圆复习课课件
合集下载
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册
学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
人教版六年级数学上册《圆整理与复习》课件(共16张PPT)
(2)如果要压路314 m,这台压路机的前轮大约要转动多少圈? 314÷(3.14×1.6)=62.5(圈)
答:这台压路机的前轮大约要转动62.5圈。
三、易错练习
1. 判断。
(1)直径相等的两个圆,面积一定相等。
(√ )
(2)大小不同的两个圆,它们的周长与它们的直径的比值相等。 (√ )
(3)圆的面积大于扇形的面积。
一、复习回顾
二、圆的周长
圆的周长公式:C=πd 或 C=2πr
三、圆的面积
1. 圆的面积公式:S=πr2 2. 利用圆的面积公式解决“外圆内方”和“外方内圆”实际问题。
一、复习回顾
四、扇形
A
O
( 弧AB )
B
A O (圆心角∠AOB)
B
扇形的大小与什么有关?
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。 圆心角小,扇形就小;圆心角大,扇形就大。
三、易错练习
3. 一张圆形会议桌的桌面直径是4 m。 (3)圆桌的中央是一个直径为2 m的自动旋转圆形转盘,转盘
外围的桌面面积是多少? 3.14×(4÷2)2-3.14×(2÷2)2=9.42(m2) 答:转盘外围的桌面面积是9.42平方米。
四、拓展练习
1. 如图,阴影部分的面积是200 cm2,求圆环的面积。 解:设大圆的半径为 R,小圆的半径为 r。 1 R2 1 r2 =200 22 R2 r2 =400 3.14×400=1256(cm2) 答:圆环的面积是1256 cm2。
二、基础练习
3. 求下图的周长和面积。
周长:3.14×7×2×1 +3.14×7=43.96(cm) 2
面积:3.14×72×1 =76.93(cm2) 2
答:这台压路机的前轮大约要转动62.5圈。
三、易错练习
1. 判断。
(1)直径相等的两个圆,面积一定相等。
(√ )
(2)大小不同的两个圆,它们的周长与它们的直径的比值相等。 (√ )
(3)圆的面积大于扇形的面积。
一、复习回顾
二、圆的周长
圆的周长公式:C=πd 或 C=2πr
三、圆的面积
1. 圆的面积公式:S=πr2 2. 利用圆的面积公式解决“外圆内方”和“外方内圆”实际问题。
一、复习回顾
四、扇形
A
O
( 弧AB )
B
A O (圆心角∠AOB)
B
扇形的大小与什么有关?
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。 圆心角小,扇形就小;圆心角大,扇形就大。
三、易错练习
3. 一张圆形会议桌的桌面直径是4 m。 (3)圆桌的中央是一个直径为2 m的自动旋转圆形转盘,转盘
外围的桌面面积是多少? 3.14×(4÷2)2-3.14×(2÷2)2=9.42(m2) 答:转盘外围的桌面面积是9.42平方米。
四、拓展练习
1. 如图,阴影部分的面积是200 cm2,求圆环的面积。 解:设大圆的半径为 R,小圆的半径为 r。 1 R2 1 r2 =200 22 R2 r2 =400 3.14×400=1256(cm2) 答:圆环的面积是1256 cm2。
二、基础练习
3. 求下图的周长和面积。
周长:3.14×7×2×1 +3.14×7=43.96(cm) 2
面积:3.14×72×1 =76.93(cm2) 2
圆的复习课件(共30张PPT).. 共32页
新课标教学网(xkbw)--海量教学 资源欢迎下载!
3.垂径定理与推论的延伸:
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点5:圆心角与圆周角
________
∠ _________________. ACB=90°
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点6:圆内接四边形及其性质
C.115.5°
D.112.5°
【解】D
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第二节 与圆有关的位置关系
知识点1:三角形的外心和内心
1.三角形的外心:三角形外接圆的圆心,是三角形三边垂直平分线 的交点,到 三角形三个顶点 的距离相等. 2.三角形的内心:三角形内切圆的圆心,是三角形 三条角平分线 的交点,到
___∠___D___
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点7:弦、弧、圆心角的关系
1.定理: 同圆 或 等圆 中,相等的圆心角所对的弧 相等 ,所对的弦 相等 .
