动态规划算法分析实验报告
动态基础设计实验报告(3篇)
第1篇一、实验目的1. 理解动态规划的基本思想和方法。
2. 掌握动态规划在解决实际问题中的应用。
3. 提高编程能力和算法设计能力。
二、实验内容本次实验主要涉及以下四个问题:1. 斐波那契数列2. 最长公共子序列3. 最长递增子序列4. 零钱找零问题三、实验原理动态规划是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划的基本思想是将一个复杂问题分解成若干个相互重叠的子问题,然后按照子问题的顺序逐个求解,最后将这些子问题的解合并成原问题的解。
四、实验步骤及代码实现1. 斐波那契数列斐波那契数列是指这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, ...,其中每个数都是前两个数的和。
```cppinclude <iostream>using namespace std;int Fibonacci(int n) {if (n <= 1) {return 1;}int fib[n+1];fib[0] = 1;fib[1] = 1;for (int i = 2; i <= n; i++) {fib[i] = fib[i-1] + fib[i-2];}return fib[n];}int main() {int n;cout << "请输入斐波那契数列的项数:" << endl;cin >> n;cout << "斐波那契数列的第 " << n << " 项为:" << Fibonacci(n) << endl;return 0;}```2. 最长公共子序列给定两个序列A和B,找出它们的公共子序列中长度最长的序列。
```cppinclude <iostream>using namespace std;int LCSLength(string X, string Y) {int m = X.length();int n = Y.length();int L[m+1][n+1];for (int i = 0; i <= m; i++) {for (int j = 0; j <= n; j++) {if (i == 0 || j == 0)L[i][j] = 0;else if (X[i-1] == Y[j-1])L[i][j] = L[i-1][j-1] + 1;elseL[i][j] = max(L[i-1][j], L[i][j-1]);}}return L[m][n];}int main() {string X = "AGGTAB";string Y = "GXTXAYB";cout << "最长公共子序列长度为:" << LCSLength(X, Y) << endl; return 0;}```3. 最长递增子序列给定一个序列,找出它的最长递增子序列。
算法实验报告
算法分析与设计实验报告算法实现题3-4(数学三角形问题):第一部分 实验内容(1)熟悉动态规范算法的思想。
(2)熟悉分析问题的最优子结构性质。
(3)掌握动态规划算法解决问题的一般思路第二部分 问题及算法1.求解问题的算法描述(1)问题描述: 给定n行数字组成的数字三角形,计算从三角形的自顶到底的一条路径,使该路径经过的数字的总和最大。
(2)算法描述:求第一层到最底层的“最大路径长度”,只需要求出第二层数字中到最底层的“最大路径长度”加上第一层的数字即可。
依靠此思想将问题分解成n-1个子问题,从倒数第二层开始计算每层到最底层的“最大路径长度”。
将数学三角形存在二维矩阵A[n][n]中,对于非底层的每个数向下走时只有两个选择,每次选择较大的数相加,自底至上的计算,将每个数到达底层的“最大路径长度”储存在数组A中,最终A[0][0]存储的就是第一层到最底层的“最大路径长度”。
(3)算法伪代码://求第一层到最底层的“最大路径长度”int triangle(int a[SIZE][SIZE],int n){– 2 to 0)for (row = nfor (col = 0 to row)if (A[row + 1][col] > A[row + 1][col + 1])A[row][col] += A[row + 1][col];elseA[row][col] += A[row + 1][col+1];return A[0][0];}2. 算法实现的关键技巧(1)分解原问题为规模更小的子问题,并且分析问题是否具有最优子结构性质。
求第一层到最底层的“最大路径长度”,可以看作求第一层的数加上第二层数字中到最底层的“最大路径长度”。
第二层某数到最底层的“最大路径长度”等于该数加上第三层中该数可以到达的数字到最底层的“最大路径长度”……这样分解下去,就可以将问题分为多个子问题。
大问题的最优解包括子问题的最优解,满足最优子结构性质。
动态规划实验报告
动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。
本实验旨在通过实际案例,探究动态规划算法的原理和应用。
二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。
它通常适用于具有重叠子问题和最优子结构性质的问题。
三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。
四、实验过程本实验选择了经典的背包问题作为案例进行分析。
背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。
1. 确定状态在动态规划算法中,状态是问题的关键。
对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。
2. 确定状态转移方程状态转移方程是动态规划算法的核心。
对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。
则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。
对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。
4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。
具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。
五、实验结果与分析通过实验,我们得到了背包问题的最优解。
同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。
这为我们提供了在实际问题中应用动态规划算法的思路。
六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。
动态规划建模实验报告
一、实验背景动态规划是一种重要的算法设计方法,它通过将复杂问题分解为若干个相互重叠的子问题,并存储子问题的解,从而避免重复计算,有效地解决一系列优化问题。
