数据结构 堆排序
数据结构排序算法总结表格
在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)
是
选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)
是
希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)
是
快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)
是
O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)
是
堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。
数据结构第八章_排序
49 38 65 97 76
三趟排序:4 13 27 38 48 49 55 65 76 97
算法描述
#define T 3 int d[]={5,3,1};
例 13 48 97 55 76 4 13 49 27 38 65 49 27 38 65 48 97 55 76 4 j j j
j
j
i
例 初始: 49 38 65 97 76 13 27 48 55 4 取d1=5 49 38 65 97 76 13 27 48 55 4 一趟分组:
一趟排序:13 27 48 55 4 取d2=3 13 27 48 55 4 二趟分组:
49 38 65 97 76 49 38 65 97 76
二趟排序:13 4 48 38 27 49 55 65 97 76 取d3=1 13 27 48 55 4 三趟分组:
初始时令i=s,j=t
首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp
交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
快速排序演示
算法描述
算法评价
例
38 49 49 38 65 76 97 13 97 76 97 27 13 30 97 27 97 30 初 始 关 键 字
38 49 65 13 76 27 76 13 30 76 27 76 30 97 第 一 趟
38 49 13 65 27 65 13 30 65 27 65 30
38 13 49
时间复杂度
最好情况(每次总是选到中间值作枢轴)T(n)=O(nlog2n) 最坏情况(每次总是选到最小或最大元素作枢轴)
数据结构课程设报告—各种排序算法的比较
数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。
排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。
每种排序过程中均显示每一趟排序的细节。
程序的输入:输入所需排序方式的序号。
输入排序的数据的个数。
输入具体的数据元素。
程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。
b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列, 它只包含一个数据元素。
然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。
c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。
d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。
数据结构第9章 排序
数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。
如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。
2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。
如果排序依据的是主关键字,排序的结果将是唯一的。
3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。
4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。
内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。
整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。
本章仅讨论常用的内部排序方法。
5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。
6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。
对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。
因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。
辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。
理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。
7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。
在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。
1234567堆排序比较次数详解
xxx堆排序比较次数详解在计算机科学领域,堆排序是一种基于堆数据结构的排序算法,它是一种非常高效的排序方法,尤其在大数据集上表现突出。
堆排序的关键在于利用堆的性质来实现排序过程,而其中一个重要的指标就是比较次数。
在本文中,我将对xxx堆排序的比较次数进行详细的解析,希望能够帮助大家更好地理解这一排序算法。
我们需要了解什么是堆排序。
堆排序是一种选择性排序,它利用了堆这种数据结构的特性来实现。
堆可以被看作一棵树,它满足两个性质:结构性和堆序性。
结构性是指堆是一个完全二叉树,而堆序性是指堆中任意节点的值都不大于(或不小于)其孩子节点的值。