2.推论:在同圆或等圆中,如果两个圆心角、两条弦和两条弧(同是优弧或劣弧)中有一 组量相等,那么它们对应的其余各组量也分别 相等 .
新课标教学网(xkbw)--海量教学 资源的有关性质 • 第二节 与圆有关的位置关系 • 第三节 正多边形与圆 圆有关的计算
尺规作图
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第六章 圆
第一节 圆的有关性质
知识点1:圆的概念: 圆是平面内到定点的距离等于 定长 的点的集合.
3.切线的判定定理:
经过半径的外端并且 垂直 这条半径的直线是圆的切线.
4.证明直线和圆相切的方法:
(1)当已知直线与圆有公共点时,连半径,证 垂直 .
3.垂径定理与推论的延伸:
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点5:圆心角与圆周角
________
∠ _________________. ACB=90°
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点6:圆内接四边形及其性质
C.115.5°
D.112.5°
【解】D
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第二节 与圆有关的位置关系
知识点1:三角形的外心和内心
1.三角形的外心:三角形外接圆的圆心,是三角形三边垂直平分线 的交点,到 三角形三个顶点 的距离相等. 2.三角形的内心:三角形内切圆的圆心,是三角形 三条角平分线 的交点,到
___∠___D___
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点7:弦、弧、圆心角的关系
1.定理: 同圆 或 等圆 中,相等的圆心角所对的弧 相等 ,所对的弦 相等 .
2.推论:在同圆或等圆中,如果两个圆心角、两条弦和两条弧(同是优弧或劣弧)中有一 组量相等,那么它们对应的其余各组量也分别 相等 .
新课标教学网(xkbw)--海量教学 资源的有关性质 • 第二节 与圆有关的位置关系 • 第三节 正多边形与圆 圆有关的计算
尺规作图
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第六章 圆
第一节 圆的有关性质
知识点1:圆的概念: 圆是平面内到定点的距离等于 定长 的点的集合.
3.切线的判定定理:
经过半径的外端并且 垂直 这条半径的直线是圆的切线.
4.证明直线和圆相切的方法:
(1)当已知直线与圆有公共点时,连半径,证 垂直 .
九年级数学《圆-复习课》课件
(2)若AB=x,CD=y,求x,y的关系式。 (3若AB、CD是⊙O的两条平行切线,BD与AB、CD分别相交 于B. D两点,且BO⊥OD.求证:BD与⊙O相切。
CD
(Ⅱ)如图②,连接AA′、BB′,设△ACA′和△BCB′的面积分别 为S1、S2.求证:S1:S2=1:3;
(Ⅲ)如图③,设AC的中点为E,A′B′的中点为P,AC=a,连接EP. 求当θ为何值时,EP的长度最大,并写出EP的最大值 (直接 写出结果即可).
圆中分类讨论 1已知,△ABC内接于⊙O,BC=4 3 半径为4,则∠A=___
3 如图,四边形ABCD是平行四边形,以AB为直径的O经过点 D,E是O上一点,且∠AED=45∘.(1)试判断CD与O的位置关系, 并说明理由;(2)若O的半径为3cm,AE=5cm,求sin∠ADE.
4 已知:△ABC中,E是内心,∠A的平分线和△ABC的外 接圆相交于点D,求证:DE=DB=DC
5 如图,圆O为△ABC的内切圆,切点为E,F,G,∠C=90°, AO的延长线交BC于点D,AC=4,CD=1,求圆的半径.
第3 题
第4 题
第5题
二 旋转性质的运用 1.在△ABC中,∠ACB=90∘,∠ABC=30∘,将△ABC绕顶点C 顺时针旋转,旋转角为θ (0∘<θ<180∘),得到△A′B′C.(Ⅰ)如 图①,当AB∥CB′时,设A′B′与CB相交于点D. 证明:△A′CD 是等边三角形;
3 如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中弧AB上 一点,延长DA至点E,使CE=CD. (1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=2√CD.
4已知:如图,AB、CD是⊙O的两条平行切线,A. C是切点, ⊙O的另一条切线BD与AB、CD分别相交于B. D两点。 (1)求证:BO⊥OD.