本实验旨在通过具体案例,加深对动态规划算法的理解和应用。
二、实验目的1. 掌握动态规划的基本概念和原理。
2. 熟悉动态规划建模的过程和步骤。
3. 提高运用动态规划解决实际问题的能力。
三、实验内容本次实验选取了“背包问题”作为案例,旨在通过解决背包问题,加深对动态规划算法的理解。
四、实验步骤1. 问题分析背包问题是一个经典的组合优化问题,描述为:给定一个容量为C的背包和N件物品,每件物品有价值和重量两个属性,求如何将物品装入背包,使得背包中的物品总价值最大,且不超过背包的容量。
2. 模型建立(1)定义状态:设dp[i][j]表示在前i件物品中选择若干件装入容量为j的背包所能获得的最大价值。
(2)状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]] + values[i]),其中weights[i]表示第i件物品的重量,values[i]表示第i件物品的价值。
(3)边界条件:dp[0][j] = 0,表示没有物品时,背包价值为0。
3. 编程实现使用C语言编写动态规划程序,实现背包问题的求解。
4. 结果分析(1)运行程序,输入背包容量和物品信息。
(2)观察输出结果,包括物品选择的列表和最大价值。
(3)验证结果是否正确,与理论分析进行对比。
五、实验结果与分析1. 实验结果:通过编程实现,成功求解了背包问题,并得到了最大价值。
2. 结果分析:(1)动态规划算法在解决背包问题时,有效地避免了重复计算,提高了求解效率。
(2)实验结果表明,动态规划算法能够有效地解决背包问题,为实际应用提供了有力支持。
六、实验总结1. 动态规划是一种重要的算法设计方法,具有广泛的应用前景。
2. 动态规划建模过程中,关键在于正确地定义状态和状态转移方程。
动态规划实验报告心得
一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。
本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。
二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。
动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。
2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。
通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。
3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。
在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。
4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。
在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。
三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。
动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。
这种思维方式有助于我们更好地理解和解决实际问题。
2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。
它描述了子问题之间的关系,是求解问题的关键。
通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。
算法分析与设计实验报告--动态规划
算法分析与设计实验报告--动态规划《算法分析与设计》实验报告完成⽇期:20011.11.241、实验⽬的(1)掌握动态规划⽅法贪⼼算法思想(2)掌握最优⼦结构原理(3)了解动态规划⼀般问题2、实验内容(1)编写⼀个简单的程序,解决0-1背包问题。
设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}(2)合唱队形安排。
【问题描述】N位同学站成⼀排,⾳乐⽼师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的⼀种队形:设K 位同学从左到右依次编号为1,2…,K,他们的⾝⾼分别为T1,T2,…,TK,则他们的⾝⾼满⾜T1<...Ti+1>…>TK(1<=i<=K)。
已知所有N位同学的⾝⾼,计算最少需要⼏位同学出列,可以使得剩下的同学排成合唱队形。
3、实验要求(1)写出源程序,并编译运⾏(2)详细记录程序调试及运⾏结果4、算法思想:利⽤动态规划的思想,解决诸如0—1背包问题,最⼤合唱队形问题等问题的最优解,能在最短的时间内,找到最好的解决⽅案的⼀种算法。
5、实验过程:1、0—1背包问题:源代码如下:#include#includeusing namespace std;#define N 5#define c 10int w[N+1]={0,2,2,6,5,4},v[N+1]={0,6,3,5,4,6};int m[N+1][c+1];int min(int x,int y){if(x<=y)return x;else return y;}int max(int x,int y){if(x>=y) return x;else return y;}void KnapSack(int v[],int w[]){int jMax=min(w[1],c);for (int j=1;j<=jMax;j++) //当0=m[1][j]=0;for (j=w[1];j<=c;j++) // 当j>=w[n]时, m(n,j)=v[n]m[1][j]=v[1];for (int i=2;i<=N;i++) //DP{ int jMax=min(w[i],c);for (j=1;jfor (j=jMax;j<=c;j++) //m(n,j)=v[n] 当j>=w[n] m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]); }}void main(){KnapSack(v,w);for(int i=1;i<=N;i++){for(int j=0;j<=c;j++)cout<cout<}}运⾏截图如下:合唱队形问题:代码如下:#include#includeusing namespace std;#define MAXN 200void main(){int n, a[MAXN], b[MAXN], c[MAXN], i, j, max,lab,pre[MAXN]; cout<<"输⼊数据个数:"; cin>>n;cout<<"\n输⼊"<for (i = 1; i <= n; i++) //O(n)cin>> a[i];memset(b, 0, sizeof(a));memset(c, 0, sizeof(c));b[1] = 1;pre[i]=0; //i=1->nfor (i = 2; i <= n; i++){max = 0;for (j = i - 1; j >= 1; j--) {if (a[j]max) {max = b[j];pre[i]=j;}}b[i] = max + 1;}//lab:max所对应a数组元素下标O(n)max = b[1];for (i = 2; i <= n; i++){ if (b[i] > max){max = b[i];lab=i;}}cout<<"Longest Increasing Subsequence is:"<i = lab;int num=max;j=max;while( num>0 ){c[j--]=a[i];i=pre[i];num--;}//输出数列O(n)for(i=1;i<=max;i++)cout<cout<}截图如下:6.