根据堆的性质,我们可以利用堆来进行排序,这就是堆排序算法的基本思想。
在xxx堆排序中,比较次数是一个非常重要的指标。
比较次数可以用来衡量算法的效率和性能,它表示在排序过程中进行了多少次元素之间的比较操作。
对于堆排序来说,比较次数取决于待排序数据的特点以及具体的实现方式。
在最坏情况下,比较次数是一个与n相关的量级,其中n表示待排序数据的大小。
一般情况下,堆排序的比较次数大约为nlogn,这使得堆排序成为一种非常高效的排序算法。
在xxx堆排序的实现过程中,比较次数是如何计算的呢?在建立堆的过程中,需要进行n/2次比较,这是因为堆是一棵完全二叉树,而叶子节点不需要进行比较。
在堆排序的过程中,需要进行n-1次比较,这是因为每次将最大(或最小)的元素移出堆后,需要对剩余的元素进行调整,直到完成排序。
堆排序的比较次数可以用一个简单的公式表示:n/2 + (n-1) = 3n/2 - 2。
除了比较次数外,xxx堆排序还涉及到交换次数和空间复杂度等指标。
交换次数表示在排序过程中进行了多少次元素之间的交换操作,而空间复杂度表示算法在执行过程中所需的额外空间。
这些指标的综合考量可以帮助我们更全面地评估堆排序算法的性能和适用范围。
xxx堆排序的比较次数是一个非常重要的指标,它可以帮助我们评估算法的效率和性能。
数据结构(c言版)课件_第八章_排序_(严蔚敏、吴伟民编_清华大学出版社)
算法描述
算法评价
时间复杂度
记录移动次数
最好情况:0
最坏情况:3(n-1)
比较次数: n1 (n i) 1 (n2 n)
i 1
2
T(n)=O(n²)
空间复杂度:S(n)=O(1)
Ch8_6.c
堆排序
堆的定义:n个元素的序列(k1,k2,……kn),当且仅当 满足下列关系时,称之为堆
增量序列取法 无除1以外的公因子 最后一个增量值必须为1
8.2 交换排序
冒泡排序
排序过程
将第一个记录的关键字与第二个记录的关键字进行比较,若 为逆序r[1].key>r[2].key,则交换;然后比较第二个记录与第 三个记录;依次类推,直至第n-1个记录和第n个记录比较为 止——第一趟冒泡排序,结果关键字最大的记录被安置在最 后一个记录上
二趟排序:13 4 48 38 27 49 55 65 97 76
Ch8_3.c
希尔排序特点
子序列的构成不是简单的“逐段分割”,而是将相隔某个增 量的记录组成一个子序列
希尔排序可提高排序速度,因为 分组后n值减小,n²更小,而T(n)=O(n²),所以T(n)从总体 上看是减小了
关键字较小的记录跳跃式前移,在进行最后一趟增量为1 的插入排序时,序列已基本有序
9776
7163
6257 13
4390 27
3308
38
9173 76
7267 13
6350 27
49 30
49
927 13
7360 27
65 30
65
9370 76
2977 30 76
3初0 9第7 第 第 第 第 第 始一二三四五六 关趟趟趟趟趟趟 键 字
数据结构之各种排序的实现与效率分析
各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。
效率分析:该排序算法简洁,易于实现。
从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。
当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。
插入排序算法对于大数组,这种算法非常慢。
但是对于小数组,它比其他算法快。
其他算法因为待的数组元素很少,反而使得效率降低。
插入排序还有一个优点就是排序稳定。
(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。
效率分析:由上可知该排序所需存储空间和直接插入排序相同。
从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。
而记录的移动次数不变。
因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。
排序稳定。
(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。
Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。
常见排序算法的时间复杂度比较和应用场景
常见排序算法的时间复杂度比较和应用场景排序算法是计算机科学中最基本的算法之一。
在数据结构和算法中,排序算法的研究一直是热门话题。
这篇文章将会介绍一些最基本的排序算法,探讨它们的时间复杂度和一些应用场景。
1. 冒泡排序冒泡排序是最基本的排序算法之一。
其主要思想是循环遍历待排序的序列多次,每次比较相邻的两个元素的大小,如果前面的元素大于后面的元素,则交换这两个元素。
一个简单的例子如下:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```冒泡排序的时间复杂度为 $O(n^2)$,其中 $n$ 是待排序序列的长度。
由于其时间复杂度较高,冒泡排序只适用于小规模的排序任务。
2. 快速排序快速排序是一种高效的排序算法。
其主要思想是选取序列中的一个元素作为基准值,将序列中小于基准值的元素放在基准值左边,大于基准值的元素放在右边,然后递归地对左右两部分进行排序。
一个简单的例子如下:```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2]left = [x for x in arr if x < pivot]right = [x for x in arr if x > pivot]middle = [x for x in arr if x == pivot]return quick_sort(left) + middle + quick_sort(right)```快速排序的时间复杂度为 $O(n\log n)$,其中 $n$ 是待排序序列的长度。
数据结构排序算法稳定性总结——写给自己看
数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。
在数组内部前半部为排好序的记录,后半部是未排好序的。
⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。
折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。
冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。
也不会改变相等记录的相对位置。
2-路归并排序:将两个有序表合并成⼀个有序表。
每次划分的两个⼦序列前后相邻。
合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。
因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。
基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。
分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。
(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。
经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。
但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。
这种跳跃式的移动导致该排序⽅法是不稳定的。
快速排序:改进的冒泡排序。
冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。
快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。
数据结构与算法(12):排序
int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;
heapq python用法
heapq python用法heapq 是 Python 中的一个内置模块,它是一个实现堆排序算法的工具。
堆排序是一种高效的排序算法,它能够在 O(nlogn) 的时间复杂度内对给定列表进行排序。
在本文中,我将详细介绍heapq模块的用法,并逐步解释其背后的原理和应用。
第一部分:什么是堆排序和堆数据结构要了解heapq模块的使用,首先需要理解堆排序和堆数据结构是什么。
堆排序是一种利用堆数据结构来进行排序的算法。
堆排序的核心思想是将待排序的元素构建成一个二叉堆,然后不断地从堆顶弹出最大或最小值,并将其放入排序结果中,直到堆为空为止。
堆是一种特殊的数据结构,它满足以下两个性质:1. 堆结构是一个完全二叉树,即除了树的最后一层外,其余层的节点都是满的,并且最后一层的节点都尽量靠左排列。
2. 堆中的每个节点的值都大于或等于其子节点(对于最大堆)或小于或等于其子节点(对于最小堆)。
堆可以用来做很多事情,例如优先队列、高效的元素插入和删除等。
在 Python 中,我们可以使用heapq模块来构建和操作堆。
第二部分:heapq模块的基本用法在 Python 中,heapq模块提供了一组函数来对堆进行常见的操作,包括插入元素、弹出元素等。
下面是heapq模块中一些常用函数的介绍:1. `heappush(heap, item)`:将元素item插入堆heap中,保持堆结构的不变性。
2. `heappop(heap)`:从堆heap中弹出并返回最小的元素。
3. `heapify(heap)`:将列表heap原地转换为一个堆。
4. `heapreplace(heap, item)`:弹出并返回堆heap中最小的元素,并将item 插入堆中。
5. `nlargest(k, iterable)`:返回可迭代对象iterable中最大的k个元素,使用堆排序的方式实现。
6. `nsmallest(k, iterable)`:返回可迭代对象iterable中最小的k个元素,使用堆排序的方式实现。
数据结构——排序——8种常用排序算法稳定性分析
数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说⼀下稳定性的好处。
排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。
基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。
另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。
回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。
⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。
所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。
(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。
那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。
⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。
(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。
当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。
数据结构-快速和堆排序
堆排序实例演示3
91
16
47
85
36
24
24 36 53 30
85 47 30 53
16
91
如果该序列是一个堆,则对应的这棵完全二叉树的特点是: 所有分支结点的值均不小于 (或不大于)其子女的值,即每棵子 树根结点的值是最大(或最小)的。
堆特点:堆顶元素是整个序列中最大(或最小)的元素。
2022/9/1
数据结构
2
2.堆排序
足堆,继续调 整。
将 堆 顶 元 素 R1 比根小,交换。
与Rn交换)。
2022/9/1
数据结构
d.到了叶子结 点,调整结束, 堆建成。
6
85
30
53
47
53
47
53
47
30
24 36 16 30
24 36 16 85
24 36 16 85
91
91
91
堆调整结束。
R1 与 Rn-1 交 换 , 堆被破坏。 对 R1 与 Rn-2 调 整。
16
b.调整结束后,以R4为 根的子树满足堆特性。 再将以R3结点为根的 子树调整为堆;
16
c. 以 R3为根的子树满足 堆特性。 再将以R2结点为根的子树 调整为堆;