CD
(Ⅱ)如图②,连接AA′、BB′,设△ACA′和△BCB′的面积分别 为S1、S2.求证:S1:S2=1:3;
(Ⅲ)如图③,设AC的中点为E,A′B′的中点为P,AC=a,连接EP. 求当θ为何值时,EP的长度最大,并写出EP的最大值 (直接 写出结果即可).
圆中分类讨论 1已知,△ABC内接于⊙O,BC=4 3 半径为4,则∠A=___
3 如图,四边形ABCD是平行四边形,以AB为直径的O经过点 D,E是O上一点,且∠AED=45∘.(1)试判断CD与O的位置关系, 并说明理由;(2)若O的半径为3cm,AE=5cm,求sin∠ADE.
4 已知:△ABC中,E是内心,∠A的平分线和△ABC的外 接圆相交于点D,求证:DE=DB=DC
5 如图,圆O为△ABC的内切圆,切点为E,F,G,∠C=90°, AO的延长线交BC于点D,AC=4,CD=1,求圆的半径.
第3 题
第4 题
第5题
二 旋转性质的运用 1.在△ABC中,∠ACB=90∘,∠ABC=30∘,将△ABC绕顶点C 顺时针旋转,旋转角为θ (0∘<θ<180∘),得到△A′B′C.(Ⅰ)如 图①,当AB∥CB′时,设A′B′与CB相交于点D. 证明:△A′CD 是等边三角形;
3 如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中弧AB上 一点,延长DA至点E,使CE=CD. (1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=2√CD.
4已知:如图,AB、CD是⊙O的两条平行切线,A. C是切点, ⊙O的另一条切线BD与AB、CD分别相交于B. D两点。 (1)求证:BO⊥OD.
圆的复习课课件
4. 在艺术和文学作品中,圆常被用来象征完美、完整和无限。
总结词:说明圆在实际生活中的应用
1. 日常生活用品,如碗、盘子和轮胎的设计都利用了圆的特性。
3. 物理学中的波、磁场和力场理论中经常用到圆或圆的性质。
01
02
03
04
05
06
02
圆的周长与面积
圆的面积的定义
圆的面积是指圆所占的平面的大小。
03
圆与其他几何形状的应用
在实际生活中,这些几何形状的应用非常广泛,如建筑设计、机械制造等。
01
与圆相关的其他几何形状
圆与椭圆、圆环等其他几何形状有着密切的联系。
02
圆与其他几何形状的相似性
圆与其他几何形状在某些性质上具有相似性,如周长、面积等。
03
圆的方程
标准方程是描述圆的最基本形式,包含了圆心和半径的信息。
圆的复习课PPT课件
圆的定义与性质圆的周长与面积圆的方程圆的几何证明圆的实际应用
contents
目录
01
圆的定义与性质
总结词
描述圆的基本定义
详细描述
圆是平面内所有点到一个固定点(圆心)的距离等于一个固定长度(半径)的点的集合。
ห้องสมุดไป่ตู้
详细描述
2. 建筑学中,圆或圆弧常用于设计美观和功能性的建筑结构。
公式推导
总结词:参数方程是另一种描述圆的方式,通过引入参数来表示圆的各个部分。
04
圆的几何证明
总结词
总结词
总结词
总结词
01
02
03
04
理解圆的相交性质,掌握证明方法
理解弦心距定理,掌握应用弦心距定理证明弦与圆相交的方法
总结词:说明圆在实际生活中的应用
1. 日常生活用品,如碗、盘子和轮胎的设计都利用了圆的特性。
3. 物理学中的波、磁场和力场理论中经常用到圆或圆的性质。
01
02
03
04
05
06
02
圆的周长与面积
圆的面积的定义
圆的面积是指圆所占的平面的大小。
03
圆与其他几何形状的应用
在实际生活中,这些几何形状的应用非常广泛,如建筑设计、机械制造等。
01
与圆相关的其他几何形状
圆与椭圆、圆环等其他几何形状有着密切的联系。
02
圆与其他几何形状的相似性
圆与其他几何形状在某些性质上具有相似性,如周长、面积等。
03
圆的方程
标准方程是描述圆的最基本形式,包含了圆心和半径的信息。
圆的复习课PPT课件
圆的定义与性质圆的周长与面积圆的方程圆的几何证明圆的实际应用
contents
目录
01
圆的定义与性质
总结词
描述圆的基本定义
详细描述
圆是平面内所有点到一个固定点(圆心)的距离等于一个固定长度(半径)的点的集合。
ห้องสมุดไป่ตู้
详细描述
2. 建筑学中,圆或圆弧常用于设计美观和功能性的建筑结构。
公式推导
总结词:参数方程是另一种描述圆的方式,通过引入参数来表示圆的各个部分。
04
圆的几何证明
总结词
总结词
总结词
总结词
01
02
03
04
理解圆的相交性质,掌握证明方法
理解弦心距定理,掌握应用弦心距定理证明弦与圆相交的方法
六年级数学圆的整理和复习PPT课件
半径的2倍 C 半径是直径的一半
第35页/共45页
圆单元整理与复习
查漏补缺
2、对比练习:
给直径是75厘米的水缸做一个木盖,木盖的直径 比缸口直径大5厘米。
(1)木盖的面积是多少平方米?