实验过程分析本次实验做的是01背包和合唱队形,之前01背包也⽤贪⼼算法讨论过,但得不到最优解,这次实验⽤动态规划实现的,涉及到剪枝函数部分要考虑清楚,实验过程中通过画图,对理解有很⼤帮助;第⼆个实验其实是利⽤了两次LIS问题,再综合⼀下,总的来说,本次实验还是⽐较成功,对动态规划算法的思想理解得挺透彻的。
动态规划算法实验报告
南京信息工程大学滨江学院实验(实习)报告1.实验目的动态规划通常用来求解最优化问题。
通过本次实验掌握动态规划算法。
通过矩阵连乘问题和0-1背包问题实现动态规划算法。
学会刻画问题的最优结构特征,并利用最优化问题具有的重叠子问题性质,对每个子问题求解一次,将解存入表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。
2.实验内容及分析设计过程1.矩阵链乘法问题矩阵链乘法问题可描述如下:给定个矩阵的链,矩阵的规模为,求完全括号方案,使得计算乘积所需的标量乘法次数最少。
令m[i,j]表示计算矩阵所需标量乘法次数的最小值,那么,原问题的最优解计是m[1,n]。
最小代价括号化方案的递归求解公式为采用自底向上表格法代替上述递归算法来计算最优代价。
为了实现自底向上方法,我们必须确定计算m[i,j]时需要访问哪些其他表项。
上述公式显示,j-i+l 个矩阵链相乘的最优计算代价m[i,j] 只依赖于那些少于j-i+l 个矩阵链相乘的最优计算代价。
因此,算法应该按长度递增的顺序求解矩阵链括号化问题,并按对应的顺序填写表m。
对如下输入A1 A2 A3 A4 A5 A630⨯35 35⨯15 15⨯5 5⨯10 10⨯20 20⨯25程序运行结果为2.背包问题给定n 个重量为价值为的物品和一个承重为W 的背包。
求这些物品中最有价值的一个子集,并且要能装到背包中。
设V[i,j]是能够放进承重量为j 的背包的前i 个物品中最有价值子集的总价值。
则递推关系为初始条件V[0,j]=0(j>=0),V[i,0]=0(i>=0) 我们的目标是求V[n ,W]。
递归式给出了V[i,j]的计算顺序,V[i,j]只依赖与前一行的那些项。
故可以逐行计算V[i,j].对于物品数量n=5,w[n]={2,2,6,5,4},v[n]={6,3,5,4,6},背包总重量c=10 程序运行结果为3. 实验小结通过本次实验加深了我对动态规划算法的理解。
实验三动态规划算法实验
实验三动态规划算法的应用一、实验目的1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。
2.熟练掌握分阶段的和递推的最优子结构分析方法。
3.学会利用动态规划算法解决实际问题。
二、实验内容1.问题描述:题目一:数塔问题给定一个数塔,其存储形式为如下所示的下三角矩阵。
在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。
请找出一条路径,使路径上的数值和最大。
输入样例(数塔):912 1510 6 82 18 9 519 7 10 4 16输出样例(最大路径和):59题目二:最长单调递增子序列问题设计一个O(n2)复杂度的算法,找出由n个数组成的序列的最长单调递增子序列。
题目三:Common SubsequenceA subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.输入样例abcfbc abfcabprogramming contestabcd mnp输出样例42题目四 0-1背包问题给定n种物品和一个背包。
动态规划实验报告
动态规划实验报告《动态规划实验报告》动态规划是一种重要的算法设计技术,它在解决许多实际问题中具有广泛的应用。
本实验报告将介绍动态规划算法的基本原理,并通过一个实际问题的求解过程来展示其应用效果。
首先,我们来了解一下动态规划的基本原理。
动态规划是一种将原问题分解为子问题来求解的方法,它通常用于求解最优化问题。
动态规划算法的核心思想是将原问题分解为若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。
为了避免重复计算子问题,动态规划算法通常采用记忆化搜索或者自底向上的方式来进行计算。
接下来,我们将通过一个实际问题来展示动态规划算法的应用效果。
假设我们有一组数字,我们希望找到其中的一个子序列,使得这个子序列的和最大。
这个问题可以通过动态规划算法来求解,具体的求解过程如下:1. 定义状态:我们定义一个状态数组dp,其中dp[i]表示以第i个数字结尾的子序列的最大和。
2. 状态转移方程:我们可以通过以下状态转移方程来求解dp数组:dp[i] = max(dp[i-1] + nums[i], nums[i]),其中nums[i]表示第i个数字。
3. 初始状态:我们将dp数组的初始状态设为dp[0] = nums[0]。
4. 求解最优解:最终的最优解即为dp数组中的最大值。
通过以上求解过程,我们可以得到原问题的最优解,即最大子序列的和。
这个实例展示了动态规划算法在实际问题中的应用效果,通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的最优化问题。
综上所述,动态规划算法是一种重要的算法设计技术,它在解决最优化问题中具有广泛的应用。
通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的实际问题。
希望本实验报告能够帮助读者更好地理解动态规划算法的基本原理和应用方法。
编程实现动态规划的算法实验报告
《算法设计与分析》实验报告实验序号:实验项目名称:编程实现动态规划的算法最长公共子序列:Import java.io.BufferedReader; Import java.io.IOException; Import java.io.InputStreamReader; Import java.util.ArrayList; Import java.util.Scanner;Import java.util.List;/***动态规划法解最长公共子系列。
