动态规划算法实验
动态基础设计实验报告(3篇)
第1篇一、实验目的1. 理解动态规划的基本思想和方法。
2. 掌握动态规划在解决实际问题中的应用。
3. 提高编程能力和算法设计能力。
二、实验内容本次实验主要涉及以下四个问题:1. 斐波那契数列2. 最长公共子序列3. 最长递增子序列4. 零钱找零问题三、实验原理动态规划是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划的基本思想是将一个复杂问题分解成若干个相互重叠的子问题,然后按照子问题的顺序逐个求解,最后将这些子问题的解合并成原问题的解。
四、实验步骤及代码实现1. 斐波那契数列斐波那契数列是指这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, ...,其中每个数都是前两个数的和。
```cppinclude <iostream>using namespace std;int Fibonacci(int n) {if (n <= 1) {return 1;}int fib[n+1];fib[0] = 1;fib[1] = 1;for (int i = 2; i <= n; i++) {fib[i] = fib[i-1] + fib[i-2];}return fib[n];}int main() {int n;cout << "请输入斐波那契数列的项数:" << endl;cin >> n;cout << "斐波那契数列的第 " << n << " 项为:" << Fibonacci(n) << endl;return 0;}```2. 最长公共子序列给定两个序列A和B,找出它们的公共子序列中长度最长的序列。
```cppinclude <iostream>using namespace std;int LCSLength(string X, string Y) {int m = X.length();int n = Y.length();int L[m+1][n+1];for (int i = 0; i <= m; i++) {for (int j = 0; j <= n; j++) {if (i == 0 || j == 0)L[i][j] = 0;else if (X[i-1] == Y[j-1])L[i][j] = L[i-1][j-1] + 1;elseL[i][j] = max(L[i-1][j], L[i][j-1]);}}return L[m][n];}int main() {string X = "AGGTAB";string Y = "GXTXAYB";cout << "最长公共子序列长度为:" << LCSLength(X, Y) << endl; return 0;}```3. 最长递增子序列给定一个序列,找出它的最长递增子序列。
动态规划-(矩阵连乘)
12
4、构造最优解
void MatrixChain::Traceback(int i, int j) {
if(i==j) { cout<<'A'<<i; return;} if (i<s[i][j]) cout<<'('; Traceback(i, s[i][j]); if (i<s[i][j])cout<<')'; if(s[i][j]+1<j)cout<<'('; Traceback(s[i][j]+1, j); if(s[i][j]+1<j) cout<<')'; } void MatrixChain::Traceback() { cout<<'('; Traceback(0, n-1); cout<<')'; cout<<endl; }
②当i=j时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n ③当i<j时,m [ i ] j ] [ m [ i ] k ] [ m [ k 1 ] j ] [ p i 1 p k p j
这里 A i 的维数为 pi1pi
∴可以递归地定义m[i][j]为:
m [i]j] [ m i k j{ m [i]n k [ ] m [k 0 1 ]j] [ p i 1 p kp j}i i j j
根据MatrixChain动态规划算法: ②计算m[i][j]数乘次数
m[2][5]=min m[2][2]+m[3][5]+p1p2p5=13000
动态规划实验报告
动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。
本实验旨在通过实际案例,探究动态规划算法的原理和应用。
二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。
它通常适用于具有重叠子问题和最优子结构性质的问题。
三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。
四、实验过程本实验选择了经典的背包问题作为案例进行分析。
背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。
1. 确定状态在动态规划算法中,状态是问题的关键。
对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。
2. 确定状态转移方程状态转移方程是动态规划算法的核心。
对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。
则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。
对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。
4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。
具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。
五、实验结果与分析通过实验,我们得到了背包问题的最优解。
同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。
这为我们提供了在实际问题中应用动态规划算法的思路。
六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。
动态规划建模实验报告
一、实验背景动态规划是一种重要的算法设计方法,它通过将复杂问题分解为若干个相互重叠的子问题,并存储子问题的解,从而避免重复计算,有效地解决一系列优化问题。
本实验旨在通过具体案例,加深对动态规划算法的理解和应用。
二、实验目的1. 掌握动态规划的基本概念和原理。
2. 熟悉动态规划建模的过程和步骤。
3. 提高运用动态规划解决实际问题的能力。
三、实验内容本次实验选取了“背包问题”作为案例,旨在通过解决背包问题,加深对动态规划算法的理解。
四、实验步骤1. 问题分析背包问题是一个经典的组合优化问题,描述为:给定一个容量为C的背包和N件物品,每件物品有价值和重量两个属性,求如何将物品装入背包,使得背包中的物品总价值最大,且不超过背包的容量。
2. 模型建立(1)定义状态:设dp[i][j]表示在前i件物品中选择若干件装入容量为j的背包所能获得的最大价值。
(2)状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]] + values[i]),其中weights[i]表示第i件物品的重量,values[i]表示第i件物品的价值。
(3)边界条件:dp[0][j] = 0,表示没有物品时,背包价值为0。
3. 编程实现使用C语言编写动态规划程序,实现背包问题的求解。
4. 结果分析(1)运行程序,输入背包容量和物品信息。
(2)观察输出结果,包括物品选择的列表和最大价值。
(3)验证结果是否正确,与理论分析进行对比。
五、实验结果与分析1. 实验结果:通过编程实现,成功求解了背包问题,并得到了最大价值。
2. 结果分析:(1)动态规划算法在解决背包问题时,有效地避免了重复计算,提高了求解效率。
(2)实验结果表明,动态规划算法能够有效地解决背包问题,为实际应用提供了有力支持。
六、实验总结1. 动态规划是一种重要的算法设计方法,具有广泛的应用前景。
