茚三酮与氨基显色

合集下载

茚三酮鉴定氨基酸概述

茚三酮鉴定氨基酸概述

茚三酮鉴定氨基酸概述1.茚三酮简介茚三酮(Ninhydrine),又称水合茚三酮,水合茚满三酮,为白色或浅黄色结晶性粉末。

茚三酮是一种用于检测氨或者一级胺和二级胺的试剂。

当与这些游离胺反应时,能够产生深蓝色或者紫色的物质,叫做Ruhemann紫。

茚三酮常用来检测指纹,这是由于指纹表面所蜕落的蛋白质和肽中含有的赖氨酸残基,其上的一级胺被茚三酮检测。

在室温条件下,它是一种白色的固体物质,溶于乙醇和丙酮。

茚三酮可以看作是是二氢茚-1,2,3-三酮的水合物。

1901 年,茚三酮被成功研制出来以后主要用于生物医学领域,1954年,瑞典科学家Oden 和Hofsten 将其应用于潜在汗液手印的显现。

茚三酮与汗液中的氨基酸、多肽、蛋白质等发生反应, 生成蓝紫色的手印纹线。

茚三酮也可以用于蛋白质的氨基酸分析。

除去脯氨酸之外的大多数氨基酸,水解之后可与茚三酮反应。

水解中某些氨基酸的侧链也会被降解。

因此对于那些与茚三酮不反应或者发生其他反应的氨基酸需要另作分析。

其余的氨基酸经过色谱分离后可以比色定量。

在分析化学反应的薄层色谱(TLC)中,它可以用于检测所有的胺类,氨基甲酸酯类,在经过充分热处理后可以检测酰胺类物质。

2.实际运用2.1指纹鉴别汗液手印中的汗液成分绝大多数是水(约99%以上),其余是少量的无机物和有机物,有机物中包括了人体所含有的各种氨基酸。

茚三酮与手印汗液中的氨基酸发生显色反应而现出手印。

二氧化碳中的碳原子来源于氨基酸当茚三酮与氨基酸反应时可以释放CO2的羧基碳。

在考古研究中,这个反应用于释放古老骨骼中羧基碳用于稳定同位素分析,以帮助重现古代生物的食物结构。

用一种标记底物处理的土壤,随后利用茚三酮与氨基酸的反应释放羧基胺,可以证明这种底物是否被吸收进微生物蛋白质。

这种方法成功的发现了一些氨氧化细菌(也叫做硝化细菌)利用土壤中的尿素作为碳源。

法医常用茚三酮溶液分析诸如纸张等多孔表面上的潜指纹。

手指所分泌的细微汗液聚集于独特的手指纹路表面,也即含有氨基酸的指纹,经过茚三酮处理可以将氨基酸指尖纹路变为可见的紫色。

茚三酮呈色反应实验报告

茚三酮呈色反应实验报告

竭诚为您提供优质文档/双击可除茚三酮呈色反应实验报告篇一:实验三蛋白质及氨基酸的呈色反应实验三蛋白质及氨基酸的呈色反应一、实验目的1、了解蛋白质和某些氨基酸的特殊颜色反应及其原理2、掌握几种常用鉴定蛋白质和氨基酸的方法二、实验内容对蛋白质及氨基酸的双缩脲反应、茚三酮反应、黄色反应、乙醛酸反应、偶氮反应、醋酸铅反应等颜色及沉淀反应进行定性确定。

三、实验操作(一)双缩脲反应1、实验原理当尿素加热到180℃左右时,两个分子的尿素缩合可放出一个分子氨后形成双缩脲,双缩脲在碱性溶液中与铜离子结合生成复杂的红色配合物,此呈色反应称为双缩脲反应。

