B.23 C.2 D.4315、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是 △ABC 的面积的 ( ) A.91 B.92 C.31 D.94图图1416、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为 4.8米,则树的高度为( ) A 、4.8米B 、6.4米C 、9.6米D 、10米PQCA H DC BAA N DB CE M B A C DE((第15题图)17、如图,由点O 出发的13条射线恰好等分圆周,图中的三角形都是直角三角形.若641 OA ,则71A A 的长为________.二.解答题1.如图,已知菱形AMNP 内接于△ABC ,M 、N 、P 分别在AB 、BC 、AC 上,如果AB =21 cm ,CA =15 cm ,求菱形AMNP 的周长。
(05)相似三角形性质专项练习30题(有答案)
相似三角形性质专项练习30题(有答案)1.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.2.如图,AD=2,AC=4,BC=6,∠B=36°,∠D=107°,△ABC∽△DAC(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.3.如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:=.4.如图所示,已知∠ACB=∠CBD=90°,AC=b,CB=a,BD=k,若△ACB∽△CBD,写出a、b、k之间满足的关系式.5.如图,AD、BE是△ABC的两条高,A′D′、B′E′是△A′B′C′的两条高,△ABD∽△A′B′D′,∠C=∠C′,求证:=.6.已知,如图,△AOB∽△DOC,BD⊥AC,∠AOB是直角.求证:AD2+BC2=AB2+CD2.7.已知如图△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,△ABD∽△DCE.当△ADE是等腰三角形时,求AE的长.8.如图,△ABC与△ADB相似,AD=4,CD=6,求这两个三角形的相似比.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.10.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?11.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.13.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE△∽△DEF,AB=6,AE=8,DE=2,求EF的长.14.如图,△ABC∽△DAB,AB=8,BC=12,求AD的长.15.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?16.如图,△ABC∽△FED,若∠A=50°,∠C=30°,求∠E的度数.17.如图,已知△ABC∽△AED,且∠B=∠AED,点D、E分别是边AB、AC上的点,如果AD=3,AE=6,CE=3.根据以上条件你能求出边AB的长吗?请说明理由.18.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC 相似?试说明理由.19.如图,在平行四边形ABCD中,AB=4,AD=6,∠ABC=60°;点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E,设AP=x.(1)求AC的长;(2)如果△ABP和△BCE相似,请求出x的值;(3)当△ABE是等腰三角形时,求x的值.20.已知两个相似三角形的一对对应边长分别是35cm和14cm(1)已知他们的周长相差60cm,求这两个三角形的周长.(2)已知它们的面积相差588cm2,求这两个三角形的面积.21.如图,已知△ACE∽△BDE,∠A=117°,∠C=37°,AC=6,BD=3,AB=12,CD=18,(1)求∠B和∠D的度数;(2)求AE和DE的长.22.一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.23.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两边长分别可以为多少?24.如图,已知等边△ABC的边长为8,点D、P、E分别在边AB、BC、AC上,BD=3,E为AC中点,当△BPD 与△PCE相似时,求BP的值.25.如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:.26.已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.27.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C 出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.28.Rt△ABC中,∠A=90°,AB=8cm,AC=6cm,P、Q分别为AC,AB上的两动点,P从点C开始以1cm/s的速度向点A运动,Q从点A开始以2cm/s的速度向点B运动,当一点到达终点时,P、Q两点就同时停止运动.设运动时间为ts.(1)用t的代数式分别表示AQ和AP的长;(2)设△APQ的面积为S,①求△APQ的面积S与t的关系式;②当t=2s时,△APQ的面积S是多少?