2. 动态规划建模过程中,关键在于正确地定义状态和状态转移方程。
动态规划实验报告心得
一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。
本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。
二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。
动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。
2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。
通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。
3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。
在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。
4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。
在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。
三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。
动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。
这种思维方式有助于我们更好地理解和解决实际问题。
2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。
它描述了子问题之间的关系,是求解问题的关键。
通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。
实验报告:动态规划01背包问题)范文(最终五篇)
实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。
(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。
有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。
算法课设实验报告(3篇)
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
动态规划算法—租用游艇问题
动态规划算法——租用游艇问题(一)实验目的:理解动态规划思想,掌握用动态规划设计算法的方法来解决游艇租用问题。
(二)实验内容:长江游艇俱乐部在长江上设置了n个游艇出租站1,2,…,n。
游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。
游艇出租站i到游艇出租站j之间的租金为r(i,j).设计一个算法,计算出从游艇出租站1到游艇出租站n所需要的最少租金。
(三)实验要求:对于给定的游艇出租站i到游艇出租站j之间的租金为r(i,j),编程计算从游艇出租站1到游艇出租站n所需要的最少租金。
上机调试并测试,记录调试和测试的情况,结合程序进行分析。
(四)实验环境:Vc++编译环境(五)实验主要源代码:(1)用dyna()函数计算最少租金void dyna(int &n,int f[N][N]){for(int k=2;k<n;k++)for(int i=0;i<n-k;i++){int j=i+k;for(int p=i+1;p<j;p++){int tmp=f[i][p]+f[p][j];if(f[i][j]>tmp)f[i][j]=tmp;}}}(2)在主函数中实现输出结果。
int main(){ifstream fin("050501103in.txt");ofstream fout("050501103out.txt");if (fin.fail()) {cout<<"fin(\"050501103in.txt\")文件出错!请先建立050501103in文本!"<<endl;return 1;}if (fout.fail()) {cout<<"fout(\"050501103out.txt\")文件出错!";return 2;}int f[N][N];int n;int i,j;fin>>n;if(n<=0){ cout<<"请在050501103in文本的第一行中输入游艇出租站的个数:"<<endl;cout<<"请在050501103in文本的第二行开始输入n(n-1)/2个站与站之间的租金数:"<<endl;}else if(n>N){cout<<"请修改N的值,使N大于n:"<<endl;}else {for(i=0;i<n;i++)for(j=0;j<n;j++)if(j>i)fin>>f[i][j];cout<<"请在050501103out文本中看输出结果(从出租站1到n的最少租金):"<<endl;dyna(n,f);fout<<f[0][n-1]<<endl;}}(六)实验结果:050501103in.txt 050501103out.txt3 125 157(七)实验总结:此程序的设计思想:利用dyna()函数计算最少租金。
动态规划方案解决算法背包问题实验报告含源代码
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
动态规划实验报告
动态规划实验报告《动态规划实验报告》动态规划是一种重要的算法设计技术,它在解决许多实际问题中具有广泛的应用。
本实验报告将介绍动态规划算法的基本原理,并通过一个实际问题的求解过程来展示其应用效果。
首先,我们来了解一下动态规划的基本原理。
动态规划是一种将原问题分解为子问题来求解的方法,它通常用于求解最优化问题。
动态规划算法的核心思想是将原问题分解为若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。
为了避免重复计算子问题,动态规划算法通常采用记忆化搜索或者自底向上的方式来进行计算。
接下来,我们将通过一个实际问题来展示动态规划算法的应用效果。
假设我们有一组数字,我们希望找到其中的一个子序列,使得这个子序列的和最大。
这个问题可以通过动态规划算法来求解,具体的求解过程如下:1. 定义状态:我们定义一个状态数组dp,其中dp[i]表示以第i个数字结尾的子序列的最大和。
2. 状态转移方程:我们可以通过以下状态转移方程来求解dp数组:dp[i] = max(dp[i-1] + nums[i], nums[i]),其中nums[i]表示第i个数字。
3. 初始状态:我们将dp数组的初始状态设为dp[0] = nums[0]。
4. 求解最优解:最终的最优解即为dp数组中的最大值。
通过以上求解过程,我们可以得到原问题的最优解,即最大子序列的和。
这个实例展示了动态规划算法在实际问题中的应用效果,通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的最优化问题。
综上所述,动态规划算法是一种重要的算法设计技术,它在解决最优化问题中具有广泛的应用。
通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的实际问题。
希望本实验报告能够帮助读者更好地理解动态规划算法的基本原理和应用方法。
实验二最长公共子序列(动态规划算法)
实验二最长公共子序列(动态规划算法)班级:08计算机科学与技术(1)班学号:E08620113 姓名:戴斌江机器号:实验二最长公共子序列问题一、实验目的:1、理解动态规划算法的概念;2、掌握动态规划算法的基本要素;3、掌握设计动态规划算法的步骤;4、通过应用范例学习动态规划算法的设计技巧与策略;二、实验内容及要求:1、使用动态规划算法解决最长公共子序列问题:给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
2、通过上机实验进行算法实现。
3、保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。
三、实验原理:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。