由于蛋白质分子中含有多个肽键,其结构与双缩脲相似,故能呈此反应,而形成紫红色或蓝紫色的配合物。

此反应常用作蛋白质的定性或定量的测定。

2、试剂(1)尿素(2)10%naoh溶液(3)1%cuso4溶液(4)蛋白质溶液:将鸡蛋清用蒸馏水稀释10~20倍,3层纱布过滤,滤液冷藏备用。

3、操作(1)取少许结晶尿素放在干燥试管,微火加热,则尿素开始熔化,并形成双缩脲,释放的氨可用湿润的红色石蕊试纸鉴定。

待熔融的尿素开始硬化,试管内有白色固体出现,停止加热,让试管缓慢冷却。

然后加10%naoh溶液1ml和1%cuso42~3滴,混匀后观察颜色的变化。

(2)另取一试管,加蛋白质溶液1ml、10%naoh溶液2ml 及1%cuso42~3滴,振荡后将出现的紫红色与双缩脲反应所产生的颜色相对比。

(二)茚三酮反应1、实验原理除脯氨酸和羟脯氨酸与茚三酮作用生成黄色物质外,所有α-氨基酸与茚三酮发生反应生成紫红色物质,最终形成蓝紫色化合物。

1︰1500000浓度的氨基酸水溶液即能发生反应而显色。

反应的适宜ph为5~7。

此反应目前广泛地应用于氨基酸定量测定。

2、试剂蛋白质溶液(同前);0.5%甘氨酸;0.5%茚三酮水溶液3、操作取2支试管分别加入蛋白质溶液和甘氨酸溶液各1ml,再各加0.5ml0.1%茚三酮水溶液,混匀,在沸水浴加热2~3分钟,观察颜色变化。

茚三酮法测氨基酸

茚三酮法测氨基酸

茚三酮法测氨基酸 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT茚三酮显色法测定氨基酸的含量一.原理:凡含有自由氨基的化合物,如蛋白质、多肽、氨基酸的溶液与水合茚三酮共热时,能产生紫色化合物,可用比色法进行测定。

氨基酸与茚三酮的反应分两个步骤。

第一步是氨基酸被氧化形成CO2、NH3和醛、茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮与另一个茚三酮分子和NH3缩合生成有色物质。

二.仪器:721型分光光度计台天平减压蒸馏器干燥容量瓶移液枪烧杯试管架试管水浴锅。

三.药品:(1)标准氨基酸溶液:配制成L 溶液(2),2mol/L 醋酸缓冲液:量取86mL 2mol/L 醋酸钠溶液,加入14mL 2mol/L 乙酸混合而成。

用pH 检查校正。

(3)茚三酮显色液:称取170mg 茚三酮和30mg 还原茚三酮,用20mL 乙二醇甲醚溶解(4)60%乙醇。

(5)样品液:每毫升含~50μg 氨基酸。

茚三酮若变为微红色,则需按下法重结晶:称取5g 茚三酮溶于15~25mL 热蒸馏水中,加入活性炭,轻轻搅拌。

加热30min 后趁热过滤,滤液放入冰箱过夜。

次日析出黄白色结晶,抽滤,用1mL 冷水洗涤结晶,置干燥器干燥后,装入棕色玻璃瓶保存。

还原型茚三酮按下法制备:称取茚三酮,用沸蒸馏水溶解,得黄色溶液。

将维生素C 用25mL 温蒸馏水溶解,一边搅拌一边将维生素C 溶液滴加到茚三酮溶液中,不断出现沉淀。

滴定后继续搅拌15min,然后在冰箱内冷却到4℃,过滤、沉淀用冷水洗涤3 次,置五氧化二磷真空干燥器中干燥保存,备用。

乙二醇甲醚若放置太久,需用下法除去过氧化物:在500mL 乙二醇甲醚中加入5g 硫酸亚铁,振荡1~2h,过滤除去硫酸亚铁,再经蒸馏,收集沸点为121~125℃的馏分,为无色透明的乙二醇甲醚。

四、操作步骤1.标准曲线的制作分别取L 的标准氨基酸溶液0,,,,,于试管中,用水补足至1mL。

多肽合成茚三酮显色反应原理

多肽合成茚三酮显色反应原理

多肽合成茚三酮显色反应原理1.引言1.1 概述多肽是由多个氨基酸残基通过肽键连接而成的生物大分子。

多肽合成是一种重要的实验室技术,通过人为合成特定的氨基酸序列,可以获得具有特定功能和生物活性的多肽分子。

茚三酮显色反应是一种常用的多肽组装方法,通过茚三酮与氨基酸中的氨基反应,可以使合成的多肽产生可观察的色素变化。

茚三酮显色反应原理是基于茚三酮与氨基酸中的氨基之间的亲核加成反应。

茚三酮分子中的碳原子带有局部部分正电荷,而氨基酸中的氨基带有局部部分负电荷。

当茚三酮与氨基接近时,氨基的性质使其能够攻击茚三酮分子的部分正电荷,形成一个中间的的化合物。

在这个过程中,氨基酸的氨基与茚三酮发生反应,并且形成一个新的酮基。

这个酮基的存在使得茚三酮变成了有色化合物,从而使合成的多肽分子产生明显的颜色变化。

茚三酮显色反应原理的发现为多肽合成提供了一种简单、高效和直观的组装策略。

通过对茚三酮显色反应原理的深入理解,研究人员可以更好地控制反应条件,调节反应速率和产物结构,从而实现对多肽合成的精密控制和合成效果的优化。

本文的目的是系统地介绍多肽合成茚三酮显色反应原理的基本原理和机制。

通过了解茚三酮显色反应的发展历程、原理和应用,读者可以深入了解多肽合成领域中的重要技术和方法。

本文的结构如下:首先,我们将在引言部分对多肽合成和茚三酮显色反应进行简要介绍;接着,在正文部分,我们将详细介绍多肽合成和茚三酮显色反应的原理和机制,并介绍相关的实验方法和条件;最后,在结论部分,我们将对本文所述内容进行总结,并展望多肽合成茚三酮显色反应在未来的研究方向和应用前景。