(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?29.如图所示,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发,沿BC向点C以2cm/s的速度移动,点Q 从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?30.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.相似三角形专项练习30题参考答案: 1.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=9,∴BE===,∵△ABE∽△DEF,∴=,即=,解得EF=.2.解:(1)∵△ABC∽△DAC,∴,∴,解得:AB=3;(2)∵△ABC∽△DAC,∴,∴,解得:CD=;(3)∵△ABC∽△DAC,∴∠BAC=∠D=107°,∠CAD=∠B=36°,∵∠B=36°,∴∠BAD=∠BAC+∠CAD=107°+36°=143°3.证明:∵△ABC与∽A′B′C′,∴∠ABD=∠A′B′D′,∵AD和A′D′是高,∴∠ADB=∠A′D′B′,∴△ABD∽△A′B′D,∴=,同理可得=,∴=.4.解:∵△ACB∽△CBD,∴=,∵AC=b,CB=a,BD=k,∴=,即a2=bk.5.证明:∵△ABD∽△A′B′D′,∴∠ABC=∠A′B′C′,∠BAC=∠B′A′C′,∵AD是△ABC的高,A′D′是△A′B′C′的,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴=,同理可求△ABE∽△A′B′E′,∴=,∴=.6.解:∵BD⊥AC,∴∠AED=∠AEB=∠BEC=∠DEC=90°,∴在Rt△AED中,AD2=AE2+DE2,在Rt△AEB中,AB2=AE2+BE2,在Rt△BEC中,BC2=BE2+CE2,在Rt△CED中,CD2=CE2+DE2,∴AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.7.解:分三种情况:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意;②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=1,BC=,AE=AC﹣EC=1﹣BD=1﹣(﹣1)=2﹣;③若AE=DE,此时∠DAE=∠ADE=45°,如图所示,易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=.综上所述,当△ADE是等腰三角形时,AE的长为2﹣或.8.解:∵△ABC与△ADB相似,∴△ABC∽△ADB,∴=,∴AB2=AC•AD=10×4=40,∴△ABC与△ADB的相似比为==.9.解:设BF=x,则CF=4﹣x,由翻折的性质得B′F=BF=x,当△B′FC∽△ABC,∴=, 即=,解得x=,即BF=.当△FB ′C ∽△ABC , ∴AB FB /'=AC FC即,解得:x=2.∴BF 的长度为:2或.10.解:设运动了ts ,根据题意得:AP=2tcm ,CQ=3tcm ,则AQ=AC ﹣CQ=16﹣3t (cm ),当△APQ ∽△ABC 时,,即,解得:t=;当△APQ ∽△ACB 时,,即,解得:t=4; 故当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间是:s 或4s11.解:∵△AOB ∽△EOD , ∴DE :AB=OA :OE ,∵DE=AB ,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.12.解:(1)∵△PCD 是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP ∽△PDB ,∴∠APC=∠B ,∵∠A=∠A ,∴∠ACP∽∠APB,∴∠APB=∠ACP=120°;(2)∵△ACP∽△PDB,∴AC:PD=PC:BD,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=PD=CD,∴CD2=AC•BD.13.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=8,∴BE===10,∵△ABE∽△DEF,∴=,即=,解得EF=.14.解:∵△ABC∽△DAB,∴,∵AB=8,BC=12,∴,∴AD=.15.解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.16.解:∵△ABC中,∠A=50°,∠C=30°,∴∠B=180°﹣50°﹣30°=100°,∵△ABC∽△FED,∴∠E=∠B=100°.17.解:∵△ABC∽△AED,且∠B=∠AED,∴.又AD=3,AE=6,CE=3,∴AB==18.18.解:设经过t秒两三角形相似,则AP=AB﹣BP=8﹣2t,AQ=4t,①AP与AB是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=2,②AP与AC是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=,综上所述,经过或2秒钟,△APQ与△ABC相似19.