信息论与编码基础知识点下
(完整版)信息论与编码概念总结

第一章1.通信系统的基本模型:2.信息论研究内容:信源熵,信道容量,信息率失真函数,信源编码,信道编码,密码体制的安全性测度等等第二章1.自信息量:一个随机事件发生某一结果所带的信息量。
2.平均互信息量:两个离散随机事件集合X 和Y ,若其任意两件的互信息量为 I (Xi;Yj ),则其联合概率加权的统计平均值,称为两集合的平均互信息量,用I (X;Y )表示3.熵功率:与一个连续信源具有相同熵的高斯信源的平均功率定义为熵功率。
如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。
所以信源平均功率和熵功率之差称为连续信源的剩余度。
信源熵的相对率(信源效率):实际熵与最大熵的比值信源冗余度:0H H ∞=ηηζ-=1意义:针对最大熵而言,无用信息在其中所占的比例。
3.极限熵:平均符号熵的N 取极限值,即原始信源不断发符号,符号间的统计关系延伸到无穷。
4.5.离散信源和连续信源的最大熵定理。
离散无记忆信源,等概率分布时熵最大。
连续信源,峰值功率受限时,均匀分布的熵最大。
平均功率受限时,高斯分布的熵最大。
均值受限时,指数分布的熵最大6.限平均功率的连续信源的最大熵功率:称为平均符号熵。
定义:即无记忆有记忆N X H H X H N X H X NH X H X H X H N N N N N N )()()()()()()(=≤∴≤≤若一个连续信源输出信号的平均功率被限定为p ,则其输出信号幅度的概率密度分布是高斯分布时,信源有最大的熵,其值为1log 22ep π.对于N 维连续平稳信源来说,若其输出的N 维随机序列的协方差矩阵C 被限定,则N 维随机矢量为正态分布时信源的熵最大,也就是N 维高斯信源的熵最大,其值为1log ||log 222N C e π+ 7.离散信源的无失真定长编码定理:离散信源无失真编码的基本原理原理图说明: (1) 信源发出的消息:是多符号离散信源消息,长度为L,可以用L 次扩展信源表示为: X L =(X 1X 2……X L )其中,每一位X i 都取自同一个原始信源符号集合(n 种符号): X={x 1,x 2,…x n } 则最多可以对应n L 条消息。
精品课课件信息论与编码(全套讲义)

跨学科交叉融合
信息论将与更多学科进行交叉融合,如物理学、 化学、社会学等,共同推动信息科学的发展。
编码技术的发展趋势
高效编码算法
随着计算能力的提升,更高效的编码算法将不断涌现,以提高数据 传输和存储的效率。
智能化编码
借助人工智能和机器学习技术,编码将实现智能化,自适应地调整 编码参数以优化性能。
跨平台兼容性
未来的编码技术将更加注重跨平台兼容性,以适应不同设备和网络环 境的多样性。
信息论与编码的交叉融合
理论与应用相互促进
信息论为编码技术提供理论支持, 而编码技术的发展又反过来推动 信息论的深入研究。
共同应对挑战
精品课课件信息论与编码(全套 讲义)
目
CONTENCT
录
• 信息论基础 • 编码理论 • 信道编码 • 信源编码 • 信息论与编码的应用 • 信息论与编码的发展趋势
01
信息论基础
信息论概述
信息论的研究对象
研究信息的传输、存储、处理和变换规律的科学。
信息论的发展历程
从通信领域起源,逐渐渗透到计算机科学、控制论、 统计学等多个学科。
卷积编码器将输入的信息序列按位输入到一个移位寄存器中,同时根据生成函数将移位寄存 器中的信息与编码器中的冲激响应进行卷积运算,生成输出序列。
卷积码的译码方法
卷积码的译码方法主要有代数译码和概率译码两种。代数译码方法基于最大似然译码准则, 通过寻找与接收序列汉明距离最小的合法码字进行译码。概率译码方法则基于贝叶斯准则, 通过计算每个合法码字的后验概率进行译码。
04
信息论与编码基础知识点