通过阅读本文,读者将对多肽合成茚三酮显色反应原理有一个全面的认识,为进一步研究和应用提供指导和参考。

1.2文章结构文章结构的设计对于一篇长文的逻辑性和条理性非常重要。

在本文中,文章结构被分为引言、正文和结论三个部分。

在引言部分,我们已经包括了概述、文章结构和目的。

在本篇长文中,正文部分被细分为多肽合成和茚三酮显色反应原理两个小节。

氨基酸分离鉴定中显色剂为什么不能用茚三酮水溶液

氨基酸分离鉴定中显色剂为什么不能用茚三酮水溶液

氨基酸分离鉴定中显色剂为什么不能用茚三酮水溶液茚三酮根很多种氨基酸都显示紫色没办法分离鉴定呀茚三酮使氨基酸显色原理α氨基酸与茚三酮在弱酸性溶液中共热,反应后经失水脱羧生成氨基茚三酮,再与水合茚三酮反应生成紫红色,最终为蓝色物质。

脯氨酸等仲胺氨基酸与茚三酮反应生成黄色物质。

该反应可广泛用于各种氨基酸的定性或定量测定。

阿尔法氨基酸与水合茚三酮一起加热,经氧化脱氨变成相应的阿尔法酮酸,酮酸进一步脱羧变成醛,水合茚三酮被还原成还原成还原型茚三酮。

在弱酸性溶液中,氨、还原型茚三酮,和另一分子水合茚三酮反应,缩合成蓝紫色物质。

注意事项(1)被分离物质在该溶剂系统中Rf在0.05~0.8之间,各组分之Rf值相差最好能大于0.05,以免斑点重叠。

(2)溶剂系统中任一组分与被分离物之间不能起化学反应。

(3)被分离物质在溶剂系统中的分配较恒定,不随温度而变化,且易迅速达到平衡,这样所得斑点较圆整。

本实验采用八种混合氨基酸为样品,用酸性和碱性两种溶剂进行双向层析,以茚三酮为显色剂,可获得分离清晰的层析图谱,如图3.2所示。

注意事项(1)烘箱加热温度不可过高,且不可有氨的干扰,否则图谱背景会泛红。

(2)第一相溶剂最好在使用前再按比例混合,否则会引起酯化,影响层析效果。

(3)整个实验操作应戴手套进行。

思考题1.酸性与碱性溶剂系统对氨基酸极性基团的解离各有何影响?2.为什么展层时要用两种溶剂系统?性质:又称比移值。

是色谱法中表示组分移动位置的一种方法的参数。

定义为溶质迁移距离与流动相迁移距离之比。

在一定的色谱条件下,特定化合物的R f值是一个常数,因此有可能根据化合物的R f值鉴定化合物请问薄层层析时,Rf值在什么范围时,分离效果比较准我帮你查了相关书籍结合我的实验经验,薄层层析采用硅胶G-CMC板,通用展开系统:无水乙醇-苯(1:4);苯-氯仿(1:3);丙酮-甲醇(1:1)。

先用无水乙醇-苯(1:4)展开,Rf值如果>0.8,改用苯-氯仿(1:3),若Rf值如薄层层析时为甚麼Rf值要在0.2~0.8之间Rf值的大小与样品的结构、性质、溶剂系统等有关薄层层析时Rf值要在0.2~0.8之间主演是考虑的经济性,在效果比较好的情况下保持展开剂的用量少蛋白质的性质实验From: Update:2006-12-01【目的和要求】1. 学习几种常用的鉴定蛋白质和氨基酸的方法及其原理。