解:(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=,BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°∴(1分)(2)过点P作PG⊥BC于G,在Rt△BPG中,∠PGB=90°,∴(1分)如果△ABP和△BCE相似,∵∠APB=∠EBC又∵∠BAP=∠BCD>∠ECB(1分)∴∠ABP=∠ECB∴即解得(不合题意,舍去)∴x=8(1分)(3)①当AE=AB=4时∵AP∥BC,∴即,解得,②当BE=AB=4时∵AP∥BC,∴,即,解得(不合题意,舍去)③在Rt△AFC中,∠AFC=90°∵,在线段FC上截取FH=AF,∴∠FAE>∠FAH=45°∴∠BAE>45°+30°>60°=∠ABC>∠ABE∴AE≠BE.综上所述,当△ABE是等腰三角形时,或20.解:(1)∵相似三角形的对应边长分别是35cm和14cm∴这两个三角形的相似比为:5:2∴这两个三角形的周长比为:5:2∵他们的周长相差60cm∴设较大的三角形的周长为5xcm,较小的三角形的周长为2xcm ∴3x=60∴x=20cm∴5x=5×20=100cm,2x=2×20=40cm∴较大的三角形的周长为100cm,较小的三角形的周长为40cm(2)∵这两个三角形的相似比为:5:2∴这两个三角形的面积比为:25:4∵他们的面积相差588cm2∴设较大的三角形的面积为25xcm2,较小的三角形的面积为4xcm2∴(25﹣4)x=588,∴x=28cm2∴25x=25×28=700cm2,4x=4×28=112cm2∴较大的三角形的面积为700cm2,较小的三角形的面积为112cm2 21.解:(1)∵△ACE∽△BDE,∠A=117°,∠C=37°,∴∠B=∠A=117°,∠C=∠D=37°;(2)∵△ACE∽△BDE,AC=6,BD=3,AB=12,CD=18,∴设AE=x,DE=y,则BE=12﹣x,CE=18﹣y,∴==,即==,解得x=8,y=6,∴AE=8,DE=622.解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则有;②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,则有.③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,∴一共有两种截法.23.解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故三角形框架的两边长可以是:和3或和或和.24.解:设BP=x,∵等边△ABC的边长为8,∴CP=8﹣x,∵E为AC中点,∴CE=AC=×8=4,①BD和PC是对应边时,△BDP∽△CPE,∴=,即=,整理得,x2﹣8x+12=0,解得x1=2,x2=6,即BP的长为2或6,②BD和CE是对应边时,△BDP∽△CEP,∴=,即=,解得x=,即BP=,综上所述,BP的值是2或6或.25.证明:∵△ABC∽△A′B′C′,∴===K.又∵AD、A′D′分别是边BC、B′C′上的中线,∴==.∴,∵∠B=∠B′,∴△ABD∽△A′B′D′.∴.26.解:∵相似三角形周长的比等于相似比,∴,∴,同理,∴.答:EF的长是cm,AC的长是cm.27.解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)28.解:(1)用t的代数式分别表示AQ=2t,AP=6﹣t;(2分)(2)设△APQ的面积为S,①△APQ的面积S与t的关系式为:S=AQ•AP=×2t×(6﹣t)=6t﹣t2,即S=6t﹣t2,②当t=2s时,△APQ的面积S=×AQ•AP=×[2×2×(6﹣2)]=8(cm2);(6分)(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似,①当=时=,∴t=2.4(s);②当=时=,∴t=(s);综上所述,当t为2.4秒或时,以点A、P、Q为顶点的三角形与△ABC相似.29.解:∵∠C=90°,BC=8cm,AC:AB=3:5,∴设AC=3xcm,AB=5xcm,则BC==4x(cm),即4x=8,解得:x=2,∴AC=6cm,AB=10cm,∴BC=8cm,设过t秒时,以C、P、Q为顶点的三角形恰与△ABC相似,则BP=2tcm,CP=BC﹣BP=8﹣2t(cm),CQ=tcm,∵∠C是公共角,∴①当,即时,△CPQ∽△CBA,解得:t=2.4,②当,即时,△CPQ∽△CAB,解得:t=,∴过2.4或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.30.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。
相似三角形经典练习题及答案
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
相似三角形应用题专项练习30题(有答案)
相似三角形应用题专项练习30题(有答案)1.如图,某一时刻一根2米长的竹竿EF影长GE为1.2米,此时,小红测得一颗被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是3.6米,则树长AB是多少米.2.铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.3.如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm.从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与HG的交点为M.(1)试说明:;(2)求这个矩形EFGH的宽HE的长.4.如图所示,某测量工作人员的眼睛A与标杆顶端F,电视塔顶端E在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=19米,求电视塔的高ED.5.