算法总体思想:1)动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
2)与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立的。
子问题中存在大量的公共子问题,在分治求解过程中被多次重复计算,保存计算结果,为后面的计算直接引用,减少重复计算次数这就是动态规划的基本思想。
3)用动态规划算法求解问题,可依据其递归式以自底向上的方式进行计算。
在计算过程中,保存已解决的子问题的答案。
每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量重复计算,最终得到多项式时间算法。
浙江工业大学算法实验2 动态规划算法实现
实验2 动态规划算法实现一、实验目标:1.熟悉动态规划算法实现的基本方法和步骤;2. 学会动态规划算法的实现方法和分析方法:二、实验内容:问题1:最长公共子序列的问题,测试数据X={ABCBDAB} Y={BDCABA}X={zhejiang university of technology} Y= {zhejiang university city college}1-1实验代码及截图#include<iostream>#include<cstring>using namespace std;//求得两个字符串的最大公共子序列长度int LCSLength(int m, int n,char* x, char* y,int **c, int **b){int i, j, len;//i=0 || j=0for (i = 0; i < m + 1; i++) c[i][0] = 0;for (j = 0; j < n + 1; j++) c[0][j] = 0;//i,j>0for (i = 1; i <= m; i++){for (j = 1; j <= n; j++){if (x[i] == y[j])//if (x[i - 1] == y[j - 1]){c[i][j] = c[i - 1][j - 1] + 1;b[i][j] = 1;}else if (c[i - 1][j] >= c[i][j - 1]){c[i][j] = c[i - 1][j];b[i][j] = 2;}else{c[i][j] = c[i][j - 1];b[i][j] = 3;}}}len = c[m][n];return len;}//构造最长公共子序列void LCS(int i, int j, char *x, int **b){if (i == 0 || j == 0) return;if (b[i][j] == 1){LCS(i - 1, j - 1, x, b);cout << x[i - 1];//c[i][]对应str1的第i-1个元素}else if (b[i][j] == 2){LCS(i - 1, j, x, b);}else{LCS(i, j - 1, x, b);}}int main(){char str1[1000], str2[1000];int i, m, n, len;cout << "请输入第一个字符串:";gets_s(str1);cout << "请输入第二个字符串:";gets_s(str2);m = strlen(str1);n = strlen(str2);int **c = new int*[m + 1]; //行for (i = 0; i < m + 1; i++)c[i] = new int[n + 1];//列int **b = new int*[m + 1];for (i = 0; i < m + 1; i++)b[i] = new int[n + 1];len = LCSLength(m, n, str1, str2, c, b);cout << "最长公共子序列的长度为:" << len << endl;cout << ("最长公共子序列为:");LCS(m, n, str1, b);cout << endl;system("pause");return 0;}实验截图:1-2实验总结:实验最开始考虑到穷举,但很明显时间复杂度过于庞大,利用最长公共子序列的最优子结构性质,结合书上代码进行实验,但实验中很明显没有考虑多种最长公共子序列的情况,这个可能要留待后续继续学习改进。
动态规划算法实验报告
实验标题1、矩阵连乘2、最长公共子序列3、最大子段和4、凸多边形最优三角剖分5、流水作业调度6、0-1背包问题7、最优二叉搜索树实验目的掌握动态规划法的基本思想和算法设计的基本步骤。
实验内容与源码1、矩阵连乘#include<iostream>#include<cstdlib>using namespace std;const int size=4;//ra,ca和rb,cb分别表示矩阵A和B的行数和列数void matriMultiply(int a[][4],int b[][4],int c[][4],int ra ,int ca,int rb ,int cb ) {if(ca!=rb) cerr<<"矩阵不可乘";for(int i=0;i<ra;i++)for(int j=0;j<cb;j++){int sum=a[i][0]*b[0][j];for(int k=1;k<ca;k++)sum+=a[i][k]*b[k][j];c[i][j]=sum;}}void MatrixChain(int *p,int n,int m[][4],int s[][4]){for(int i=1;i<=n;i++) m[i][i]=0;//对角线for(int r=2;r<=n;r++)//外维for(int i=1;i<=n-r+1;i++)//上三角{int j=i+r-1;m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];if(t<m[i][j]){m[i][j]=t;s[i][j]=k;}}}}void Traceback(int i,int j,int s[][4]){if(i == j){cout<<"A"<<i;}else if(i+1 == j){cout<<"(A"<<i<<"A"<<j<<")";}else{cout<<"(";Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<")";}}int main(){int w;cout<<"矩阵个数:";cin>>w;int p[w],s[w][w];cout<<"输入矩阵A1维数:";cin>>p[0]>>p[1];for(int i=2 ; i<=w ; i++){int m = p[i-1];cout<<"输入矩阵A"<<i<<"维数:";cin>>p[i-1]>>p[i];if(p[i-1] != m){cout<<endl<<"维数不对,矩阵不可乘!"<<endl;exit(1);}}Traceback(1,w,s);return 0;}运行结果2、最长公共子序列#include<cstring>#include<iostream>#define N 100using namespace std;//str1存储字符串x,str2存储字符串ychar str1[N],str2[N];//lcs存储最长公共子序列char lcs[N];//c[i][j]存储str1[1...i]与str2[1...j]的最长公共子序列的长度int c[N][N];//flag[i][j]==0为str1[i]==str2[j]//flag[i][j]==1为c[i-1][j]>=s[i][j-1]//flag[i][j]==-1为c[i-1][j]<s[i][j-1]int flag[N][N];//求长度int LCSLength(char *x, char *y){int i,j;//分别取得x,y的长度int m = strlen(x);int n = strlen(y);for(i=1;i<=m;i++)c[i][0] = 0;for(i=0;i<=n;i++)c[0][i] = 0;for(i=1;i<=m;i++)for(j=1;j<=n;j++){if(x[i-1]==y[j-1]){c[i][j] = c[i-1][j-1] +1;flag[i][j] = 