信息论与编码基础知识点
1.当代文明的三大科学支柱
2.信息论发展的过程
3.研究信息论的目的
4.信息理论中度量信息的基本观点
5.衡量通信系统的性能指标,对应编码是哪些?
6.信源符号自信息量的含义与计算
7.信源符号间互信息量与平均互信息量的三个含义
8.信源熵的三种物理含义。
离散信源的联合熵、条件熵、平均互信息量的含义及相互之间的关系。
10.信源的平稳性和无记忆性的含义
11.离散无记忆信源的信源熵、N次扩展的信源熵计算。
N 阶马尔科夫信源的定义
13.低阶马尔科夫信源的状态转移图、各状态的稳态分布概率(状态极限概率)、极限熵H∞=H n+1
14.信道容量的含义
15.常见信道(无噪信道、强对称、对称、准对称)容量的计算,达到信道容量时对应信源的概率分布情况。
16.香浓编码、费诺编码、哈夫曼编码方法及步骤,其编码效率的计算
17.信息率失真函数的含义
18.D max的含义
19.二、三元离散信源的R max R min D min、D max计算,及信息率失真函数R(D)的计算
20.在信道编码中检错与纠错的含意是什么?
21.线性分组码生成矩阵与系统码生成矩阵之间的关系,系统码生成矩阵与一致校验码矩阵之间的关系,码字的生成,编码效率及最小距离的计算。
22.X n+1循环码的生成多项式g(x)与一致校验多项式h(x)的关系,对应生成矩阵和一致校验矩阵的生成,将消息利用生成矩阵生成循环码
理解相关基本概念(定理、性质)多练习课后习题(作业和讲解)。
信息论与编码复习期末考试要点

30
1
1
2 W1
2W3
W1
Wi pij Wj
i
1 4W1
13W2
3 4
W3
15W4
W2
W3
2 3
W2
4 5
W4
W4
W1 W2 W3 W4 1
• 稳态分布概率
W 1 3 3 5 , W 2 3 6 5 , W 3 1 2 3 3 3 6 5 5 ,1 3 W 3 6 4 5 1 4 7 4 3 6 5 1 5 7 4 3 9 5
14
三、互信息
• 互信息
• 定义为 xi的后验概率与先验概率比值的对数
I(xi;yj)lo2gp(p x(ix|iy)j)
• 互信息I(xi;yj):表示接收到某消息yj后获得 的关于事件xi的信息量。
15
平均互信息
• 平均互信息定义
I ( X ; Y ) H ( X ) H ( X |Y ) H ( Y ) H ( Y |X )
I(X ; Y ) H (X ) H (Y )
38
• 2)无嗓有损信道 –多个输入变成一个输出(n>m)
p(bi | aj ) 1或0
p(ai
|
bj
)
1或0
• 噪声熵H(Y|X) = 0 • 损失熵H(X|Y) ≠ 0
I(X ; Y )H (Y )H (X )
Cm axI(X ;Y )m axH (Y ) p(a i) 39
加密
y 信道编码
k 加密 密钥
z
信
解密 密钥
道 z'
信宿 v
信源解码
x' 解密
y'
信道解码
信息论与编码总结

信息论与编码1. 通信系统模型信源—信源编码—加密—信道编码—信道—信道解码—解密—信源解码—信宿 | | |(加密密钥) 干扰源、窃听者 (解密秘钥)信源:向通信系统提供消息的人或机器信宿:接受消息的人或机器信道:传递消息的通道,也是传送物理信号的设施干扰源:整个系统中各个干扰的集中反映,表示消息在信道中传输受干扰情况 信源编码:编码器:把信源发出的消息变换成代码组,同时压缩信源的冗余度,提高通信的有效性 (代码组 = 基带信号;无失真用于离散信源,限失真用于连续信源)译码器:把信道译码器输出的代码组变换成信宿所需要的消息形式基本途径:一是使各个符号尽可能互相独立,即解除相关性;二是使各个符号出现的概率尽可能相等,即概率均匀化信道编码:编码器:在信源编码器输出的代码组上增加监督码元,使之具有纠错或检错的能力,提高通信的可靠性译码器:将落在纠检错范围内的错传码元检出或纠正基本途径:增大码率或频带,即增大所需的信道容量2. 自信息:()log ()X i i I x P x =-,或()log ()I x P x =-表示随机事件的不确定度,或随机事件发生后给予观察者的信息量。
条件自信息://(/)log (/)X Y i j X Y i j I x y P x y =-联合自信息:(,)log ()XY i j XY i j I x y P x y =-3. 互信息:;(/)()(;)log log ()()()i j i j X Y i j i i j P x y P x y I x y P x P x P y ==信源的先验概率与信宿收到符号消息后计算信源各消息的后验概率的比值,表示由事件y 发生所得到的关于事件x 的信息量。
4. 信息熵:()()log ()i iiH X p x p x =-∑ 表示信源的平均不确定度,或信源输出的每个信源符号提供的平均信息量,或解除信源不确定度所需的信息量。
信息论与编码复习重点整理(1页版)