(2)如果在木盖的边沿钉一条铁片,铁片长多少厘米?
这两个问题有什么区别?
第36页/共45页
圆单元整理与复习
查漏补缺
3.14×0.28×20 =3.14×5.6 =17.584(平方米)
17.584÷(3.14×0.35) =17.584 ÷3.14 ÷0.35 =16(圈)
2、在一答个:周后轮长行为驶1186圈.8。4厘米的圆内画一个最大的 正方形,这个正方形的面积是多少平方厘米?
Байду номын сангаас
18.84÷3.14=6(厘米) 6×(6÷2)=18(平方厘米) 答:这个正方形的面积是18平方厘米。
这两个问题有什么区别?
第38页/共45页
圆单元整理与复习
查漏补缺
下图是一个直径是4厘米的半圆,你会求它的周长 和面积吗?
4厘米 半圆的周长等于圆周长的一半加一条直径。 半圆的面积等于圆面积的一半。
第39页/共45页
圆单元整理与复习
灵活应用
1、如下图,绳长4米,问小狗的活动面积有多大?
2、一个圆形花圃的周长是50.24米,在它里面留出1/8 的面积种菊花。菊花的占地面积是多少?
通过观察、思考、交流 ,我们发现了 拼成的长方形与原来的圆之间的联系。 长方形的面积与圆的面积相等。
长方形的长是圆的( 周长的一半r )。
长方形的宽是圆的( 半径r )。
r
2C(r)
第26页/共45页
《圆的整理与复习》PPT课件
精选课件ppt
25
精选课件ppt
26
精选课件ppt
27
精选课件ppt
28
精选课件ppt
29
精选课件ppt
30
精选课件ppt
31
精选课件ppt
32
精选课件ppt
33
精选课件ppt
34
精选课件ppt
35
精选课件ppt
36
精选课件ppt
37
精选课件ppt
38
精选课件ppt
39
(1)圆的周长与它 的直径有什么关系?
(2)对于圆周率你 有哪些了解?
(3)圆的周长计算 公式
(1)说说圆 的面积推导 公式
(2)圆的面 积计算公式
(第一、二小组) (第三、四、五小组) (第六、七、八小组)
互动 交流
精选课件ppt
5
精选课件ppt
6
精选课件ppt
7
精选课件ppt
8
精选课件ppt
2
公式
或c=πr+2r
圆的面积:S= πr²
圆环的面积: S=πR²-πr² 或S=π(R²-r²)
圆的知识结构图
精选课件ppt
51
(1)两个圆,半径长的圆周长一定长。---------------------------------------------------------- ( )
(2)如果两个圆的周长相等,那么它们的面积 也一定相等。-------------------------------- ( )
精选课件ppt
40
精选课件ppt
41
精选课件ppt
42
精选课件ppt
第9讲圆的基本性质复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的相关概念
1.圆的定义:平面上到定点的距离等于定长的所有点 所组成的图形叫做圆;其中定点称为圆心,定长称为 半径。 2.圆有对称性 (1)圆是轴对称图形,其对称轴是直径所在的直线; 对称轴有无数多条。 (2)圆是中心对称图形,对称中心是圆心。
3.圆中的有关概念: (1)弦:连结圆上任意两点间的线段叫做弦,经过 圆心的弦是直径. (2).圆上任意两点间的部分叫做弧;大于半圆的 弧叫优弧;小于半圆的弧叫做劣弧。半圆也是弧.