*@author蓝冠恒*/Public class LcsLength {publicstaticList<Character> resultList =New ArrayList<Character>(); /***计算最优值*@paramx*字符系列数组*@paramy*字符系列数组*@paramc*存储x和y最长公共子系列长度数组*@paramb*记录c中元素对应子问题的解的数组*/publicstaticvoid lcsLength( charx[],chary[],int[][] c,int[][] b) {intm = x. length- 1;intn = y.length- 1;resultList.clear();for(inti = 1; i <= m; i++) {c[i][0] = 0;}forinti = 1; i <= n; i++) {c[0][i] = 0;}for(inti = 1; i <= m; i++) {for(intj = 1; j <= n; j++) {if(x[i] == y[j]) {c[i][j] = c[i - 1][j - 1] + 1;b[i][j] = 1;}elseif(c[i - 1][j] >= c[i][j - 1]) {c[i][j] = c[i - 1][j];b[i][j] = 2;}else{c[i][j] = c[i][j - 1];b[i][j] = 3;}}}}publicstaticvoidlcs(inti,intj,charx[],int[][] b) {if(i == 0 || j == 0) {return;}if(b[i][j] == 1) {lcs(i - 1, j - 1, x, b);resultList.add(x[i]);}elseif(b[i][j] == 2) {lcs(i - 1, j, x, b);}else{lcs(i, j - 1, x, b);}}publicstaticvoidmain(String arg[]) {String a;String input;char[] x;char[] y;Scanner scan=New Scanner(System.in);BufferedReader in = New BufferedReader(New InputStreamReader(System.in)); do{try{do{System.out.println("请输入第一串字符系列");input = in.readLine().trim();}while(input.equals(""));input = "S" + input;x = input.toCharArray();do{System.out.println("请输入第二串字符系列");input = in.readLine().trim();}while (input.equals(""));input = "S" + input;y = input.toCharArray();int[][] b = newint[x.length][y.length];int[][] c = New int[x.length][y.length];lcsLength(x, y, c, b);// 计算最优值lcs(x.length- 1, y.length- 1, x, b);// 构造最长公共子系列intsize = resultList.size();System.out.print("最长公共子系列为:");for(inti = 0; i < size; i++) {System.out.print(resultList.get(i));}System.out.println("\n");}catch(IOException e) {e.printStackTrace();}System.out.print("继续输入请按y。
算法设计与分析实验报告-动态规划应用
《算法设计与分析》实验指导实验二动态规划应用日期:一、实验目的1.理解动态规划的基本思想,了解最优子结构性质和子问题的重叠性质。
2.熟练掌握典型的动态规划问题。
掌握动态规划思想分析问题的一般方法,对较简单的问题能正确分析,并设计出动态规划算法,并能够用程序实现。
二、实验要求1. 认真学习动态规划方法基本思想、方法步骤,练习利用动态规划法分析问题解决问题,加深动态规划类程序的理解。
2. 阅读经典问题的关键代码段,仔细领会动态规划算法的精要。
3.选定实验题目,仔细阅读实验要求,设计好输入输出,按照分治法的思想构思算法,选取合适的存储结构实现应用的操作。
4. 实验要有详细的测试记录,包括各种可能的测试数据。
三、实验内容1.调试验证选择经典问题TSP问题、最长公共子序列、0/1背包问题之一,完善算法,用C/C++以及Javascript语言编写程序并调试。
2.巩固提高针对其中经典问题之一,通过检索论文资料,类比研究等方法对其算法进行优化,并通过实验得方式对其进行验证比较,上机调试,最终形成一篇不少于2000字得小论文。
实验报告一、实验目的掌握动态规划算法时间空间复杂度分析,以及问题复杂性分析方法。
二、实验内容现有n种物品,对1<=i<=n,第i种物品的重量为正整数W,价值为正整数V,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值最大。
三、实验环境操作系统、调试软件名称、版本号,上机地点,机器台号四、问题分析令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划;(1)V(i,0)=V(0,j)=0(2)V(i,j)=V(i-1,j) j<Wi V(i,j)=max{V(i-1,j),V(i-1,j-Wi)+Vi} j>Wi(1)式表明:如果第i个物品的重量大于背包的容量,则装入前i个物品得到的最大价值和装入前i-1的物品得到的最大价值是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量则会有以下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi的背包中的价值加上第i个物品的价值vi(b)如果第i个物品没有入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。
实验三动态规划
算法分析与设计实验报告学号姓名班级上课地点教师上课时间实验三动态规划1. 实验目的1.1理解动态规划算法的主要设计思想和基本步骤;1.2掌握用动态规划策略解决实际问题。