如图,要测量某建筑物的高度AB,立两根高为2m的标杆BC和DE,两竿相距BD=38m,D、B、H三点共线,从BC退行3m,到达点F,从点F看点A,A、C、F三点共线,从DE退行5m到达点G,从点G看点A,A、E、G三点也共线,试算出建筑物的高度AB及HB的长度.6.如图,路灯A离地8米,身高1.6米的小王(C D)的影长DB与身高一样,现在他沿OD方向走10米,到达E 处.(1)请画出小王在E处的影子EH;(2)求EH的长.7.已知:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,求此树的高.8.如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?9.如图,大刚在晚上由灯柱A走向灯柱B,当他走到M点时,发觉他身后影子的顶部刚好接触到灯柱A的底部,当他向前再走12米到N点时,发觉他身前的影子刚好接触到灯柱B的底部,已知大刚的身高是1.6米,两根灯柱的高度都是9.6米,设AM=NB=x米.求:两根灯柱之间的距离.10.如图,小李晚上由路灯A下的B处走到C时,测得影子CD的长为2米,继续往前走3米到达E处时,测得影子EF的长为2米,已知小李的身高CM为1.5米,求路灯A的高度AB.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.12.为了测量被池塘隔开的A,B两点之间的距离.根据实际情况,作出如下图形,其中AB⊥BE,EF⊥BE,AF 交BE于D,C在BD上,实际可测量①BC;②CD;③DE;④EF;⑤DB;⑥∠ACB;⑦∠ADB等数据.你会选择测量哪些数据?请说出你的方案,并列出求AB长的表达式.13.如图,要测量河宽,可在两岸找到相对的两点A、B,先从B出发与AB成90°方向向前走50米,到C处立一标杆,然后方向不变继续朝前走10米到D处,在D处转90°,沿DE方向走到E处,若A、C、E三点恰好在同一直线上,且DE=17米,你能根据题目提供的数据和图形求出河宽吗?14.在一次测量旗杆高度的活动中,某小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面,若AB=1.6m,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度.15.我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD的度数(精确到1°);(2)装饰画顶部到墙壁的距离DC(精确到0.01米).16.如图,学校的围墙外有一旗杆AB,甲在操场上C处直立3m高的竹竿CD,乙从C处退到E处恰好看到竹竿顶端D,与旗杆顶端B重合,量得CE=3m,乙的眼睛到地面的距离FE=1.5m;丙在C1处也直立3m高的竹竿C1D l,乙从E处退后6m到E l处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D l与旅杆顶端B也重合,测得C l E l=4m.求旗杆AB的高.17.如图,一个三角形钢筋框架三边长分别为20cm、50cm、60cm,要做一个与其相似的钢筋框架.现有长为30cm 和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为另外两边,你认为有几种不同的截法?并分别求出.18.某校初三年级数学兴趣小组的同学准备在课余时间测量校园内一棵树的高度.一天,在阳光下,一名同学测得一根长为l米的竹竿的影长为0.6米,同一时刻另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在实验楼的第一级台阶上,此时测得落在地面上的影长为4.6米,落在台阶上的影长为0.2米,若一级台阶高为0.3米(如图),求树的高度?19.如图,小明站在灯光下,投在地面上的身影AB=1.125m,蹲下来,则身影AC=0.5m,已知小明的身高AD=1.6m,蹲下时的高度等于站立高度的一半,求灯离地面的高度PH.20.如图,阳光通过窗口照到室内,在地面上留下一段亮区.已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,窗口底边离地面的高度BC=1.5m,求亮区ED的长.21.如图,△ABC是一块三角形余料,AB=AC=13cm,BC=10cm,现在要把它加工成正方形零件,使正方形的一边在△ABC的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少?22.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.23.已知:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB(设A,C,F在同一水平线上).(1)按比例较精确地作出高楼AB及它的最大影长AE;(2)问若大楼AB建成后是否影响温室CD的采光,试说明理由.24.一个钢筋三角架三边长分别是30厘米、75厘米、90厘米,现在再做一个与其相似的钢筋三角架,而只有长为45厘米和75厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.25.有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).两种情形下正方形的面积哪个大?26.求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度之和是一个定值.27.