⌒⌒
②AB=A′B′ ④ OD=O′D′
三、圆周角定理及推论
D
C
C
B
E
●O A
●O
BA
●O
B
A
C
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧 所对的圆心角的一半.
推论:直径所对的圆周角是 直角 .
90°的圆周角所对的弦是 直径 .
判断: (1) 相等的圆心角所对的弧相等. (×)
别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是 ( D)
A.点A在⊙O内部 B.点A在⊙O上
C.点A在⊙O外部 D.点A不在⊙O上
2、M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM= _3____ cm.
3、圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可 以是(D )
d = r; d > r.
r ●O d
┐ 相离
切线的判定定理
• 定理 经过半径的外端,并且垂直于这条半径的 直线是圆的切线.
如图
∵OA是⊙O的半径, 且CD⊥OA,
∴ CD是⊙O的切线.
●O
C
A
D
(1)定义
(2)圆心到直线的距离d=圆的半径r
(3)切线的判定定理:经过半径的外端, 并且垂直于这条半径的直线是圆的切线.
一、垂径定理
1.定理 垂直于弦的直径平分弦,并且平分
弦所的两条弧. C
A
B
M└
若 ① CD是直径
●O
② CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
重视:模型“垂径定理直角三角形”
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
C
A
┗●
M
.o .p
不在同一直线上的三个点确定一个
圆
(这个三角形叫做圆
的内接三角形,这个圆叫做三角形的外接圆,圆心叫 做三角反形证的法外的心三)个步骤:
1、提出假设
2、由题设出发,引出矛盾
3、由矛盾判定假设不成立,肯定结论正确
圆内接四边形的性质:
(1)对角互补;(2)任意一个外角都等于它的内 对角
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分
A.150° B.130° C.120° D.60°
3、在△ABC中,∠A=70°,若O为△ABC的外心, ∠BOC= 140° ;若O为△ABC的内心,∠BOC= 125° .
C D
A
O
B 图1
图2
四、点和圆的位置关系
.o .p r
.p .o
Op<r Op=r Op>r
点p在⊙o内 点p在⊙o上 点p在⊙o外
切线的判定定理的两种应用
1、如果已知直线与圆有交点,往往要 作出过这一点的半径,再证明直线垂直
于这条半径即可;
2、如果不明确直线与圆的交点,往往要 作出圆心到直线的垂线段,再证明这条
垂线段等于半径即可.
切线的性质定理
圆的切线垂直于过切点的半径.
∵CD切⊙O于A, OA是⊙O的 半径
∴CD⊥OA.
A、1∶2∶3∶4
B、1∶3∶2∶4
C、4∶2∶3∶1
D、4∶2∶1∶3
练:有两个同心圆,半径分别为R和r, P是圆环内一点,则OP的取值 范围是_r_<O_P<_R _.
OP
五.直线与圆的位置关系
r ●O ┐d
相交
r ●O
d ┐ 相切
1、直线和圆相交
d < r;
2、直线和圆相切 3、直线和圆相离
(2)相等的圆周角所对的弧相等. (×)
(3) 等弧所对的圆周角相等.
(√)
1、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为60°,
OD⊥BC,D为垂足,且OD=10,则AB=_____,4B0C=_____;10 14
2、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,那 么∠BOC等于 ( c );
(3).在同或等圆中,能够完全重合的弧叫等弧。
4.圆心角、弧、弦三者之间的关系: (1).在同圆或等圆中,相等的圆心角所对 的弦相等,所对的弧相等。
(2).在同圆或等圆中,相等的弦所对的圆心角 相等,圆心角所对的弧也相等. (3).相等的弧所对的圆心角相等,所对的弦相 等. 5.一条弧所对的圆周角等于它所对圆心角 的一半,同弧或等弧所对的圆周角相等. 6.半圆或直径所对的圆周角相等,都等于; 的圆周角所对的弦是直径;所对的弧是半圆.