2. 实验环境2.1 Eclipse2.2 Window XP3. 实验内容3.1 矩阵连乘问题3.2 最长公共子序列问题3.3 0-1背包问题4. 教师批改意见成绩签字:日期:实验报告细表1.矩阵连乘问题1.1 算法设计思想(1) 分析最优解:计算A[i:j]的最优次序所包含的计算矩阵子链 A[i:k]和A[k+1:j]的次序也是最优的(2)建立递归关系:设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n] 当i=j 时,A[i:j]=Ai ,因此,m[i,i]=0,i=1,2,…,n 当i<j 时,j k i p p p j k m k i m j i m 1],1[],[],[-+++= 可以递归地定义m[i,j]为:⎪⎩⎪⎨⎧<+++==-<≤j i p p p j k m k i m j i j i m j k i }],1[],[{min 0],[1jk ik 的位置有j-i 种可能(3)计算最优值:用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。
在计算过程中,保存已解决的子问题答案。
每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法public static void MatrixChain(int []p,int [][]m,int [][]s) {int n=p.length-1;for(int i=1;i<=n;i++)m[i][i]=0; for(int r=2;r<=n;r++) for(int i=1;i<=n-r+1;i++) { int j=i+r-1; m[i][j]=m[i+1][j]+p[i+1][i][j]; s[i][j]=i; for(int k=i+1;k<j;k++) { int t=m[i][k]+m[k+1][j]+p[i-1][k][j]; if(t<m[i][j]){ m[i][j]=t; s[i][j]=k; } }}}(4)构造最优解:算法matrixChain 记录了构造最优解所需的全部信息。
动态规划实验报告
实验课程:算法分析与设计实验名称:实验3 动态规划算法(综合性/设计性)实验目标:1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;实验任务:若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X 和Y的公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
实验设备及环境:PC;C/C++的编程环境Visual C++。
实验主要步骤:(1)明确实验目标和具体任务;(2)理解实验所涉及的动态规划算法;(3)编写程序并实现动态规划算法;(4)设计实验数据并运行程序、记录运行的结果;实验数据及运行结果、实验结果分析及结论:(学生填写)#include <stdio.h>#include <string.h>void LcsLength(char *x,char *y,int m,int n,int c[][100],int b[][100]){puts(x);puts(y);int i,j;for(i=0;i<=m;i++)c[i][0]=0;for(j=1;i<=n;j++)c[0][j]=0;for(i=1;i<=m;i++)for(j=1;j<=n;j++) {if(x[i-1]==y[j-1]) {c[i][j]=c[i-1][j-1]+1;b[i][j]=0;}else if(c[i-1][j]>=c[i][j-1]) {c[i][j]=c[i-1][j];b[i][j]=1;}else {c[i][j]=c[i][j-1]; b[i][j]=-1;}}}void PrintLCS(int b[][100], char *x, int i, int j){ if(i==0 || j==0)return;if(b[i][j]==0) {PrintLCS(b,x,i-1,j-1);printf("%c",x[i-1]);}else if(b[i][j]==1)PrintLCS(b,x,i-1,j);elsePrintLCS(b,x,i,j-1);}void main(){char x[100]={"ABCBDAB"};char y[100]={"BDCABA"};int c[100][100];int b[100][100];int m,n;m=strlen(x);n=strlen(y);LcsLength(x,y,m,n,c,b); printf("最长子序列为:");PrintLCS(b,x,m,n); printf("\n");printf("最长子序列长度为:%d\n",c[m][n]);}实验结果:结果分析:在写规划方程时,只要对两条路径走到同一个点的情况稍微处理一下,减少可选的决策个数:从这个例子中可以总结出设计动态规划算法的一个技巧:状态转移一般。
《动态规划算法实验》实验报告
实验3、《动态规划算法实验》一、实验目的1. 掌握动态规划方法贪心算法思想2. 掌握最优子结构原理3. 了解动态规划一般问题二、实验内容1. 编写一个简单的程序,解决0-1背包问题。
设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}2. 合唱队形安排问题【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。
已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
三、算法思想分析1.0-1背包采用动规算法主要是动规方程的思考,之后就是确定边界条件即可。
2.合唱队形问题应用了分治与动态规划的算法,先将所有队员依次做中间最高的同学,将问题分为左右来做,接下来只需要求得左边的最长上升子序列数、右边的最长下降子序列数即可。
四、实验过程分析1.0-1背包问题是背包问题的进一步条件限制,考虑清楚动规方程就不难,编程中对于m(i,j)的含义要清楚,搞混了就容易出错。
2.合唱队形问题的思想并不复杂,特别是如果已经掌握了最长上升子序列数的算法,在分别处理左右最长子序列时需要特别注意数组下标,一开始我用是i,j直接从0到左右的数据长度,但是一直出错,后来发现队员身高数组并不能完全用这些下标,特别是右边的函数,数组起始下标不是0,需要利用函数传递起始下标才能调用对应的数据段。
五、算法源代码及用户屏幕1.(1)算法源码/********************************0-1背包问题。