某居民小区有一朝向为正南的居民楼(如图),该居民楼的一楼是高为6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角是30°时.(1)超市以上的居民住房采光是否有影响,影响多高?(2)若要使采光不受影响,两楼相距至少多少米?(结果保留根号)28.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.29.如图,点D、E分别在AC、BC上,如果测得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,(1)△ABC与△EDC相似吗?为什么?(2)求A、B两地间的距离.30.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离OB=4.2m时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?相似三角形性质和判定专项练习30题参考答案:1.解:如图,CD=3.6m,∵△BDC∽△FGE,∴=,即=,∴BC=6,在Rt△ABC中,∵∠A=30°,∴AB=2BC=12,即树长AB是12米.2.解:过点A作AM⊥EF于点M,交CD于点N,由题意可得:AN=2m,CN=2﹣1.65=0.35(m),MN=40m,∵CN∥EM,∴△ACN∽△AEM,∴=,∴=,解得:EM=7.35,∵AB=MF=1.65m,故城楼的高度为:7.35+1.65﹣1.7=7.3(米),答:城楼的高度为7.3m.3.(1)证明:∵四边形EFGH为矩形,∴EF∥GH,∴∠AHG=∠ABC,又∵∠HAG=∠BAC,∴△AHG∽△ABC,∴;(2)解:设HE=xcm,MD=HE=xcm,∵AD=30cm,∴AM=(30﹣x)cm,∵HG=2HE,∴HG=(2x)cm,由(1)可得,解得,x=12,∴宽HE的长为12cm.由题意可得:△AFG∽△AEH,∴即,解得:EH=9.6米.∴ED=9.6+1.6=11.2米.5.解:设BH=x,AH=y,根据题意可得:BC∥AH,DE∥AH,则△FCB∽△FAH,△EDG∽△AHG,故=,=,即=,=,则=,解得:x=57,故=,解得:y=40,答:建筑物的高度AB为40m及HB的长度为57m.6.解:(1)如图:(2分).(2)由=(3分)∴OB=8米(4分),∴OE=16.4米.由=(5分)即=.(7分)∴EH=4.1米.(8分)7.解:∵CD⊥AB,EB⊥AD,∴EB∥CD,∴△ABE∽△ADC,∴,.∵EB=2,AB=3,AD=21,∴,∴CD=14.答:此树高为14米.8.解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===6,∴AB=AG+GB=6+2=8(米),故电线杆子的高为8米.9.解:由对称性可知AM=BN,设AM=NB=x米,∵MF∥BC,∴△AMF∽△ABC∴=,∴=∴x=3经检验x=3是原方程的根,并且符合题意.∴AB=2x+12=2×3+12=18(m).答:两个路灯之间的距离为18米.10.解:∵小李的身高:小李的影长=路灯的高度:路灯的影长,当小李在CG处时,Rt△DCG∽Rt△DBA,即CD:BD=CG:AB,当小李在EH处时,Rt△FEH∽Rt△FBA,即EF:BF=EH:AB=CG:AB,∴CD:BD=EF:BF,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴,解得:y=3,经检验y=3是原方程的根.∵CD:BD=CG:AB,即=,解得x=6米.即路灯A的高度AB=6米.11.解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=10m,∴=∴BC=5米,∴AB=AC+BC=1.5+5=6.5米∴树高为6.5米.12.解:选择①⑥,可由公式AB=BC×tan∠ACB求出A、B两点间的距离;选择③④⑤可以证得△DEF∽△DBA,则=,可求得AB的长为.13.解:∵先从B处出发与AB成90°角方向,∴∠ABC=90°,∵BC=50m,CD=10m,∠EDC=90°,∴△ABC∽△EDC,∴AB=5DE,∵沿DE方向再走17米,到达E处,即DE=17,∴AB=5×17=85.∴河宽为85米14.解:过点A作AH⊥EF于H点,AH交CD于G,∵CD∥EF,∴△ACG∽△AEH,∴,即:,∴EH=12.4.∴EF=EH+HF=12.4+1.6=14,∴旗杆的高度为14米.15.解:(1)∵AD=0.66,∴AE=AD=0.33,在Rt△ABE中,(1分)∵sin∠ABE==,∴∠ABE≈12°,(4分)∵∠CAD+∠DAB=90°,∠ABE+∠DAB=90°,∴∠CAD=∠ABE=12°.∴镜框与墙壁的夹角∠CAD的度数约为12°.(5分)(2)解法一:在Rt△ACD中,∵sin∠CAD=,∴CD=AD•sin∠CAD=0.66×sin12°≈0.14,(7分)解法二:∵∠CAD=∠ABE,∠ACD=∠AEB=90°,∴△ACD∽△BEA,(6分)∴,∴,∴CD≈0.14.(7分)∴镜框顶部到墙壁的距离CD约是0.14米.(8分)16.解:设BO=x,GO=y.∵GD∥OB,∴△DGF∽△BOF,∴1.5:x=3:(3+y)同理1.5:x=4:(y+6+3)解上面2个方程得,经检验x=9,y=15均是原方程的解,∴旗杆AB的高为9+15=24(米).17.解:有两种不同的截法:(1)如图(一),以30cm长的钢筋为最长边,设中边为x,短边长为y,则有,①,解得x=25,②,解得y=10,所以从50cm长的钢筋上分别截取10cm、25cm的两段;(6分)(2)如图(二),以30cm长的钢筋为中边,设长边为x,短边长为y,①,解得x=36,②,解得y=12.