C
●O
A
D
切线的性质定理出可理解为
如果一条直线满足以下三个性质中的任意两个 ,那么
第三个也成立。①经过切点、②垂直于切线、③经过圆心。
如① ②
③
① ③
②
② ③
①
1、两个同心圆的半径分别为3 cm和4 cm,大圆的 弦BC与小圆相切,则BC=_____ cm;
2、如图2,在以O为圆心的两个同心圆
中,大圆的弦AB是小圆的切线,P为切点, A
P
B
设AB=12,则两圆构成圆环面积为_____;
O
3、下列四个命题中正确的是( c ).
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的 半径的直线是该圆的切线 ; ③到圆心的距离等于半径 的直线是该圆的切线 ;④过圆直径的端点,垂直于此 直径的直线是该圆的切线.
1.两条弦在圆心的同侧
2.两条弦在圆心的两侧
A
●O
B
C
D
A C
B ●O
D
二、圆心角、弧、弦、弦心距的关系
在同圆或等圆中,如果①两个圆心角,②两 条弧,③两条弦,④两条弦心距中,有一组量相 等,那么它们所对应的其余各组量都分别相等.
A
D
B
●O
┏
A′ D′ B′
如由条件: ③AB=A′B′
可推出
①∠AOB=∠A′O′B′
●O
B
由 ① CD是直径 ③ AM=BM
可推得
ቤተ መጻሕፍቲ ባይዱ
②CD⊥AB,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
C
(1)直径 (过圆心的线);(2)垂直弦; A M└ B
(3) 平分弦 ;
(4)平分劣弧;
●O
(5)平分优弧.
知二得三
D
注意: “ 直径平分弦则垂直弦.” 这句话对吗?
(错 )
例⊙O的半径为10cm,弦AB∥CD, AB=16,CD=12,则AB、CD间的 距离是_2_c_m 或14cm .
1.圆的定义:平面上到定点的距离等于定长的所有点 所组成的图形叫做圆;其中定点称为圆心,定长称为 半径。 2.圆有对称性 (1)圆是轴对称图形,其对称轴是直径所在的直线; 对称轴有无数多条。 (2)圆是中心对称图形,对称中心是圆心。
3.圆中的有关概念: (1)弦:连结圆上任意两点间的线段叫做弦,经过 圆心的弦是直径. (2).圆上任意两点间的部分叫做弧;大于半圆的 弧叫优弧;小于半圆的弧叫做劣弧。半圆也是弧.
⌒⌒
②AB=A′B′ ④ OD=O′D′
三、圆周角定理及推论
D
C
C
B
E
●O A
●O
BA
●O
B
A
C
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧 所对的圆心角的一半.
推论:直径所对的圆周角是 直角 .
90°的圆周角所对的弦是 直径 .
判断: (1) 相等的圆心角所对的弧相等. (×)
别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是 ( D)
A.点A在⊙O内部 B.点A在⊙O上
C.点A在⊙O外部 D.点A不在⊙O上
2、M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM= _3____ cm.
3、圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可 以是(D )
d = r; d > r.
r ●O d
┐ 相离
切线的判定定理
• 定理 经过半径的外端,并且垂直于这条半径的 直线是圆的切线.
如图
∵OA是⊙O的半径, 且CD⊥OA,
∴ CD是⊙O的切线.
●O
C
A
D
(1)定义
(2)圆心到直线的距离d=圆的半径r
(3)切线的判定定理:经过半径的外端, 并且垂直于这条半径的直线是圆的切线.
一、垂径定理
1.定理 垂直于弦的直径平分弦,并且平分
弦所的两条弧. C
A
B
M└
若 ① CD是直径
●O
② CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
重视:模型“垂径定理直角三角形”
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
C
A
┗●
M
.o .p
不在同一直线上的三个点确定一个
圆
(这个三角形叫做圆
的内接三角形,这个圆叫做三角形的外接圆,圆心叫 做三角反形证的法外的心三)个步骤:
1、提出假设
2、由题设出发,引出矛盾
3、由矛盾判定假设不成立,肯定结论正确
圆内接四边形的性质:
(1)对角互补;(2)任意一个外角都等于它的内 对角
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分
A.150° B.130° C.120° D.60°
3、在△ABC中,∠A=70°,若O为△ABC的外心, ∠BOC= 140° ;若O为△ABC的内心,∠BOC= 125° .