植物生理生化实验

植物生理生化实验

实验一植物组织游离氨基酸含量测定—茚三酮试剂显色法P199原理:游离氨基酸与茚三酮共热时能定量生成二酮茚-二酮茚胺,产物呈蓝紫色,称Rubemans紫。

其吸收峰在570nm,且在一定范围内吸光度与游离氨基酸浓度成正比,因此可用分光光度法测定其含量。

①微酸、90℃:氨基酸被氧化形成CO2、NH3和醛,茚三酮被还原成还原型茚三酮。

②脱水:还原型茚三酮与另一分子茚三酮和一分子氨进行缩合脱水,生成二酮茚-二酮茚胺。

材料:清水浸种吸涨的水稻、清水浸种萌发两天的水稻。

实验步骤:分别取1g萌发、未萌发水稻于研钵中,加入5ml醋酸(使蛋白质变性,沉淀),研磨成匀浆后,用无置于沸水中加热15min,取出用冷水迅速冷却并不时摇动,使之呈蓝紫色,用60%乙醇定容20ml,在570nm 波长下测定吸光度。

样品氨基态含氮量(ug/100g鲜重)=CV T/V S W *100 ;C=A/k (k=0.103) ;V T=100/2 ;V S=1 ;W=1注意事项:1.测定前所用的玻璃仪器要干燥,所用的蒸馏水必须为无氨水;2.样品要磨匀,用无氨蒸馏水定容,并用干燥滤纸过滤;3.抗坏血酸易被还原;加入的量要严格控制,因为还原剂抗坏血酸会与茚三酮反应;4.水浴锅的液面要高于试管内的液面,使其加热均匀,并在加热后几秒再塞上塞子,水浴锅温度要高于90℃,15min后取出迅速冷却,再加入60%乙醇;5.稀释后要迅速比色;6. 谷物等蛋白质样品可用酸水解法讲蛋白质水解后,用本法测定氨基酸含量,可计算出样品蛋白质含量;7. 反应要在无水、有机、微酸的环境下进行。

最适PH为4.5,是乙醇-乙酸钠缓冲液和醋酸缓和后的PH。

思考题:1.茚三酮与所有氨基酸的反应产物都相同吗?为什么?不相同,因为有些氨基酸的结构不同,不含游离的氨基,如脯氨酸。

2.测定植物组织中游离氨基酸总量有何意义?可以测定植物对氮的根吸收,测定植物的病理和逆境状态和植物的营养、施肥指标等。

茚三铜反应

茚三铜反应

茚三酮反应
ninhydrin reaction
定义:
2,2-二羟基-1,3-茚三酮与氨基酸、肽类或蛋白质的自由α氨基或其他氨基化合物所产生的一种可定量的显色反应。