所以从50cm长的钢筋上分别截取12cm、36cm的两段.(12分)(3)若以30cm长的钢筋为短边,设长边为x,中边长为y,,解得:x=90(不合题意,舍去)18.解:如图,设树的高度为AB,BD为落在地面的影长,CE为落在台阶上的影长,CD为台阶高延长EC交AB于F,则四边形BDCF是矩形,从而FC=BD=4.6,BF=CD=0.3,所以EF=4.6+0.2=4.8,则,解得AF=8,AB=AF+FB=8.3(米).所以树的高度AB为8.3米.19.解:因为AD∥PH,∴△ADB∽△HPB;△AMC∽△HPC∴AB:HB=AD:PH,AC:AM=HC:PH,即1.125:(1.125+AH)=1.6:PH,0.5:0.8=(0.5+HA):PH,解得:PH=8m.即路灯的高度为8米20.解:根据题意,易得△DCB∽△ACE,∴CD:CE=BC:CA,又因为AB=1.2米,CE=3.6米,BC=1.5米,所以(3.6﹣ED):3.6=1.5:(1.2+1.5).解得ED=1.6米.21.解:∵△ABC中,AB=AC=13cm,BC=10cm,∴AD=12,∵四边形DEFG是正方形,∴ED∥BC,DE=GF,(1分)∴△AED∽△ACB,(1分)又∵AN⊥BC,∴AN⊥DE,DG=ED=EF,(1分)∴,(2分)设DE=x,则AM=12﹣x,∴,(1分)解得:x=.答:这个正方形的边长为厘米.(1分)22.解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m23.解:如图,∵HE∥DF,HC∥AB,∴△CDF∽△ABE∽△CHE,∴AE:AB=CF:DC,∴AE=8米,由AC=7米,可得CE=1米,由比例可知:CH=1.5米>1米,故影响采光.24.解:设截成的两边的长分别为xcm、ycm,①45cm与30cm是对应边时,新做三角架的两边之和一定大于75cm,不符合;②45cm与75cm是对应边时,∵两三角架相似,∴==,解得x=18,y=54,∵18+54=72cm<75cm,∴从75cm长的钢筋截取18cm和54cm两根;③45cm与90cm是对应边时,∵两三角架相似,∴==,解得x=15,y=37.5,∵15+37.5=52.5cm<75cm,∴从75cm长的钢筋截取15cm和37.5cm两根;综上所述,共有两种截法:方法一:从75cm长的钢筋截取18cm和54cm两根,方法二:从75cm长的钢筋截取15cm和37.5cm两根.25.解:(1)因为△ABC为直角三角形,边长分别为3cm和4cm,则AB==5.作AB边上的高CH,交DG于点Q.于是=,故CH=cm.易得:△DCG∽△ACB,故:=.设正方形DEFG的边长为xcm,得:=,解得:x=.(2)令AC=3cm,设正方形边长为ycm.易得:△ADE∽△ACB,于是:=,=,解得:y=.∵<,∴第二种情形下正方形的面积大.26.解:如图所示,CD、EF为路灯高度,AB为该人高度,BM、BN为该人前后的两个影子.∵AB∥CD,∴=,∴=,即MB=.同理BN=.∴MB+BN==常数(定值).27.解:(1)如图1所示:过F点作FE⊥AB于点E,∵EF=15米,∠AFE=30°,∴AE=5米,∴EB=FC=(20﹣5)米.∵20﹣5>6,∴超市以上的居民住房采光要受影响;(2)如图2所示:若要使超市采光不受影响,则太阳光从A直射到C处.∵AB=20米,∠ACB=30°∴BC===20米答:若要使超市采光不受影响,两楼最少应相距20米.28.解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得,AB=6.4m.29.解:(1)∵CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,∴AC=AD+CD=100+20=120m,BC=BE+CE=20+40=60m,∵==,==,∠C=∠C,∴△CDE∽△CBA;(2)∵△CDE∽△CBA,∴=,即=,解得AB=135m.30.解:(1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE即为所求;(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴=,即=,∴x=5.8米;当OD=6米时,设小亮的影长是y米,∴=,∴=,∴y=(米).即小亮的影长是米.。
(精题)相似三角形应用题_含答案
相似三角形练习题一、解答填空题(共30小题)1、已知BD,CE是△ABC的高,BD•AC_________AB•CE(用两种方法).2、如图,在△ABC中,D是AC上的一点,已知AB2=AD•AC,∠ABD=35°,则∠C=_________度.3、如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,则CO=_________ cm,DO=_________cm.4、如图,已知∠ABC=∠ACD,若AD=3cm,AB=7cm,则AC=_________cm.5、如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,AD=4,BD=1.(1)求证:△ABC∽△CBD;(2)则cosB的值为_________.6、如图,在平行四边形ABCD中,过顶点A的直线AF交CD于E点,交BC的延长线于F 点.