codeblocks C++2018.11.2********************************/#include <iostream>#include <iomanip>using namespace std;void knapSnack(int v[], int w[], int c, int n, int m[][11]);int main(){int v[] = {6, 3, 5, 4, 6};int w[] = {2, 2 ,6, 5, 4};int c = 10;int n = 5;int m[5][11];//初始化数组for(int i=0; i<5; i++){for(int j=0; j<11; j++){m[i][j] = 0;}}knapSnack(v, w, c, n, m);//输出结果cout<<setw(3)<<" ";for(int i=0; i<11; i++){cout<<setw(3)<<i;}cout<<endl;for(int i=0; i<5; i++){//输出行号cout<<setw(3)<<i+1;for(int j=0; j<11; j++){cout<<setw(3)<<m[i][j];}cout<<endl;}return 0;}void knapSnack(int v[], int w[], int c, int n, int m[][11]){ for(int i=0; i<n; i++){for(int j=0; j<11; j++){//边界条件if(i == 0){if(w[i] > j)m[i][j] = 0;elsem[i][j] = v[i];}/*动规方程j>w[i]m(i,j) = max{m(i-1,j), m(i-1,j-w[i])+v[i]}0<=j<w[i]m(i,j) = m(i-1,j)*/else{if(w[i] > j)m[i][j] = m[i-1][j];else{if(m[i-1][j] > (m[i-1][j-w[i]]+v[i]))m[i][j] = m[i-1][j];elsem[i][j] = m[i-1][j-w[i]]+v[i];}}}//控制列数的for循环}//控制行数的for循环}(2)用户屏幕2.(1)算法源码/***************************************************合唱队形问题codeblocks C++2018.11.2***************************************************/#include <iostream>#include <string.h>using namespace std;//计算左端合唱队人数int leftQueue(int a[], int _start, int _end);//计算右端合唱队人数int rightQueue(int a[], int _start2, int _end2);int main(){cout<<"Please enter total number:";int number;cin>>number;cout<<"Please input the height of each person (cm):"<<endl;int a[number]; //记录每个人身高//b数组分别记录当第n个人为合唱队中间人时,合唱队的总人数int b[number];int rightNumber[number]; //记录左端合唱队人数int leftNumber[number]; //记录右端合唱队人数for(int i=0; i<number; i++)b[i] = 0;for(int i=0; i<number; i++)cin>>a[i];int mostQueueNumber = b[0];for(int i=0; i<number; i++){//设置a[i]为最高的同学leftNumber[i] = leftQueue(a,0,i);rightNumber[i] = rightQueue(a,i,number-1);//计算合唱队总人数b[i] = leftNumber[i] + rightNumber[i] - 1;//计算合唱队最多的总人数if(mostQueueNumber < b[i])mostQueueNumber = b[i];}//计算最少出队人数int leastDequeueNumber = number - mostQueueNumber;cout<<"Minimum number of people out: "<<leastDequeueNumber<<endl;return 0;}int leftQueue(int a[], int _start, int _end){int leftMostNumber = 0;int n = _end-_start+1;//c数组记录i时的最长上升子序列数int c[n];int maxN;//初始化最长上升子序列数为1for(int i=0; i<n; i++){c[i] = 1;}for(int i=_start; i<_end+1; i++){maxN = 0;for(int j=i-1; j>=_start; j--){if(a[j]<a[i] && c[j]>maxN)maxN = c[j];c[i] = maxN + 1;}}leftMostNumber = c[n-1];return leftMostNumber;}int rightQueue(int a[], int _start2, int _end2){ int rightMostNumber = 0;int n2 = _end2-_start2+1;//c2数组记录i时的最长下降子序列数int c2[n2];int maxN2;//初始化最长下降子序列数为1for(int i=0; i<n2; i++){c2[i] = 1;}for(int i=_end2; i>=_start2; i--){maxN2 = 0;for(int j=i+1; j<=_end2; j++){if(a[j]<a[i] && c2[j-_start2]>maxN2)maxN2 = c2[j-_start2];c2[i-_start2] = maxN2 + 1;}}rightMostNumber = c2[0];return rightMostNumber; }(2)用户屏幕。
算法设计与分析动态规划实验
实验5 动态规划实验实验内容1. 最长公共子序列问题(LCS)。
在使用动态规划算法来求解最长公共子序列时,二维数组c[i][j]用于记录序列X i和Y j的最长公共子序列的长度,对于序列X = {A, C, B, C, D, A, B, D}和Y = {A, B, D, C, A, B, A},绘制对应的c[i][j]。
2. 最长公共子序列问题(LCS)。
使用动态规划算法求解最长公共子序列。
【输入:两个字符序列;输出:两个字符序列的最长公共子序列。
例如:输入序列A = "ABCBDAB",序列B = "BDCABA";输出"BCAB"〔或其他任意一条长度为4的公共子序列〕】3. 0-1背包问题。
在使用动态规划算法求解0-1背包问题时,使用二维数组m[i][j]存储背包剩余容量为j,可选物品为i、i+1、……、n时0-1背包问题的最优值。
绘制价值数组v = {8, 10, 6, 3, 7, 2},重量数组w = {4, 6, 2, 2, 5, 1},背包容量C = 12时对应的m[i][j]数组。
4. 0-1背包问题。
给定n种物品和一个背包,物品i的重量是W i,其价值为V i,背包的容量为C。