30
91
91
47
91
47
30
47
85
24 36 53 85 16
24 36 53 85 16
24 36 53 30 16
以 R2 为 根 的 子 树 满 足 堆特性。 再 将 以 R1 结 点 为 根 的 子树调整为堆
d. 调整结束后,整棵树为堆。
建堆过程示例
❖ 例如,图中的完全二叉树表示一个有8个元素的无序序列: {49,38,65,97,76,13,27,49}(相同的两个关 键字49,其中后面一个用49表示),则构造堆的过程如 图3(b)~(f)所示。
go实现堆排序、快速排序、桶排序算法
go实现堆排序、快速排序、桶排序算法⼀. 堆排序 堆排序是利⽤堆这种数据结构⽽设计的⼀种排序算法。
以⼤堆为例利⽤堆顶记录的是最⼤关键字这⼀特性,每⼀轮取堆顶元素放⼊有序区,就类似选择排序每⼀轮选择⼀个最⼤值放⼊有序区,可以把堆排序看成是选择排序的改进。
它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
⾸先简单了解下堆结构。
堆 堆是⼀棵完全⼆叉树:每个结点的值都⼤于或等于其左右孩⼦结点的值,称为⼤顶堆;或者每个结点的值都⼩于或等于其左右孩⼦结点的值,称为⼩顶堆。
如下图:对堆中的结点按层进⾏编号,将这种逻辑结构映射到数组中:由于它是⼀颗完全⼆叉树,所以满⾜序号leftchild = parent * 2 + 1;rightchild = parent * 2 + 2;这样的特性,利⽤这⼀特性,每次将parent与child进⾏⽐较然后向下调整元素的位置。
实现堆排序1. 将初始待排序关键字序列(R0,R1,R2....Rn)构建成⼤顶堆,此堆为初始的⽆序区;初始堆满⾜⼤顶堆性质,但是元素⽆序。
2. 依次将将堆顶元素R[0]与最后⼀个元素R[n]交换,此时得到新的⽆序区(R0,R1,R2,......Rn-1)和新的有序区(Rn);3. 交换后进⾏向下调整⽆序区,使其满⾜⼤顶堆性质。
4. 循环执⾏ 2.3 步骤直到遍历完数组。
1 func HeapSort(arr []int) {2 arrLen := len(arr)3for i := (arrLen-2)/2; i >= 0; i-- {4 arrJustDown(arr, i, arrLen)5 }6end := arrLen - 17for end != 0 {8 arr[0], arr[end] = arr[end], arr[0]9 arrJustDown(arr, 0, end)10end--11 }12 fmt.Println(arr)13 }14 func arrJustDown(arr []int, root, n int) {15 parent := root16 child := parent * 2 + 117for child < n {18if child + 1 < n && arr[child + 1] > arr[child] {19 child++20 }21if arr[child] > arr[parent] {22 arr[child], arr[parent] = arr[parent], arr[child]23 parent = child24 child = parent * 2 + 125 } else {26break27 }28 }29 } 建堆和每次向下调整的时间复杂度都是long2N ,所以整个数组处理完后,需要执⾏Nlong2N遍,调整过程中,最后⼀个元素和堆顶元素交换后需要向下调整,所以不保证相同⼤⼩元素的位置不变,它是不稳定排序。
2023年408数据结构算法题
2023年408数据结构算法题在2023年的408数据结构考试中,考生将面临一系列的算法题目。
这些题目旨在考察考生对数据结构和算法的理解与运用能力。
本文将介绍其中几道典型的题目,并给出解答思路。
1. 题目一:树的遍历给定一棵二叉树,要求按照前序、中序和后序的方式进行遍历。
要求分别输出各种遍历方式的结果。
解答思路:- 前序遍历:首先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:首先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:首先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
2. 题目二:最短路径算法给定一个带权重的有向图,要求找出两个节点之间的最短路径。
解答思路:- 可以使用Dijkstra算法来解决该问题。
算法的基本思想是从起始节点开始,逐步扩展最短路径集合,直到到达目标节点为止。
- 首先初始化起始节点的最短路径为0,其他节点的最短路径为无穷大。
然后选择当前最短路径的节点,更新该节点直接可达的节点的最短路径。
重复这个过程,直到到达目标节点。
3. 题目三:拓扑排序给定一个有向无环图,要求对图中的节点进行拓扑排序。
解答思路:- 可以使用深度优先搜索(DFS)来解决该问题。
首先选择一个未访问的节点作为起始节点,然后对该节点进行深度优先搜索。
在搜索过程中,每次访问一个节点时,将其标记为已访问,并继续对其邻接节点进行深度优先搜索。
- 当一个节点的所有邻接节点都已经访问过时,将其加入结果集中。
最终得到的结果集即为拓扑排序的结果。
4. 题目四:堆排序给定一个无序数组,要求使用堆排序算法对其进行排序。
解答思路:- 堆排序是一种基于堆数据结构的排序算法。
首先将无序数组构建成一个大顶堆,然后将堆顶元素与堆尾元素交换,再对剩余的元素重新构建大顶堆。
重复这个过程,直到所有元素都被交换到正确的位置上。
通过以上的几道题目,我们可以看出408数据结构考试中的算法题目涵盖了树的遍历、最短路径算法、拓扑排序和堆排序等多个知识点。
堆排序算法详解
堆排序算法详解1、堆排序概述堆排序(Heapsort)是指利⽤堆积树(堆)这种数据结构所设计的⼀种排序算法,它是选择排序的⼀种。
可以利⽤数组的特点快速定位指定索引的元素。
堆分为⼤根堆和⼩根堆,是完全⼆叉树。
⼤根堆的要求是每个节点的值都不⼤于其⽗节点的值,即A[PARENT[i]] >= A[i]。
在数组的⾮降序排序中,需要使⽤的就是⼤根堆,因为根据⼤根堆的要求可知,最⼤的值⼀定在堆顶。
2、堆排序思想(⼤根堆)1)先将初始⽂件Array[1...n]建成⼀个⼤根堆,此堆为初始的⽆序区。