0;}else if(c[i-1][j]>=c[i][j-1]){c[i][j] = c[i-1][j];flag[i][j] = 1;}else{c[i][j] = c[i][j-1];flag[i][j] = -1;}}return c[m][n];}//求出最长公共子序列char* getLCS(char *x, char *y,int len,char *lcs) {int i = strlen(x);int j = strlen(y);while(i&&j){if(flag[i][j]==0){lcs[--len] = x[i-1];i--;j--;}else if(flag[i][j]==1)i--;elsej--;}return lcs;}int main(){int i;cout<<"请输入字符串x:"<<endl;cin>>str1;cout<<"请输入字符串y:"<<endl;cin>>str2;int lcsLen = LCSLength(str1,str2);cout<<"最长公共子序列长度:"<<lcsLen<<endl;char *p = getLCS(str1,str2,lcsLen,lcs);cout<<"最长公共子序列为:";for(i=0;i<lcsLen;i++)cout<<lcs[i]<<" ";return 0;}运行结果3、最大子段和//分治法求最大子段和#include<iostream>using namespace std;int MaxSubSum(int *a,int left,int right){int sum=0;if(left==right) sum=a[left]>0?a[left]:0;else{int center = (left+right)/2;//最大子段和在左边int leftsum=MaxSubSum(a,left,center);//最大子段和在右边int rightsum=MaxSubSum(a,center+1,right);//最大子段和在中间int s1=0;int lefts=0;for(int i=center;i>=left;i--){lefts+=a[i];if(lefts>s1) s1=lefts;}int s2=0;int rights=0;for(int i=center+1;i<=right;i++){rights+=a[i];if(rights>s2) s2=rights;}sum=s1+s2;//前后子段和相加//判断最大子段和if(sum>leftsum)sum=leftsum;if(sum>rightsum) sum=rightsum;}return sum;}int MaxSum(int *a,int n){return MaxSubSum(a,1,n-1);}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}//动态规划法#include<iostream>using namespace std;int MaxSum(int *a,int n){int sum=0,b=0;for(int i=1;i<n;i++)//此处不能=n,{if(b>0) b+=a[i];else b=a[i];if(b>sum) sum=b;}return sum;}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}运行结果4、凸多边形最优三角剖分#include<iostream>#include<cmath>#include<cstdlib>#define N 50using namespace std;struct point{int x;int y;};int distance(point X, point Y)//两点距离{int dis = (Y.x-X.x)*(Y.x-X.x) + (Y.y-X.y)*(Y.y-X.y);return (int)sqrt(dis);}int w(point a, point b, point c)//权值{return distance(a,b) + distance(b,c) + distance(a,c);}bool JudgeInput()//判断是否能构成凸多边形{point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int m,a,b,c;cout<<"请输入凸多边形顶点个数:";cin>>m;int M = m-1;for(int i=0 ; i<m ; i++){cout<<"输入顶点v"<<i<<"的坐标:";cin>>v[i].x>>v[i].y;}//根据顶点坐标判断是否能构成一个凸多边形for(int j=0 ; j<m ; j++){int p = 0;int q = 0;if(m-1 == j){a = v[m-1].y - v[0].y;b = v[m-1].x - v[0].y;c = b * v[m-1].y - a * v[m-1].x;}else{a = v[j].y - v[j+1].y;b = v[j].x - v[j+1].x;c = b * v[j].y - a * v[j].x;}for(int k=0 ; k<m ; k++){total[k] = a * v[k].x - b * v[k].y + c;if(total[k] > 0){p = p+1;}else if(total[k] < 0){q = q+1;}}if((p>0 && q>0) || (p==0 && q==0)){cout<<"无法构成凸多边形!"<<endl;exit(1);}}}bool minWeightTriangulation()//计算最优值算法{int M;int **t, **s;point *v;for(int i=1 ; i<=M ; i++)t[i][i] = 0;for(int r=2 ; r<=M ; r++)for(int i=1 ; i<=M-r+1 ; i++){int j = i+r-1;t[i][j] = t[i+1][j] + w(v[i-1],v[i],v[j]);s[i][j] = i;for(int k=i+1 ; k<i+r-1 ; k++){int u = t[i][k] + t[k+1][j] + w(v[i-1],v[k],v[j]);if(u < t[i][j]){t[i][j] = u;s[i][j] = k;}}}return true;}void Traceback(int i, int j, int **s){if(i == j)return;Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<"三角形:v"<<i-1<<"v"<<s[i][j]<<"v"<<j<<endl;}int main(){int **s; //记录最优三角剖分中所有三角形信息int **t; //记录最优三角剖分所对应的权函数值point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int M=0;t = new int *[N];s = new int *[N];for(int i=0 ; i<N ; i++){t[i] = new int[N];s[i] = new int[N];}v = new point[N];total = new int[N];if(JudgeInput()){if(minWeightTriangulation()){Traceback(1,M,s);cout<<endl;cout<<"最优权值之和为:"<<t[1][M]<<endl;}}return 0;}运行结果:5、流水作业调度#include<iostream>#define N 100using namespace std;class Jobtype{public:/* int operator<=(Jobtype a)const{return(key<=a.key);}*/int key;int index;bool job;};void sort(Jobtype *d,int n){int i,j;Jobtype temp;bool