(1)则△ADE_________△FBA;(2)若E点为CD中点,则的值为_________.7、如图,在△ABC中,点D是AB中点,点E在边AC上,且∠AED=∠ABC,如果AE=3,EC=1,那么边AB=_________.8、如图,已知AB:AD=BC:DE=AC:AE,则∠ABD与∠ACE的关系_________.9、如图,已知△ABC中,点E、F分别是AC、AB边上的点,EF∥BC,AF=2,BF=4,BC=5,连接BE,CF相交于点G.(1)则线段EF=_________;(2)则=_________.10、如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF ∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,CE=_________;(2)当△ECF的周长与四边形EABF的周长相等时,CE=_________.11、如图,在梯形ABCD中,AD∥BC,∠B=90°,AC⊥CD,若AD=9,BC=4,则AC的长为_________.12、如图,△ABC中,AD平分∠BAC,CD=CE,则AB•CD_________AC•BD.13、(2010•宁德)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD=_________度(精确到1°);(2)装饰画顶部到墙壁的距离DC=_________米(精确到0.01米).14、(2009•陕西)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,楼高AB是_________m(结果精确到0.1m).15、(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.住宅楼的高度为_________米.16、(2007•玉溪)如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB 方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);(2)已知:MN=20 m,MD=8 m,PN=24 m,求(1)中的点C到胜利街口的距离CM=_________ m.17、(2005•济南)如图,在一个长40m、宽30m的长方形小操场上,王刚从A点出发,沿着A⇒B⇒C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶.当张华跑到距B地2m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距_________米.(DE的长)(2)求张华追赶王刚的速度是_________m/s(精确到0.1m/s).18、如图,一油桶高AE为1m,桶内有油,一根木棒AB长为1.2m,从桶盖的小口(A)处斜插入桶内,一端插到桶底,另一端与小口(A)齐平,抽出木棒,量得棒上未浸油部分AC长为0.48m.桶内油面的高度DE=_________m.19、如图,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,此路灯高有_________米.20、兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米.(1)一个实际或现实的问题只有数学化后,才有可能用数学的思想方法解决.请你认真读题,画出示意图,并在示意图上标注必要的字母和数字.(2)利用示意图,树的高度是_________米.21、小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.教学大楼的高度AB是_________米(注意:根据光的反射定律:反射角等于入射角).22、有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).两种情形下正方形的面积哪个大?_________(填(1)或(2)即可).23、如图,灯泡在圆桌的正上方,当距桌面2m时,圆桌的影子的直径为2.8m,在仅仅改变圆桌的高度,其他条件不变的情况下,圆桌的桌面再上升_________米,其影子的直径变为3.2m.24、如图,马路MN上有一路灯O,小明沿着马路MN散步,当他在距路灯灯柱6米远的B 处时,他在地面上的影长是3米,问当他在距路灯灯柱10米远的D处时,他的影长DF是_________米.25、如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①小亮在路灯D下的影长为_________m;②建筑物AD的高为_________m.26、在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行﹣千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K 位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),小城的边长为_________步.27、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,电视塔的高ED=_________米.28、已知:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,此树的高是_________米.29、一位同学想利用树影测树高AB.在某一时刻测得1m的竹竿的影长为0.7m,但当他马上测树影时,发现影子不全落在地上,一部分落在了附近的﹣幢高楼上(如图).于是他只得测出了留在墙上的影长CD为 1.5m,以及地面部分上的影长BD为 4.9m.树高是_________米.30、如图,小龙要测量楼的顶层一根旗杆的顶端距地面的距离.他在地面上放置一面镜子,若小龙的眼睛距镜面中心点2米,镜面中心点距离小龙的脚1.2米,距离大楼底部12米,这根旗杆的顶端距地面的距离为_________米.答案与评分标准一、解答填空题(共30小题)1、已知BD,CE是△ABC的高,BD•AC=AB•CE(用两种方法).考点:相似三角形的判定与性质。