如何选择装入背包的物品,可以使得装入背包中物品的总价值最大?【输入:两个一维数组分别用于存储每一种物品的价值和重量,以及一个整数表示背包的容量。
例如:价值数组v[] = {6,3,6,5,4},重量数组w[] = {2,2,4,6,5},背包容量C=10。
输出:背包的最大总价值和所选取的物品。
例如:最大总价值=15,物品选取策略为10011。
】5*. 对最长公共子序列问题的动态规划算法进展改良,输出所有最长公共子序列。
6*. 某工厂预计明年有A、B、C、D四个新建工程,每个工程的投资额W k 及其投资后的收益V k如下表所示,投资总额为30万元,如何选择工程才能使总说明:(1) 编程语言不限,建议使用Java、C++或者C语言。
动态规划分析检验实习报告
一、实习背景与目的随着科技的飞速发展,算法在各个领域中的应用越来越广泛,动态规划作为一种重要的算法设计策略,在解决最优化问题中起着关键作用。
为了更好地将所学理论知识与实践相结合,提高实际工作能力和分析解决问题的能力,我参加了为期一个月的动态规划分析检验实习。
本次实习的主要目的是掌握动态规划算法的基本原理和思想,分析动态规划算法在不同情况下的时间复杂度,以及运用动态规划解决实际问题。
二、实习内容与过程1. 学习动态规划算法的基本思想在实习的第一周,我系统地学习了动态规划算法的基本思想。
动态规划是一种每个决策都依赖于当前状态并导致状态转移的过程。
它通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。
与分治法相似,动态规划也将大问题拆分成小问题,依次解决子阶段。
在求解子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解。
2. 分析动态规划算法的时间复杂度在实习的第二周,我分析了动态规划算法在不同的情况下的时间复杂度。
通过学习经典的动态规划算法,如斐波那契数列、最长公共子序列等,我了解了动态规划算法在不同问题中的运用,并掌握了计算时间复杂度的方法。
3. 运用动态规划解决实际问题在实习的第三周和第四周,我运用动态规划算法解决了一些实际问题。
我参与了团队项目,与团队成员一起探讨并解决了城市规划、资源分配等问题。
通过实际操作,我更加深入地理解了动态规划算法的应用,并提高了运用动态规划解决实际问题的能力。
三、实习收获与反思通过本次实习,我对动态规划算法有了更加深入的了解,掌握了动态规划算法的基本原理和思想,分析了动态规划算法在不同情况下的时间复杂度。
同时,我也学会了如何运用动态规划解决实际问题。
然而,实习过程中我也发现了自己在算法理解和应用方面的不足,需要在今后的学习和实践中不断努力提高。
总之,本次动态规划分析检验实习使我受益匪浅。
通过实习,我将所学理论知识与实践相结合,提高了实际工作能力和分析解决问题的能力。
动态规划算法分析与设计实验报告(矩阵连乘)
算法分析与设计实验报告实验题目:动态规划算法的设计与实现1、实验目的通过本实验,掌握动态规划算法的设计的基本思想,进一步提高学生的编程能力。
2、实验内容:给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
3、源程序if (t<u) //返回t,k中较小的值,并记录断点处k{ u=t; s[i][j]=k;} }return u; }int Look(int i,int j) //备忘录计算最优值{ if (m[i][j]>0){ return m[i][j]; }if (i == j) return 0;int u=Look(i, i)+Look(i+1,j)+p[i-1]*p[i]*p[j]; s[i][j]=i;for (int k=i+1; k<j;k++){ int t=Look(i,k)+Look(k+1,j)+p[i-1]*p[k]*p[j]; //递归if (t<u){ u=t; //从k处断开,分别求得每次的数乘次数s[i][j]=k; //返回t,k中较小的值,并记录断点处k} } m[i][j]=u;return u; }void Traceback(int i,int j) { //输出矩阵结合方式,加括号输出if(i == j) //只有一个矩阵,直接输出{ cout<<"A"<<i; }else if(i+1 == j) //两个矩阵,加括号输出{ cout<<"(A"<<i<<"A"<<j<<")"; }else{ cout<<"("; Traceback(i,s[i][j]); //递归,从最得到最优解的地方s[i][j]处断开Traceback(s[i][j]+1,j);cout<<")"; } }void main(){ cout<<"输入矩阵个数:n=";cin>>n; cout<<"输入第一个矩阵行数和第一个到第n个矩阵的列数:"; for(int i=0;i<=n;i++){ cin>>p[i]; } cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1.动态规划算法"<<endl; cout<<"2.直接递归算法"<<endl; cout<<"3.备忘录算法"<<endl;cout<<"0.退出..."<<endl;cout<<endl;cout<<"请选择算法:";cin>>q; cout<<endl;while(q!=0){ switch(q){case 1: matrixChain(); cout<<"动态规划算法解决矩阵连乘问题:"<<endl; cout<<"最优计算次序为:";Traceback(1,n); cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 2: Recur(0,n); cout<<"直接递归算法解决矩阵连乘问题:"<<endl;5、结论动态规划算法设计通常有四个步骤:1.找出最优解的性质,并刻画其结构特征。
动态规划算法分析与设计实验报告
算法分析与设计实验报告实验题目: 动态规划算法的设计与实现1、实验目的通过本实验,掌握动态规划算法的设计的基本思想,进一步提高学生的编程能力。
2、实验内容:给定n个矩阵{A1,A2,…,A n},其中A i与A i+1就是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