exchange; //交换标志for(i = 0;i < n;i ++){ //最多做n-1趟排序exchange = false; //本趟排序开始前,交换标志应为假for(j = n - 1;j >= i;j --)if(d[j+1].key < d[j].key){temp = d[j+1];d[j+1] = d[j];d[j] = temp;exchange=true; //发生了交换,故将交换标志置为真}if(!exchange) //本趟排序未发生交换,提前终止算法return;}}int FlowShop(int n,int *a,int *b,int *c){Jobtype *d = new Jobtype[n];for(int i=0;i<n;i++)//初始化{d[i].key=a[i]>b[i]?b[i]:a[i];// 执行时间d[i].job=a[i]<=b[i];// 作业组d[i].index=i;//作业序号}sort(d,n);;int j=0;int k=n-1;for(int i=0;i<n;i++)//最优调度{if(d[i].job){c[j++]=d[i].index;}else{c[k--]=d[i].index;}}j=a[c[0]];k=j+b[c[0]];for(int i=1;i<n;i++){j+=a[c[i]];k=j<k?k+b[c[i]]:j+b[c[i]];}delete d;//回收空间return k;//返回调度时间}int main(){int n,*a,*b,*c;cout<<"作业数:";cin>>n;Jobtype *d = new Jobtype[N];a=new int[N];b=new int[N];c=new int[N];cout<<"请输入作业号和时间:";for(int i=0;i<n;i++){cin>>d[i].index>>d[i].key;}cout << endl;int k=FlowShop(n,a,b,c);cout<<"\n调度时间:"<<k<<endl;cout<<"最优调度序列:";for (int i = 0; i < n; i++) // 输出最优调度序列{cout << c[i] << " ";}return 0;}运行结果:6、0-1背包问题#include <iostream>#include <iomanip>using namespace std;const int C=10;//容量const int N=5;//个数int max(const int a,const int b){return a>b?a:b;}int min(const int a,const int b){return a<b?a:b;}/*m为记录数组m[i][j]代表在剩有j容量的条件下,从i开始往后的物品中可以取得的最大价值w为重量数组,v为价值数组n为物品个数,c为开始容量则m[1][c]即此背包能剩下的最大价值*/void knapsack(int **m,int n, int c,int *w, int *v){int jMax = min(w[n]-1,c);//前n-1个物品for(int j=0;j<=jMax;j++)m[n][j]=0;for(int j=w[n];j<=c;j++)m[n][j]=v[n];for(int i=n-1;i>1;i--){jMax=min(w[i]-1,c);for(int j=0;j<=jMax;j++)m[i][j] = m[i+1][j];for(int j=w[i];j<=c;j++)m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c]=m[2][c];if(c>=w[1])m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);}//找出最优解,0表示不能装,1表示能装void traceback(int **m,int n,int c,int *x,int *w){for(int i=1;i<n;i++){if(m[i][c]==m[i+1][c]) x[i]=0;else{x[i]=1;c-=w[i];}}x[n]=(m[n][c]==0)?0:1;}int main(){int *v=new int[N+1];int *w=new int[N+1];int **m=new int* [N+1];int *x=new int [N+1];for(int i=0;i<N+1;i++){m[i]=new int[C+1];}cout<<"输入重量序列,"<<N<<"个"<<endl;for(int i=1;i<=N;i++)cin>>w[i];cout<<"输入价值序列,"<<N<<"个"<<endl;for(int i=1;i<=N;i++)cin>>v[i];knapsack(m,N,C,w,v);traceback(m,N,C,x,w);cout<<"最优值:"<<m[1][C]<<endl;cout<<"是否装入背包的情况:";for(int i=1;i<=N;i++){cout<<x[i];}for(int i=0;i<N+1;i++){delete m[i];}delete []m;return 0;}运行结果7、最优二叉搜索树#include<iostream>#include<cmath>#include<limits>#define N 100using namespace std;const double MAX = numeric_limits<double>::max(); //double的最大值//a[i]为结点i被访问的概率//b[i]为“虚结点”i被访问的概率//m[i][j]用来存放子树(i,j)的期望代价//w[i][j]用来存放子树(i,j)的所有结点(包括虚结点)的a,b概率之和//s[i][j]用来跟踪root的void OptimalBinarySearchTree(double *a,double *b,int n){int s[N][N];double m[N][N];double w[N][N];int i,j,l,r;for(i=1; i<=n+1; i++){m[i][i-1] = b[i-1];w[i][i-1] = b[i-1];}for(l=1; l<=n; l++){for(i=1; i<=n-l+1; i++){j = l+i-1;m[i][j] = MAX;w[i][j] = w[i][j-1] + a[j] +b[j];for(r=i; r<=j; r++){double k = m[i][r-1] + w[i][j] + m[r+1][j];if(k<m[i][j]){m[i][j] = k;s[i][j] = k;}}}}cout<<m[1][n];}int main(){double a[N],b[N];int n;double sum = 0;int i,j,l;cout<<"请输入关键字的个数:"<<endl;cin>>n;cout<<"请输入每个关键字的概率:"<<endl;for(i=1; i<=n; i++){cin>>a[i];sum += a[i];}cout<<"请输入每个虚拟键的概率:"<<endl;for(i=0; i<=n; i++){cin>>b[i];sum += b[i];}if(abs(sum-1)>0.01){cout<<"输入的概率和不为1,请重新输入"<<endl;}cout<<"最优二叉查找树的期望搜索代价为:";OptimalBinarySearchTree(a,b,n);return 0;}运行结果:实验总结通过实现动态规划的这个题目,对动态规划算法有了进一步的了解。
动态规划实验报告
实验课程:算法分析与设计实验名称:实验3 动态规划算法(综合性/设计性)实验目标:1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;实验任务:若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X 和Y的公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
实验设备及环境:PC;C/C++的编程环境Visual C++。