相似三角形的应用精选练习题
相似三角形的应用精选练习题1.XXX用自制的直角三角形纸板DEF测量树AB的高度。
测量时,使直角边DF保持水平状态,其延长线交AB于点G;使斜边DE所在的直线经过点A。
测得边DF离地面的高度为1m,点D到AB的距离等于7.5m。
已知DF=1.5m,EF=0.6m,求树AB的高度。
2.XXX测得2m高的标杆在太阳下的影长为1.2m,同时又测得一棵树的影长为3.6m。
请计算这棵树的高度。
3.XXX用下面的方法来测量学校教学大楼AB的高度。
在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米。
当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B。
已知她的眼睛距地面高度DC=1.6米,请帮助小红测量出大楼AB的高度(注:入射角=反射角)。
5.XXX在晚上由路灯A走向路灯B。
当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部。
已知XXX的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB。
1) 求两个路灯之间的距离。
2) 当XXX走到路灯B的底部时,他在路灯A下的影长是多少?6.某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度。
他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上。
已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度。
7.△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm。
在BC边上取一点E,使AE=CD。
连接DE,求DE的长度。
8.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语XXX。
XXX想到了一个办法,他找到一面墙,让小军站在墙边,然后用一支笔在墙上画出小军头顶的位置,再测量墙顶到地面的距离,就能算出小军的身高了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.6相似三角形的应用
1.为解决楼房之间的挡光问题,某地区规定:两幢楼房之间的距离至少40米,中午12时不能挡光,如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼,已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30,在不违反规定的情况下,请问新建楼房最高多少米?
2.如图,Rt ABC ∆为一铁板余料,B=90,BC=6cm,AB=8cm ∠,李师傅要把它加工成正方形小铁板,请你帮李师傅设计加工方案并计算出铁板的边长,再从中选择边长较大的一种加工方案。
3.(1)如图①四边形DEFG 为ABC ∆的内接正方形,求正方形的边长;
(2)如图②,三角形内有并排的两个相等的正方形,他们组成的矩形内接于ABC ∆,求正方形的边长;
(3)如图③三角形内有并排的三个相等的正方形,他们组成的矩形内接于ABC ∆,求正方形的边长;
(4)如图④,三角形内有并排的n 个相等的正方形,他们组成的矩形内接于ABC ∆,请写出正方形的边长。
4.如图,陆涛为了测一铁塔的高度,他在自己与铁路间的地面上平放一面镜子,并在镜子上做一个标记O ,然后他看着镜子来回移动,直至看到铁塔顶端在镜子中的像与镜子上的标记重合,这时,他测得AO=3m ,OB=27m,又知他身高CA=1.75m,请你帮他算出铁塔DB 的高度。
参考答案:
1.11.24米
2.解:如图,有两种加工方案,图(1)中,EF//BC AEF=B=90A=A ∴∠∠∴∠∠,。
,
AEF ∆∽ABC ∆,
AE EF AB BC
∴=。
设正方形边长为x ,其中
8x x 24x (cm)867-==。
图(2)中,ED//AC,
BDC ∴∆∽BCA ∆,作BH ⊥AC 于H 交DE 于M ,其中BM ⊥DE ,
DE BM ,AC BH ∴=设正方形边长为x ,其中x BM ,AC BH
∴=
22AC=AB 10,
AB BC 8624BH =,AC 105
==⨯⨯==
24x x 1205.x (cm)1037
5
-∴=∴= 24120,737
>所以应选方案(1)
3.解:(1)在图①中作的高CN ,交GF 于M ,在Rt ABC ∆中,由AC=4 ,BC=3 ,得AB=5 ,CN=125。
由GF//AB ,得CGF ∆∽CAB ∆。
所以CM GF .CN AB = 设正方形的边长为x ,则12x x 5,125
5
-=解的x = 6037. 所以,正方形的边长为6037。
(2)在图②中作ABC ∆的高CN ,交GF 于M ,由GF//AB ,得CGF ∆∽CAB ∆,所
以CM GF .CN AB =设每个正方形的边长为x ,则12x 2x 5,125
5
-=解得x=64,49所以,每个正方形的边长为64,49
(3)参照则(1)、(2)设每个正方形的边长为x ,则12x 3x 5,125
5
-=解得x= 6061。
(4)每个正方形的边长为602512n
+。
20.15.75米解略。