1第1章 概论1. 信号(适合信道传输的物理量)、信息(抽象的意识/知识,是系统传输、转换、处理的对象)和消息(信息的载体)定义;相互关系:(1信号携带消息,是消息的运载工具(2信号携带信息但不是信息本身(3同一信息可用不同的信号来表示(4同一信号也可表示不同的信息。
2. 通信的系统模型及目的:提高信息系统可靠性、有效性和安全性,以达到系统最优化.第2章 信源及信息量1. 单符号离散信源数学模型2. 自信息量定义:一随机事件发生某一结果时带来的信息量I(xi)=-log2P(xi)、单位:bit 、物理意义:确定事件信息量为0;0概率事件发生信息量巨大、性质:I(xi)非负;P(xi)=1时I(xi)=0;P(xi)=0时I(xi)无穷;I(xi)单调递减;I(xi)是随机变量。
3. 联合自信息量:I(xiyi)=- log2P(xiyj) 物理意义:两独立事件同时发生的信息量=各自发生的信息量的和、条件自信息量:I(xi/yi)=- log2P(xi/yj);物理意义:特定条件下(yj 已定)随机事件xi 所带来的信息量。
三者关系:I(xi/yi)= I(xi)+ I(yi/xi)= I(yi)+ I(xi/yi)4. 熵:定义(信源中离散消息自信息量的数学期望)、单位(比特/符号)、物理意义(输出消息后每个离散消息提供的平均信息量;输出消息前信源的平均不确定度;变量的随机性)、计算:(H(X)=-∑P(xi)log2 P(xi)) 1)连续熵和离散的区别:离散熵是非负的2)离散信源当且仅当各消息P相等时信息熵最大H (X )=log 2 n 。
3)连续信源的最大熵:定义域内的极值. 5.条件熵H(Y/X) = -∑∑P(xiyj) log2P(yj/xi),H (X /Y )= -∑∑P(xiyj) log2P(xi/yj) 、物理意义:信道疑义度H(X/Y):信宿收到Y 后,信源X 仍存在的不确定度,有噪信道传输引起信息量的损失,也称损失熵。
信息论与编码一

x2 xm X x 1 q(X ) q (x ) q(x ) q(x ) 1 2 m
x为各种长为N的符号序列,x = x1 x2 … xN ,xi { a1 , a2 , … , ak },1 i N,序列集X = {a1a1… a1 , a1a1… a2 , … , akak… ak },共有kN种序列,x X。 序列的概率q (x) = q (x1x2 … xN) =
根据统计特性,即转移概率p (yx )的不同,信道又可分类为:
无记忆信道 信道的输出y只与当前时刻的输入x有关。
有记忆信道 信道的输出y不仅与当前时刻的输入有关, 还与以前的输入有统计关系 。
1.4.1 离散无记忆信道
离散无记忆信道的输入和输出消息都是离散无记忆的单个符 号,输入符号xi { a1 , a2 , … , ak},1 i I,输出符号yj { b1 , b2 , … , bD },1 j J,信道的特性可表示为转移概率矩阵:
p ( y1 x1 ) p ( y1 x 2 ) P p ( y1 x I ) p ( y 2 x1 ) p( y 2 x 2 ) p( y 2 x I ) p ( y J x1 ) p( y J x 2 ) p( y J x I )
p 1 p 0 P 0 1 p p
0 e
0 1-p 1-p 1
p
p
1
图1-7 二元删除信道
4.二元Z信道
二元Z信道如图1-8所示,信道输入符 号x {0 , 1},输出符号y {0 , 1}转
0 1 移概率矩阵为 P p 1 p
0 1 0 p 1 1-p
下面列举几种常见的离散无记忆信道: 1.二元对称信道(Binary Symmetric Channel,简记为BSC) 这是一种很重要的信道,它的输入符号x {0 , 1},输出符 号y {0 , 1},转移概率p (yx ) ,如图1-5所示,信道特性
信息论与编码(伴随式译码)