实验主要步骤:(1)明确实验目标和具体任务;(2)理解实验所涉及的动态规划算法;(3)编写程序并实现动态规划算法;(4)设计实验数据并运行程序、记录运行的结果;实验数据及运行结果、实验结果分析及结论:(学生填写)#include <stdio.h>#include <string.h>void LcsLength(char *x,char *y,int m,int n,int c[][100],int b[][100]){puts(x);puts(y);int i,j;for(i=0;i<=m;i++)c[i][0]=0;for(j=1;i<=n;j++)c[0][j]=0;for(i=1;i<=m;i++)for(j=1;j<=n;j++) {if(x[i-1]==y[j-1]) {c[i][j]=c[i-1][j-1]+1;b[i][j]=0;}else if(c[i-1][j]>=c[i][j-1]) {c[i][j]=c[i-1][j];b[i][j]=1;}else {c[i][j]=c[i][j-1]; b[i][j]=-1;}}}void PrintLCS(int b[][100], char *x, int i, int j){ if(i==0 || j==0)return;if(b[i][j]==0) {PrintLCS(b,x,i-1,j-1);printf("%c",x[i-1]);}else if(b[i][j]==1)PrintLCS(b,x,i-1,j);elsePrintLCS(b,x,i,j-1);}void main(){char x[100]={"ABCBDAB"};char y[100]={"BDCABA"};int c[100][100];int b[100][100];int m,n;m=strlen(x);n=strlen(y);LcsLength(x,y,m,n,c,b); printf("最长子序列为:");PrintLCS(b,x,m,n); printf("\n");printf("最长子序列长度为:%d\n",c[m][n]);}实验结果:结果分析:在写规划方程时,只要对两条路径走到同一个点的情况稍微处理一下,减少可选的决策个数:从这个例子中可以总结出设计动态规划算法的一个技巧:状态转移一般。
《动态规划算法实验》实验报告
实验3、《动态规划算法实验》一、实验目的1. 掌握动态规划方法贪心算法思想2. 掌握最优子结构原理3. 了解动态规划一般问题二、实验内容1. 编写一个简单的程序,解决0-1背包问题。
设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}2. 合唱队形安排问题【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。
已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
三、算法思想分析1.0-1背包采用动规算法主要是动规方程的思考,之后就是确定边界条件即可。
2.合唱队形问题应用了分治与动态规划的算法,先将所有队员依次做中间最高的同学,将问题分为左右来做,接下来只需要求得左边的最长上升子序列数、右边的最长下降子序列数即可。
四、实验过程分析1.0-1背包问题是背包问题的进一步条件限制,考虑清楚动规方程就不难,编程中对于m(i,j)的含义要清楚,搞混了就容易出错。
2.合唱队形问题的思想并不复杂,特别是如果已经掌握了最长上升子序列数的算法,在分别处理左右最长子序列时需要特别注意数组下标,一开始我用是i,j直接从0到左右的数据长度,但是一直出错,后来发现队员身高数组并不能完全用这些下标,特别是右边的函数,数组起始下标不是0,需要利用函数传递起始下标才能调用对应的数据段。
五、算法源代码及用户屏幕1.(1)算法源码/********************************0-1背包问题。
codeblocks C++2018.11.2********************************/#include <iostream>#include <iomanip>using namespace std;void knapSnack(int v[], int w[], int c, int n, int m[][11]);int main(){int v[] = {6, 3, 5, 4, 6};int w[] = {2, 2 ,6, 5, 4};int c = 10;int n = 5;int m[5][11];//初始化数组for(int i=0; i<5; i++){for(int j=0; j<11; j++){m[i][j] = 0;}}knapSnack(v, w, c, n, m);//输出结果cout<<setw(3)<<" ";for(int i=0; i<11; i++){cout<<setw(3)<<i;}cout<<endl;for(int i=0; i<5; i++){//输出行号cout<<setw(3)<<i+1;for(int j=0; j<11; j++){cout<<setw(3)<<m[i][j];}cout<<endl;}return 0;}void knapSnack(int v[], int w[], int c, int n, int m[][11]){ for(int i=0; i<n; i++){for(int j=0; j<11; j++){//边界条件if(i == 0){if(w[i] > j)m[i][j] = 0;elsem[i][j] = v[i];}/*动规方程j>w[i]m(i,j) = max{m(i-1,j), m(i-1,j-w[i])+v[i]}0<=j<w[i]m(i,j) = m(i-1,j)*/else{if(w[i] > j)m[i][j] = m[i-1][j];else{if(m[i-1][j] > (m[i-1][j-w[i]]+v[i]))m[i][j] = m[i-1][j];elsem[i][j] = m[i-1][j-w[i]]+v[i];}}}//控制列数的for循环}//控制行数的for循环}(2)用户屏幕2.(1)算法源码/***************************************************合唱队形问题codeblocks C++2018.11.2***************************************************/#include <iostream>#include <string.h>using namespace std;//计算左端合唱队人数int leftQueue(int a[], int _start, int _end);//计算右端合唱队人数int rightQueue(int a[], int _start2, int _end2);int main(){cout<<"Please enter total number:";int number;cin>>number;cout<<"Please input the height of each person (cm):"<<endl;int a[number]; //记录每个人身高//b数组分别记录当第n个人为合唱队中间人时,合唱队的总人数int b[number];int rightNumber[number]; //记录左端合唱队人数int leftNumber[number]; //记录右端合唱队人数for(int i=0; i<number; i++)b[i] = 0;for(int i=0; i<number; i++)cin>>a[i];int mostQueueNumber = b[0];for(int i=0; i<number; i++){//设置a[i]为最高的同学leftNumber[i] = leftQueue(a,0,i);rightNumber[i] = rightQueue(a,i,number-1);//计算合唱队总人数b[i] = leftNumber[i] + rightNumber[i] - 1;//计算合唱队最多的总人数if(mostQueueNumber < b[i])mostQueueNumber = b[i];}//计算最少出队人数int