2)再将关键字最⼤的记录Array[1](即堆顶)和⽆序区的最后⼀个记录Array[n]交换,由此得到新的⽆序区Array[1..n-1]和有序区Array[n],且满⾜Array[1..n-1].keys≤Array[n].key。
3)由于交换后新的根R[1]可能违反堆性质,故应将当前⽆序区R[1..n-1]调整为堆。
然后再次将R[1..n-1]中关键字最⼤的记录R[1]和该区间的最后⼀个记录R[n-1]交换,由此得到新的⽆序区R[1..n-2]和有序区R[n-1..n],且仍满⾜关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
这样直到⽆序区中剩余⼀个元素为⽌。
3、堆排序的基本操作1)建堆,建堆是不断调整堆的过程,从len/2处开始调整,⼀直到第⼀个节点,此处len是堆中元素的个数。
建堆的过程是线性的过程,从len/2到0处⼀直调⽤调整堆的过程,相当于o(h1)+o(h2)…+o(hlen/2) 其中h表⽰节点的深度,len/2表⽰节点的个数,这是⼀个求和的过程,结果是线性的O(n)。
2)调整堆:调整堆在构建堆的过程中会⽤到,⽽且在堆排序过程中也会⽤到。
利⽤的思想是⽐较节点i和它的孩⼦节点left(i),right(i),选出三者最⼤者,如果最⼤值不是节点i⽽是它的⼀个孩⼦节点,那边交互节点i和该节点,然后再调⽤调整堆过程,这是⼀个递归的过程。
数据结构之——八大排序算法
数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。
这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。
所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。
(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。
快速排序由C. A. R. Hoare在1960年提出。
数据结构课程设计排序算法总结
排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。
(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。
折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。
(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。
(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。
(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。
(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。
假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
佛山科学技术学院
实验报告
课程名称数据结构
实验项目实现典型的排序算法
专业班级 09计算机(1)班姓名梁志恒学号________2009314138________
指导教师黄营成绩____________ 日期________ _______
题目:请编程实现堆排序算法。
#include<stdio.h>
#define maxsize 100
typedef struct
{
int key[maxsize];
int length;
}SqList;
//堆排序大根堆
void HeapAdjust(SqList *L,int s,int m)
{
int j;
L->key[0]=L->key[s];
for(j=2*s;j<=m;j=2*j)
{
if(j<m && L->key[j]>L->key[j+1])
j++;
if(!(L->key[0]>L->key[j]))
break;
L->key[s]=L->key[j];
s=j;
}
L->key[s]=L->key[0];
}
void HeapSort(SqList *L)
{
//对顺序表key进行堆排序
int i;
for(i=L->length/2;i>0;i--)
HeapAdjust(L,i,L->length);
for(i=L->length;i>1;i--)
{
L->key[0]=L->key[1];
L->key[1]=L->key[i];
L->key[i]=L->key[0];
HeapAdjust(L,1,i-1);
}
}
void main()
{
SqList L;
int i,s=1;
printf("元素的个数length=");
scanf("%d",&(L.length));
for(i=1;i<=L.length;i++)
{
scanf("%d",&(L.key[i]));
}
HeapSort(&L,s,L.length);
printf("排序后:\n");
for(i=1;i<=L.length;i++)
printf("%d ",L.key[i]);
printf("\n");
}
1.请为所建立的堆选择适合的数据结构。
链式存储结构
typedef struct BiTNode
{
int data;
struct BiTNode *lchild,* rchild;
}BiTNode , *BiTree;
顺序存储结构
#define maxsize 100
typedef struct
{
int key[maxsize];
int length;
}SqList;
2.给出如下12个数字,请画出建立小根堆的过程。
36,47,58,12,17,22,97,10,21,28,72,80
36,47,58,12,17,22,97,10,21,28,72,80
3.请画出从小根堆输出升序序列的过程。
输出 10
58
7297 80
58
7297
80
58
7297
80
58
7297
80
输出10 12 17 21 22 28 36 47 58
80
7297
80
7297
72
8097
72
8097输出10 12 17 21 22 28 36 47 58 72
97 80
80
97
80
97
输出10 12 17 21 22 28 36 47 58 72 80
97
输出10 12 17 21 22 28 36 47 58 72 80 97。