所呈现的颜色随反应的条件(酸度、温度、盐浓度、铜、镉离子等)不同而异。

用于氨基酸和肽的层析及定量测定。

茚三酮反应,即:所有氨基酸及具有游离α-氨基的肽与茚三酮反应都产生蓝紫色物质,只有脯氨酸和羟脯氨酸与茚三酮反应产生(亮)黄色物质。

此反应十分灵敏,根据反应所生成的蓝紫色的深浅,在570nm波长下进行比色就可测定样品中氨基酸的含量,也可以在分离氨基酸时作为显色剂对氨基酸进行定性或定量分析。

在法医学上,使用茚三酮反应可采集嫌疑犯在犯罪现场留下来的指纹。

因为手汗中含有多种氨基酸,遇茚三酮后起显色反应。

茚三酮鉴定氨基酸概述

茚三酮鉴定氨基酸概述

茚三酮鉴定氨基酸概述1.茚三酮简介茚三酮(Ninhydrine),又称水合茚三酮,水合茚满三酮,为白色或浅黄色结晶性粉末。

茚三酮是一种用于检测氨或者一级胺和二级胺的试剂。

当与这些游离胺反应时,能够产生深蓝色或者紫色的物质,叫做Ruhemann紫。

茚三酮常用来检测指纹,这是由于指纹表面所蜕落的蛋白质和肽中含有的赖氨酸残基,其上的一级胺被茚三酮检测。

在室温条件下,它是一种白色的固体物质,溶于乙醇和丙酮。

茚三酮可以看作是是二氢茚-1,2,3-三酮的水合物。

1901 年,茚三酮被成功研制出来以后主要用于生物医学领域,1954年,瑞典科学家Oden 和Hofsten 将其应用于潜在汗液手印的显现。

茚三酮与汗液中的氨基酸、多肽、蛋白质等发生反应, 生成蓝紫色的手印纹线。

茚三酮也可以用于蛋白质的氨基酸分析。

除去脯氨酸之外的大多数氨基酸,水解之后可与茚三酮反应。

水解中某些氨基酸的侧链也会被降解。

因此对于那些与茚三酮不反应或者发生其他反应的氨基酸需要另作分析。

其余的氨基酸经过色谱分离后可以比色定量。

在分析化学反应的薄层色谱(TLC)中,它可以用于检测所有的胺类,氨基甲酸酯类,在经过充分热处理后可以检测酰胺类物质。

2.实际运用2.1指纹鉴别汗液手印中的汗液成分绝大多数是水(约99%以上),其余是少量的无机物和有机物,有机物中包括了人体所含有的各种氨基酸。

茚三酮与手印汗液中的氨基酸发生显色反应而现出手印。

二氧化碳中的碳原子来源于氨基酸当茚三酮与氨基酸反应时可以释放CO2的羧基碳。

在考古研究中,这个反应用于释放古老骨骼中羧基碳用于稳定同位素分析,以帮助重现古代生物的食物结构。

用一种标记底物处理的土壤,随后利用茚三酮与氨基酸的反应释放羧基胺,可以证明这种底物是否被吸收进微生物蛋白质。

这种方法成功的发现了一些氨氧化细菌(也叫做硝化细菌)利用土壤中的尿素作为碳源。

法医常用茚三酮溶液分析诸如纸张等多孔表面上的潜指纹。

手指所分泌的细微汗液聚集于独特的手指纹路表面,也即含有氨基酸的指纹,经过茚三酮处理可以将氨基酸指尖纹路变为可见的紫色。

茚三酮反应

茚三酮反应

反应原理:参考资料•中文名称:苯硑戊三酮,茚三酮英文名称:NinhydrinNinhydrin (DE)1,2,3-Trioxohydrinden Hydrat (DE)1,2,3-Indantrione1,2,3-Triketohydrindene1H-Indene-1,2,3-trione2,2-Dihydroxy-1H-indene-1,3(2H)-dione分子式:C9H6O4分子量:178.14CAS RN:485-47-2熔点:251℃密度: 0.86特性反应:跟酶类或者多肽在加热状况下发生显紫色反应。

•含量不少于95.0% 净重5g•白色或淡黄色结晶或结晶性粉末•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~•由于热敏纸(一种对热敏感的纸,如传真纸是其中一种,译者注)在信用卡收据上广泛使用,在热敏纸上显现潜指纹成为警方需解决的突出问题。

众所周知,茚三酮能与指纹汗液中的氨基酸反应,是在多孔表面显现潜指纹的最早方法。

然而,一些热敏纸在使用常规的茚三酮溶液处理时出现对热敏感的正面背景颜色变黑的现象,结果使得收据上的指纹信息受到损毁。

•目前,在热敏纸上显现潜指纹可采用的方法有:1、使用茚三酮衍生物替代茚三酮;2、茚三酮夹心法(用两张含干茚三酮的吸墨纸将热敏纸夹在中间,加压并保持数日);3、二甲氨基苯甲醛烟熏法;4、通过电子探测微量分析仪测绘潜指纹法;5、对新鲜潜指纹使用碘熏法。

•本文介绍的方法是通过降低气压使茚三酮升华,无需溶剂显现热敏纸上的潜指纹。

茚三酮的分子量为178.14,理论上可以从固相直接转化为气相。

已有文献尚没有关于茚三酮的升华和气体分压试验的报道,除了个别文献提及茚三酮在分解时熔点为241℃,有人在常压下曾使用茚三酮烟熏法。

••一、试验设备及方案•整个试验在一个边长为50cm的立体真空箱进行。

真空箱设一个玻璃前门,内部有一个可控温的热源,直径为5cm,位于距真空箱底部上方10cm处。

植物生理生化实验

植物生理生化实验

实验一植物组织游离氨基酸含量测定—茚三酮试剂显色法P199原理:游离氨基酸与茚三酮共热时能定量生成二酮茚-二酮茚胺,产物呈蓝紫色,称Rubemans紫。

其吸收峰在570nm,且在一定范围内吸光度与游离氨基酸浓度成正比,因此可用分光光度法测定其含量。

①微酸、90℃:氨基酸被氧化形成CO2、NH3和醛,茚三酮被还原成还原型茚三酮。

②脱水:还原型茚三酮与另一分子茚三酮和一分子氨进行缩合脱水,生成二酮茚-二酮茚胺。

材料:清水浸种吸涨的水稻、清水浸种萌发两天的水稻。

实验步骤:分别取1g萌发、未萌发水稻于研钵中,加入5ml醋酸(使蛋白质变性,沉淀),研磨成匀浆后,用无置于沸水中加热15min,取出用冷水迅速冷却并不时摇动,使之呈蓝紫色,用60%乙醇定容20ml,在570nm 波长下测定吸光度。