leastDequeueNumber = number - mostQueueNumber;cout<<"Minimum number of people out: "<<leastDequeueNumber<<endl;return 0;}int leftQueue(int a[], int _start, int _end){int leftMostNumber = 0;int n = _end-_start+1;//c数组记录i时的最长上升子序列数int c[n];int maxN;//初始化最长上升子序列数为1for(int i=0; i<n; i++){c[i] = 1;}for(int i=_start; i<_end+1; i++){maxN = 0;for(int j=i-1; j>=_start; j--){if(a[j]<a[i] && c[j]>maxN)maxN = c[j];c[i] = maxN + 1;}}leftMostNumber = c[n-1];return leftMostNumber;}int rightQueue(int a[], int _start2, int _end2){ int rightMostNumber = 0;int n2 = _end2-_start2+1;//c2数组记录i时的最长下降子序列数int c2[n2];int maxN2;//初始化最长下降子序列数为1for(int i=0; i<n2; i++){c2[i] = 1;}for(int i=_end2; i>=_start2; i--){maxN2 = 0;for(int j=i+1; j<=_end2; j++){if(a[j]<a[i] && c2[j-_start2]>maxN2)maxN2 = c2[j-_start2];c2[i-_start2] = maxN2 + 1;}}rightMostNumber = c2[0];return rightMostNumber; }(2)用户屏幕。
动态规划算法分析与设计实验报告(矩阵连乘)
算法分析与设计实验报告实验题目:动态规划算法的设计与实现1、实验目的通过本实验,掌握动态规划算法的设计的基本思想,进一步提高学生的编程能力。
2、实验内容:给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
3、源程序if (t<u) //返回t,k中较小的值,并记录断点处k{ u=t; s[i][j]=k;} }return u; }int Look(int i,int j) //备忘录计算最优值{ if (m[i][j]>0){ return m[i][j]; }if (i == j) return 0;int u=Look(i, i)+Look(i+1,j)+p[i-1]*p[i]*p[j]; s[i][j]=i;for (int k=i+1; k<j;k++){ int t=Look(i,k)+Look(k+1,j)+p[i-1]*p[k]*p[j]; //递归if (t<u){ u=t; //从k处断开,分别求得每次的数乘次数s[i][j]=k; //返回t,k中较小的值,并记录断点处k} } m[i][j]=u;return u; }void Traceback(int i,int j) { //输出矩阵结合方式,加括号输出if(i == j) //只有一个矩阵,直接输出{ cout<<"A"<<i; }else if(i+1 == j) //两个矩阵,加括号输出{ cout<<"(A"<<i<<"A"<<j<<")"; }else{ cout<<"("; Traceback(i,s[i][j]); //递归,从最得到最优解的地方s[i][j]处断开Traceback(s[i][j]+1,j);cout<<")"; } }void main(){ cout<<"输入矩阵个数:n=";cin>>n; cout<<"输入第一个矩阵行数和第一个到第n个矩阵的列数:"; for(int i=0;i<=n;i++){ cin>>p[i]; } cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1.动态规划算法"<<endl; cout<<"2.直接递归算法"<<endl; cout<<"3.备忘录算法"<<endl;cout<<"0.退出..."<<endl;cout<<endl;cout<<"请选择算法:";cin>>q; cout<<endl;while(q!=0){ switch(q){case 1: matrixChain(); cout<<"动态规划算法解决矩阵连乘问题:"<<endl; cout<<"最优计算次序为:";Traceback(1,n); cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 2: Recur(0,n); cout<<"直接递归算法解决矩阵连乘问题:"<<endl;5、结论动态规划算法设计通常有四个步骤:1.找出最优解的性质,并刻画其结构特征。
动态规划模型实验报告
一、实验目的本次实验旨在通过动态规划模型的应用,深入理解动态规划的基本概念、解题步骤以及在实际问题中的应用。
通过实验,掌握动态规划模型的设计、求解和优化方法,提高解决复杂问题的能力。
二、实验内容1. 实验背景动态规划(Dynamic Programming,DP)是一种求解多阶段决策过程最优化的数学方法。
它适用于具有多阶段特性问题的求解,如背包问题、最长公共子序列问题、最短路径问题等。
动态规划的核心思想是将复杂问题分解为相互重叠的子问题,通过子问题的最优解构造原问题的最优解。
2. 实验步骤(1)选择实验题目本次实验选择背包问题作为实验题目。
背包问题是一个经典的动态规划问题,其目标是求在给定的物品重量和总重量限制下,如何选择物品使得背包内物品的总价值最大。
(2)建立动态规划模型根据背包问题的特点,我们可以将问题分解为以下子问题:- 子问题1:对于每个物品,选择放入背包或不放入背包。
- 子问题2:在物品已确定的情况下,计算当前背包的总价值。
状态表示:令dp[i][j]表示前i个物品放入容量为j的背包所能获得的最大价值。
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
初始化:dp[0][j] = 0,表示不放入任何物品时的最大价值为0。
填表顺序:按照物品的顺序填表,从左到右,从上到下。
返回值:dp[n][m],其中n表示物品数量,m表示背包容量。
(3)编程实现使用Python编程语言实现背包问题的动态规划模型。
(4)实验结果与分析通过实验,我们可以得到以下结果:- 在给定的物品重量和总重量限制下,背包内物品的总价值最大为V。
- 在物品已确定的情况下,可以得到每个物品是否放入背包的决策。
(5)优化与改进- 使用滚动数组优化空间复杂度,减少存储空间。
- 优化状态转移方程,提高计算效率。
浙江工业大学算法实验2 动态规划算法实现
实验2 动态规划算法实现一、实验目标:1.熟悉动态规划算法实现的基本方法和步骤;2. 