C D
A
O
B 图1
图2
四、点和圆的位置关系
.o .p r
.p .o
Op<r Op=r Op>r
点p在⊙o内 点p在⊙o上 点p在⊙o外
切线的判定定理的两种应用
1、如果已知直线与圆有交点,往往要 作出过这一点的半径,再证明直线垂直
于这条半径即可;
2、如果不明确直线与圆的交点,往往要 作出圆心到直线的垂线段,再证明这条
垂线段等于半径即可.
切线的性质定理
圆的切线垂直于过切点的半径.
∵CD切⊙O于A, OA是⊙O的 半径
∴CD⊥OA.
A、1∶2∶3∶4
B、1∶3∶2∶4
C、4∶2∶3∶1
D、4∶2∶1∶3
练:有两个同心圆,半径分别为R和r, P是圆环内一点,则OP的取值 范围是_r_<O_P<_R _.
OP
五.直线与圆的位置关系
r ●O ┐d
相交
r ●O
d ┐ 相切
1、直线和圆相交
d < r;
2、直线和圆相切 3、直线和圆相离
(2)相等的圆周角所对的弧相等. (×)
(3) 等弧所对的圆周角相等.
(√)
1、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为60°,
OD⊥BC,D为垂足,且OD=10,则AB=_____,4B0C=_____;10 14
2、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,那 么∠BOC等于 ( c );
(3).在同或等圆中,能够完全重合的弧叫等弧。
4.圆心角、弧、弦三者之间的关系: (1).在同圆或等圆中,相等的圆心角所对 的弦相等,所对的弧相等。
(2).在同圆或等圆中,相等的弦所对的圆心角 相等,圆心角所对的弧也相等. (3).相等的弧所对的圆心角相等,所对的弦相 等. 5.一条弧所对的圆周角等于它所对圆心角 的一半,同弧或等弧所对的圆周角相等. 6.半圆或直径所对的圆周角相等,都等于; 的圆周角所对的弦是直径;所对的弧是半圆.
C
●O
A
D
切线的性质定理出可理解为
如果一条直线满足以下三个性质中的任意两个 ,那么
第三个也成立。①经过切点、②垂直于切线、③经过圆心。
如① ②
③
① ③
②
② ③
①
1、两个同心圆的半径分别为3 cm和4 cm,大圆的 弦BC与小圆相切,则BC=_____ cm;
2、如图2,在以O为圆心的两个同心圆
中,大圆的弦AB是小圆的切线,P为切点, A
P
B
设AB=12,则两圆构成圆环面积为_____;
O
3、下列四个命题中正确的是( c ).
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的 半径的直线是该圆的切线 ; ③到圆心的距离等于半径 的直线是该圆的切线 ;④过圆直径的端点,垂直于此 直径的直线是该圆的切线.
1.两条弦在圆心的同侧
2.两条弦在圆心的两侧
A
●O
B
C
D
A C
B ●O
D
二、圆心角、弧、弦、弦心距的关系
在同圆或等圆中,如果①两个圆心角,②两 条弧,③两条弦,④两条弦心距中,有一组量相 等,那么它们所对应的其余各组量都分别相等.
A
D
B
●O
┏
A′ D′ B′
如由条件: ③AB=A′B′
可推出
①∠AOB=∠A′O′B′
●O
B
由 ① CD是直径 ③ AM=BM
可推得
ቤተ መጻሕፍቲ ባይዱ
②CD⊥AB,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
C
(1)直径 (过圆心的线);(2)垂直弦; A M└ B
(3) 平分弦 ;
(4)平分劣弧;
●O
(5)平分优弧.
知二得三
D
注意: “ 直径平分弦则垂直弦.” 这句话对吗?
(错 )
例⊙O的半径为10cm,弦AB∥CD, AB=16,CD=12,则AB、CD间的 距离是_2_c_m 或14cm .