样品氨基态含氮量(ug/100g鲜重)=CV T/V S W *100 ;C=A/k (k=0.103) ;V T=100/2 ;V S=1 ;W=1注意事项:1.测定前所用的玻璃仪器要干燥,所用的蒸馏水必须为无氨水;2.样品要磨匀,用无氨蒸馏水定容,并用干燥滤纸过滤;3.抗坏血酸易被还原;加入的量要严格控制,因为还原剂抗坏血酸会与茚三酮反应;4.水浴锅的液面要高于试管内的液面,使其加热均匀,并在加热后几秒再塞上塞子,水浴锅温度要高于90℃,15min后取出迅速冷却,再加入60%乙醇;5.稀释后要迅速比色;6. 谷物等蛋白质样品可用酸水解法讲蛋白质水解后,用本法测定氨基酸含量,可计算出样品蛋白质含量;7. 反应要在无水、有机、微酸的环境下进行。

最适PH为4.5,是乙醇-乙酸钠缓冲液和醋酸缓和后的PH。

思考题:1.茚三酮与所有氨基酸的反应产物都相同吗?为什么?不相同,因为有些氨基酸的结构不同,不含游离的氨基,如脯氨酸。

2.测定植物组织中游离氨基酸总量有何意义?可以测定植物对氮的根吸收,测定植物的病理和逆境状态和植物的营养、施肥指标等。

蛋白质定性方法茚三酮反应-免费浏览

蛋白质定性方法茚三酮反应-免费浏览

蛋白质定性方法茚三酮反应
蛋白质定性方法茚三酮反应
1.范围
本方法采用茚三酮试剂与蛋白质中a-氨基酸反应生成蓝紫色化合物最大吸收值
的波长为570nm
本方法适用于各类蛋白质测定范围0.5 g 50 g 蛋白质
2.原理
茚三酮是使氨基酸和多肽显色的重要试剂当茚三酮在弱酸性条件下和-氨基酸反应时氨基酸被氧化分解生成醛放出N H3 和C02 水合茚三酮则变成还原型茚三酮然后还原型茚三酮与N H3 及另一分子茚三酮进一步缩合生成蓝紫色化合物最大吸收值
的波长为570nm此反应为一切a-氨基酸所共有反应灵敏因而本法是氨基酸定量
测定应用最广泛的方法之一脯氨酸和羟脯氨酸与茚三酮反应生成黄色化合物最大吸收值的波长在44Onm 多肽和蛋白质虽然具有茚三酮反应但肽链越大灵敏度也越来越差故不宜作定量测定之用在多肽合成中常用来检验有无自由氨基的肽类存在
3 .试剂
茚三酮无水乙醇95%乙醇甘氨酸
4.试样制备
4.1 蛋白质溶液箱保存备用
4.2 1mg mL-1的茚三酮乙醇溶液,0.1g 茚三酮溶于100mL 95%乙醇新鲜配置
4.3 5mg mL-1的甘氨酸溶液
5.参考文献
1.陈曾燮刘兢罗丹编.生物化学实验.合肥中国科学技术大学出版社1994.1-6
2.李建武等合编.生物化学实验原理和方法.北京北京大学出版社1994.150-174。

氨基酸含量测定

氨基酸含量测定

茚三酮比色测定氨基酸含量一、实验原理氨基酸在碱性溶液中能与茚三酮作用,生成蓝紫色或黄色化合物(除脯氨酸外均有此反应),可用吸光光度法测定。

生成的蓝紫色或黄色化合物颜色深浅与氨基酸含量成正比,其最大吸收波长分别为570nm或350nm,故据此可以测定样品中氨基酸含量。

二、实验试剂(1)1.2%茚三酮溶液:称取茚三酮1g于盛有35mL热水的烧杯中使其溶解,加入40mg氯化亚锡(SnCl2▪H2O),搅拌过滤(作防腐剂)。

滤液置冷暗处过夜,加水至50mL,摇匀备用。

(2)pH 8.04磷酸缓冲液:Ⅰ、准确称取磷酸二氢钾(KH2PO4)4.5350g于烧杯中,用少量蒸馏水溶解后,定量转入500mL容量瓶中,用水稀释至标线,摇匀备用。