学会动态规划算法的实现方法和分析方法:二、实验内容:问题1:最长公共子序列的问题,测试数据X={ABCBDAB} Y={BDCABA}X={zhejiang university of technology} Y= {zhejiang university city college}1-1实验代码及截图#include<iostream>#include<cstring>using namespace std;//求得两个字符串的最大公共子序列长度int LCSLength(int m, int n,char* x, char* y,int **c, int **b){int i, j, len;//i=0 || j=0for (i = 0; i < m + 1; i++) c[i][0] = 0;for (j = 0; j < n + 1; j++) c[0][j] = 0;//i,j>0for (i = 1; i <= m; i++){for (j = 1; j <= n; j++){if (x[i] == y[j])//if (x[i - 1] == y[j - 1]){c[i][j] = c[i - 1][j - 1] + 1;b[i][j] = 1;}else if (c[i - 1][j] >= c[i][j - 1]){c[i][j] = c[i - 1][j];b[i][j] = 2;}else{c[i][j] = c[i][j - 1];b[i][j] = 3;}}}len = c[m][n];return len;}//构造最长公共子序列void LCS(int i, int j, char *x, int **b){if (i == 0 || j == 0) return;if (b[i][j] == 1){LCS(i - 1, j - 1, x, b);cout << x[i - 1];//c[i][]对应str1的第i-1个元素}else if (b[i][j] == 2){LCS(i - 1, j, x, b);}else{LCS(i, j - 1, x, b);}}int main(){char str1[1000], str2[1000];int i, m, n, len;cout << "请输入第一个字符串:";gets_s(str1);cout << "请输入第二个字符串:";gets_s(str2);m = strlen(str1);n = strlen(str2);int **c = new int*[m + 1]; //行for (i = 0; i < m + 1; i++)c[i] = new int[n + 1];//列int **b = new int*[m + 1];for (i = 0; i < m + 1; i++)b[i] = new int[n + 1];len = LCSLength(m, n, str1, str2, c, b);cout << "最长公共子序列的长度为:" << len << endl;cout << ("最长公共子序列为:");LCS(m, n, str1, b);cout << endl;system("pause");return 0;}实验截图:1-2实验总结:实验最开始考虑到穷举,但很明显时间复杂度过于庞大,利用最长公共子序列的最优子结构性质,结合书上代码进行实验,但实验中很明显没有考虑多种最长公共子序列的情况,这个可能要留待后续继续学习改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的 (2)
二、实验内容 (2)
三、实验步骤 (3)
四.程序调试及运行结果分析 (5)
附录:程序清单(程序过长,可附主要部分) (7)
实验四动态规划算法的应用
一、实验目的
1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。
2.熟练掌握分阶段的和递推的最优子结构分析方法。
3.学会利用动态规划算法解决实际问题。
二、实验内容
1.问题描述:
题目一:数塔问题
给定一个数塔,其存储形式为如下所示的下三角矩阵。
在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。
请找出一条路径,使路径上的数值和最大。
输入样例(数塔):
9
12 15
10 6 8
2 18 9 5
19 7 10 4 16
输出样例(最大路径和):
59
题目二:最长单调递增子序列问题(课本184页例28)
设有由n个不相同的整数组成的数列,记为:a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j) 若存在i1<i2<i3< …<ik 且有a(i1)<a(i2)< …<a(ik),则称为长度为k的不下降序列。
请编写算法求出一个数列的最长不下降序列。
题目三 0-1背包问题
给定n种物品和一个背包。
物品i的重量是wi,其价值为vi,背包的容量为c,。
问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入或不装入,且不能重复装入。
输入数据的第一行分别为:背包的容量c,,物品的个数n。
接下来的n 行表示n个物品的重量和价值。
输出为最大的总价值。
输入样例:
20 3
11 9
9 10
7 5
输出样例
19
2.数据输入:个人设定,由键盘输入。
3.要求:
1)上述题目任选一做。
上机前,完成程序代码的编写
2)独立完成实验及实验报告
三、实验步骤
1.理解算法思想和问题要求;
2.编程实现题目要求;
3.上机输入和调试自己所编的程序;
4.验证分析实验结果;
5.整理出实验报告。
一.实验目的
二.问题描述
三.算法设计
包含:数据结构与核心算法的设计描述、函数调用及主函数设计、主要算法流程图等
动态规划主要针对最优化问题,它的决策不是线性的而是全面考虑各种不同的情况分别进行决策,最后通过多阶段决策逐步找出问题的最终解。
从数塔问题的特点来看,不难发现解决问题的阶段划分,应该是自上而下逐层决策。
不同于贪婪策略的是做出的不是唯一的决策,要从全局出发。
0-1背包问题:用f记录不同承重量背包的总价值,w记录不同物品的重量,v记录不同物品的价值。
在双重循环中,在放入第i个物品前后,检验不同j承重量背包的总价值,如果放入第i个物品后比放入前的价值提高了,则修改j承重量背包的价值,否则不变。
四.程序调试及运行结果分析
1.数塔问题:改正错误后,运行程序,构建一个三层数塔,依次输入塔中的数据后,运行结果为:路径和最大值为32 路径为9 15 8 经过验证,结果正确。
2.0-1背包问题:解决错误,运行程序。
如图所示输入数据后,成功输出正确结果 19.
五.实验总结
对于这次的实验,我感觉到比较吃力。
首先动态规划不同于贪婪算法,它是全面考虑各种不同的情况分别进行决策的。
解决问题需要分阶段进行,更复杂一些。
所以思考问题需要考虑的更加全面周到,在这一点上我做的还不够好。
另外对于数塔问题,我首次使用三维数组,由于以前接触的少所以理解就使我感到比较困难。
通过本次实验,我还是认识到自身有很多的不足,我也会在以后的学习中慢慢改进,脚踏实地,勤以补拙。
附录:程序清单(程序过长,可附主要部分)数塔问题代码如下:
#include<iostream>
using namespace std;
int main()
{
int a[50][50][3],i,j,n;
cout<<"你要构建一个几层数塔?"<<endl;
cin>>n;
cout<<"请依次输入数塔中的数据:"<<endl;
for(i=1;i<=n;i++)
{
for(j=1;j<=i;j++)
{
cin>>a[i][j][1];
a[i][j][2]=a[i][j][1];
a[i][j][3]=0;
}}
for (i=n-1;i>=1;i--)
for (j=1 ;j<=i;j++)
if (a[i+1][j][2]>a[i+1][j+1][2])
{
a[i][j][2]=a[i][j][2]+a[i+1][j][2];
a[i][j][3]=0;
}
else
{
a[i][j][2]=a[i][j][2]+a[i+1][j+1][2];
a[i][j][3]=1;
}
cout<<"路径和最大值为:"<<a[1][1][2]<<" ";
j=1;
cout<<"路径为:";
for( i=1 ;i<= n-1;i++)
{
cout<<a[i][j][1]<<" ";
j=j+a[i][j][3];
}
cout<<a[n][j][1]<<endl;
return 0;}
0-1背包问题代码如下:
#include <stdio.h>
#include <conio.h>
#include <string.h>
int f[1010],w[1010],v[1010];
int max(int x,int y)
{
if(x>y) return x;
return y;
}
int main()
{
int t,m,i,j;
memset(f,0,sizeof(f));
scanf("%d %d",&t,&m);
for(i=1;i<=m;i++)
scanf("%d %d",&w[i],&v[i]);
for(i=1;i<=m;i++)
{
for(j=t;j>=w[i];j--)
{
f[j]=max(f[j-w[i]]+v[i],f[j]);
}
}
printf("%d",f[t]);
printf("\n");
getch();
return 0;
}。