最佳编码定理是信息论中的重要定理 之一,它为信源编码提供了理论指导 。在实际应用中,可以通过哈夫曼编 码、算术编码等算法实现最佳编码。
03 信道编码
信道编码的分类
线性编码
线性编码是一种简单的编码方式,它将输入信息映射到一个线性空间中的码字。 线性编码具有较低的编码复杂度和较好的解码性能,但可能存在较高的误码率。
熵的概念及其性质
总结词
熵是系统不确定性的度量,具有非负性、对称性、可加性等 性质。
详细描述
熵是系统不确定性的度量,其值越大,系统的不确பைடு நூலகம்性越高 。熵具有非负性,即熵永远为非负值;对称性,即等概率事 件组成的系统的熵相同;可加性,即两个独立系统的熵可以 相加。
互信息与条件互信息
总结词
互信息是两个随机变量之间的相关性度量,条件互信息是给定第三个随机变量条件下两个随机变量之间的相关性 度量。
信息论与编码(伴随式译码)
目录
• 信息论基础 • 信源编码 • 信道编码 • 伴随式译码 • 编码在实际通信系统中的应用
01 信息论基础
信息量的定义与性质
总结词
信息量是衡量信息不确定性的量,具有非负性、对称性、可加性等性质。
详细描述
信息量用于度量信息的不确定性,其值越大,信息的不确定性越小。信息量具 有非负性,即信息量永远为非负值;对称性,即两个等概率事件的信息量相同; 可加性,即两个独立事件的信息量可以相加。
详细描述
互信息用于度量两个随机变量之间的相关性,其值越大,两个随机变量的相关性越强。条件互信息是在给定第三 个随机变量条件下度量两个随机变量之间的相关性,其值越大,在给定条件下两个随机变量的相关性越强。互信 息和条件互信息在信息论中广泛应用于信号处理、数据压缩等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码基础知识点
(仅供复习参考,不作为出卷依据)
1.当代文明的三大科学支柱
2.信息论发展的过程
3.信息论的奠基人,代表作?
4.信息理论中度量信息的基本观点
5.一个通信系统中常用的编码有哪些?其目标是什么?6.信源符号自信息量的含义与计算
7.信源符号间互信息量与平均互信息量的三个含义(对应公式)
8.信源熵的三种物理含义。
9.离散信源的联合熵、条件熵、平均互信息量的含义及相互之间的关系。
10.平均互信息量的三种物理含义、性质及相应的公式,与信道容量、信息率失真函数的关系
11.信源的平稳性和无记忆性的含义
12.离散无记忆信源的信源熵、N次扩展的信源熵计算。
N 阶马尔科夫信源的定义
14.低阶(1、2)马尔科夫信源的状态转移图、各状态的稳态分布概率(状态极限概率)、极限熵H∞=H n+1
15.信道容量的含义
16.常见信道(无噪信道、强对称、对称、准对称)容量的计算,达到信道容量时对应信源的概率分布情况。
17.二进制香农编码、费诺编码、哈夫曼编码方法及步骤,其编码效率的计算
18.信息率失真函数的含义
19.D max的含义
20.二、三元离散信源的R max R min D min、D max计算,及等概
率信源分布信息率失真函数R(D)的计算
21.在信道编码中检错与纠错的含意是什么?
22.最小码距?最小码距与检错、纠错的能力关系
理解相关基本概念(定理、性质)多练习课后习题(作业和讲解)。