Ⅱ、准确称取磷酸氢二钠(Na2HPO4)11.9380g于烧杯中,用少量蒸馏水溶解后,定量转入500mL容量瓶中,用水稀释到标线,摇匀备用。

Ⅲ、取上述配好的磷酸二氢钾溶液10.0mL与190mL磷酸氢二钠溶液混合均匀即为pH8.04的磷酸缓冲溶液。

(3)氨基酸标准溶液:准确称取干燥的氨基酸(如异亮氨酸)0.2000g于烧杯中,先用少量水溶解后,定量转入100mL容量瓶中,用水稀释到标线,摇匀,准确吸取此液10.0mL于100mL容量瓶中,加水到标线,摇匀,此为200μg/mL 氨基酸标准溶液。

三、实验方法及步骤(1)标准曲线绘制准确吸取200μg/mL的氨基酸标准溶液0.0、0.5、1.0、1.5、2.0、2.5、3.0mL (相当于0、100、200、300、400、500、600μg 氨基酸),分别置于25mL 容量瓶或比色管中,各加水补充至容积为 4.0mL,然后加入茚三酮溶液(20g/L)和磷酸盐缓冲溶液(pH为8.04)各1mL,混合均匀,于90℃水浴上加热至显色恒定为止(该加热过程至少需要25分钟),取出迅速冷至室温,加水至标线,摇匀。

静置15min后,若生成蓝紫色化合物,在570nm波长下,以试剂空白为参比液测定其余各溶液的吸光度A ;若生成的化合物呈黄色,则在350nm 波长下,以试剂空白为参比液测定其余各溶液的吸光度A 。

茚三酮反应

茚三酮反应

反应原理:参考资料•中文名称:苯硑戊三酮,茚三酮英文名称:NinhydrinNinhydrin (DE)1,2,3-Trioxohydrinden Hydrat (DE)1,2,3-Indantrione1,2,3-Triketohydrindene1H-Indene-1,2,3-trione2,2-Dihydroxy-1H-indene-1,3(2H)-dione分子式:C9H6O4分子量:178.14CAS RN:485-47-2熔点:251℃密度: 0.86特性反应:跟酶类或者多肽在加热状况下发生显紫色反应。

•含量不少于95.0% 净重5g•白色或淡黄色结晶或结晶性粉末•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~•由于热敏纸(一种对热敏感的纸,如传真纸是其中一种,译者注)在信用卡收据上广泛使用,在热敏纸上显现潜指纹成为警方需解决的突出问题。

众所周知,茚三酮能与指纹汗液中的氨基酸反应,是在多孔表面显现潜指纹的最早方法。

然而,一些热敏纸在使用常规的茚三酮溶液处理时出现对热敏感的正面背景颜色变黑的现象,结果使得收据上的指纹信息受到损毁。

•目前,在热敏纸上显现潜指纹可采用的方法有:1、使用茚三酮衍生物替代茚三酮;2、茚三酮夹心法(用两张含干茚三酮的吸墨纸将热敏纸夹在中间,加压并保持数日);3、二甲氨基苯甲醛烟熏法;4、通过电子探测微量分析仪测绘潜指纹法;5、对新鲜潜指纹使用碘熏法。

•本文介绍的方法是通过降低气压使茚三酮升华,无需溶剂显现热敏纸上的潜指纹。

茚三酮的分子量为178.14,理论上可以从固相直接转化为气相。

已有文献尚没有关于茚三酮的升华和气体分压试验的报道,除了个别文献提及茚三酮在分解时熔点为241℃,有人在常压下曾使用茚三酮烟熏法。

••一、试验设备及方案•整个试验在一个边长为50cm的立体真空箱进行。

真空箱设一个玻璃前门,内部有一个可控温的热源,直径为5cm,位于距真空箱底部上方10cm处。

茚三酮显色

茚三酮显色

氨基酸的氨基被一个甲基,甲基化后茚三酮还能否显色?有没有更适合这种情况的显色剂!
• 【讨论】到现在还没有着落或没签约的来这里报个到吧,统计一下
zpl7
906
03
发贴:
139
积分:
27
得票:
1
状态:

线
2007-04-27 15:09
茚三酮为一种选择性氧化剂,可引起α-氨基酸氧化脱羧,生成CO2、NH3、和一分
子比原来的氨基酸少一个碳原子的醛。

还原的茚三酮与释放的氨反应生成罗曼紫,后者是一种最大吸光波长为570nm 的复合物。

仲胺、脯氨酸和4-羟脯氨酸,因其α-氨基被取代,经另一种不同的反应途径,生成
最大吸光波长为440nm 的一种特殊的黄色衍生物。

• 同济博士复试分数线,比较可靠的小道消息。

haie
r008
2007-04-28 08:58
应该就不显色了。

我做过这样的。

用稀碘化铋钾:三氯化铁的乙醇溶液(1%)=10:1 我做的时候,是个黄色的斑点/
• 【病例讨论】麻醉后持续低血压临床死亡病例原因分析
发贴:
49
积分:
2
得票:
状态:

线
mjvi
p
天道
发贴:
139
积分:
7
得票:
1
状态:

2007-04-28 09:40
显色,颜色不是很一致。

蛋白质定性方法茚三酮反应

蛋白质定性方法茚三酮反应

蛋白质定性方法茚三酮反应
蛋白质定性方法茚三酮反应
1.范围
本方法采用茚三酮试剂与蛋白质中a-氨基酸反应生成蓝紫色化合物最大吸收值
的波长为570nm
本方法适用于各类蛋白质测定范围0.5 g 50 g 蛋白质
2.原理
茚三酮是使氨基酸和多肽显色的重要试剂当茚三酮在弱酸性条件下和-氨基酸反应时氨基酸被氧化分解生成醛放出N H3 和C02 水合茚三酮则变成还原型茚三酮然后还原型茚三酮与N H3 及另一分子茚三酮进一步缩合生成蓝紫色化合物最大吸收值
的波长为570nm此反应为一切a-氨基酸所共有反应灵敏因而本法是氨基酸定量
测定应用最广泛的方法之一脯氨酸和羟脯氨酸与茚三酮反应生成黄色化合物最大吸收值的波长在44Onm 多肽和蛋白质虽然具有茚三酮反应但肽链越大灵敏度也越来越差故不宜作定量测定之用在多肽合成中常用来检验有无自由氨基的肽类存在
3 .试剂
茚三酮无水乙醇95%乙醇甘氨酸
4.试样制备
4.1 蛋白质溶液箱保存备用
4.2 1mg mL-1的茚三酮乙醇溶液,0.1g 茚三酮溶于100mL 95%乙醇新鲜配置
4.3 5mg mL-1的甘氨酸溶液
5.参考文献
1.陈曾燮刘兢罗丹编.生物化学实验.合肥中国科学技术大学出版社1994.1-6
2.李建武等合编.生物化学实验原理和方法.北京北京大学出版社1994.150-174
3.宁正祥编.食品成分分析手册.北京中国轻工业出版社1998.62-80。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

茚三酮与氨基显色
以茚三酮与氨基显色为标题,我们来探讨一下茚三酮和氨基显色的相关性。

茚三酮是一种有机化合物,具有特殊的结构和性质,而氨基显色则是一种常用的实验方法,用于检测和测定有机化合物中的氨基含量。

让我们来了解一下茚三酮。

茚三酮的化学式为C11H8O,是一种具有芳香性质的有机化合物。

它的分子结构中包含了一个茚环和一个酮基团。

茚三酮在化学实验中常用作试剂或中间体,具有一定的重要性。

茚三酮与氨基显色之间的关系则是通过氨基显色实验来检测茚三酮中的氨基含量。

氨基显色法是一种常见的化学分析方法,通过与某些试剂反应,可以使含有氨基的化合物在显色剂的作用下产生颜色变化,从而进行定性或定量分析。

在茚三酮中,由于其分子结构中含有酮基团,可以通过氨基显色法来检测其中的氨基含量。

通常使用的显色剂有二氨基溴酚、二氨基苯酚等。

当茚三酮与这些显色剂反应时,会发生氨基与显色剂之间的化学反应,从而产生颜色变化。

在实验中,首先将茚三酮与适当的试剂反应,待反应完成后观察产生的颜色变化。

根据颜色的深浅、明暗程度,可以推测茚三酮中的氨基含量。

颜色越深、越明显,表示茚三酮中的氨基含量越高;颜
色越浅、越不明显,则表示茚三酮中的氨基含量越低或不存在。

需要注意的是,茚三酮与氨基显色的反应并不是绝对的,它受到许多因素的影响,如反应条件、显色剂浓度、反应时间等。

因此,在实际应用中需要控制这些因素,以确保实验结果的准确性和可靠性。

茚三酮与氨基显色的相关性在化学实验和分析中有着广泛的应用。

通过氨基显色法,可以对茚三酮及其衍生物进行定性和定量分析,从而了解其化学性质和含量。

这对于研究和应用茚三酮具有重要的意义。

茚三酮与氨基显色之间存在着一定的关系,通过氨基显色法可以检测茚三酮中的氨基含量。

这种方法在化学实验和分析中具有重要应用,可以帮助我们了解茚三酮的性质和含量。

但需要注意的是,实验条件和方法的选择对结果的影响很大,需要谨慎操作和综合分析。

希望通过本文的介绍,能够增加对茚三酮与氨基显色之间关系的了解。

相关文档
最新文档