3、源程序if (t<u) //返回t,k中较小的值,并记录断点处k{ u=t; s[i][j]=k;} }return u; }int Look(int i,int j) //备忘录计算最优值{ if (m[i][j]>0){ return m[i][j]; }if (i == j) return 0;int u=Look(i, i)+Look(i+1,j)+p[i-1]*p[i]*p[j]; s[i][j]=i;for (int k=i+1; k<j;k++){ int t=Look(i,k)+Look(k+1,j)+p[i-1]*p[k]*p[j]; //递归if (t<u){ u=t; //从k处断开,分别求得每次的数乘次数s[i][j]=k; //返回t,k中较小的值,并记录断点处k} } m[i][j]=u;return u; }void Traceback(int i,int j) { //输出矩阵结合方式,加括号输出if(i == j) //只有一个矩阵,直接输出{ cout<<"A"<<i; }else if(i+1 == j) //两个矩阵,加括号输出{ cout<<"(A"<<i<<"A"<<j<<")"; }else{ cout<<"("; Traceback(i,s[i][j]); //递归,从最得到最优解的地方s[i][j]处断开Traceback(s[i][j]+1,j);cout<<")"; } }void main(){ cout<<"输入矩阵个数:n=";cin>>n; cout<<"输入第一个矩阵行数与第一个到第n个矩阵的列数:"; for(int i=0;i<=n;i++){ cin>>p[i]; } cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1、动态规划算法"<<endl; cout<<"2、直接递归算法"<<endl; cout<<"3、备忘录算法"<<endl;cout<<"0、退出、、、"<<endl;cout<<endl;cout<<"请选择算法:";cin>>q; cout<<endl;while(q!=0){ switch(q){case 1: matrixChain(); cout<<"动态规划算法解决矩阵连乘问题:"<<endl; cout<<"最优计算次序为:";Traceback(1,n); cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 2: Recur(0,n); cout<<"直接递归算法解决矩阵连乘问题:"<<endl;cout<<"最优计算次序为:";Traceback(1,n);cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 3: Look(1,n); cout<<"备忘录算法解决矩阵连乘问题:"<<endl;cout<<"最优计算次序为:";Traceback(1,n);cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 0:q=0; break; }cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1、动态规划算法"<<endl; cout<<"2、直接递归算法"<<endl; cout<<"3、备忘录算法"<<endl;cout<<"0、退出、、、"<<endl;cout<<"请选择算法:";cin>>q;cout<<endl; }cout<<endl; }5、结论动态规划算法设计通常有四个步骤:1.找出最优解的性质,并刻画其结构特征。
动态规划模型实验报告
一、实验目的本次实验旨在通过动态规划模型的应用,深入理解动态规划的基本概念、解题步骤以及在实际问题中的应用。
通过实验,掌握动态规划模型的设计、求解和优化方法,提高解决复杂问题的能力。
二、实验内容1. 实验背景动态规划(Dynamic Programming,DP)是一种求解多阶段决策过程最优化的数学方法。
它适用于具有多阶段特性问题的求解,如背包问题、最长公共子序列问题、最短路径问题等。
动态规划的核心思想是将复杂问题分解为相互重叠的子问题,通过子问题的最优解构造原问题的最优解。
2. 实验步骤(1)选择实验题目本次实验选择背包问题作为实验题目。
背包问题是一个经典的动态规划问题,其目标是求在给定的物品重量和总重量限制下,如何选择物品使得背包内物品的总价值最大。
(2)建立动态规划模型根据背包问题的特点,我们可以将问题分解为以下子问题:- 子问题1:对于每个物品,选择放入背包或不放入背包。
- 子问题2:在物品已确定的情况下,计算当前背包的总价值。
状态表示:令dp[i][j]表示前i个物品放入容量为j的背包所能获得的最大价值。
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
初始化:dp[0][j] = 0,表示不放入任何物品时的最大价值为0。
填表顺序:按照物品的顺序填表,从左到右,从上到下。
返回值:dp[n][m],其中n表示物品数量,m表示背包容量。
(3)编程实现使用Python编程语言实现背包问题的动态规划模型。
(4)实验结果与分析通过实验,我们可以得到以下结果:- 在给定的物品重量和总重量限制下,背包内物品的总价值最大为V。
- 在物品已确定的情况下,可以得到每个物品是否放入背包的决策。
(5)优化与改进- 使用滚动数组优化空间复杂度,减少存储空间。
- 优化状态转移方程,提高计算效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、实验结果显示
五、实验总结
通过理解最优子结构的性质和子问题重叠性质,在VC++6.0环境下实现动态规划算法。
动态规划算法是由单阶段的决策最优逐步转化为多阶段的决策最优,最后构造一个最优解。
经过反复的调试操作,程序运行才得出结果。
六、附录 A
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <iostream.h>
#define MAX 100
#define n 12
#define k 5
int c[n][n];
void init(int cost[])
{
int i,j;
for(i=0;i<13;i++)
{
for(j=0;j<13;j++)
{
c[i][j]=MAX;
}
}
c[1][2]=9; c[1][3]=7;c[1][4]=3; c[1][5]=2;
c[2][6]=4; c[2][7]=2; c[2][8]=1;
c[3][6]=2; c[3][7]=7;
c[4][8]=11;
c[5][7]=11;c[5][8]=8;
c[6][9]=6; c[6][10]=5;
c[7][9]=4; c[7][10]=3;
c[8][10]=5;c[8][11]=6;
c[9][12]=4;
c[10][12]=2;
c[11][12]=5;
}
void fgraph(int cost[],int path[],int d[])
{
int r,j,temp,min;
for(j=0;j<=n;j++)
cost[j]=0;
for(j=n-1;j>=1;j--)
{
temp=0;
min=c[j][temp]+cost[temp];
for(r=0;r<=n;r++)
{
if(c[j][r]!=MAX)
{
if((c[j][r]+cost[r])<min)
{
min=c[j][r]+cost[r];
temp=r;
}
}
}
cost[j]=c[j][temp]+cost[temp];
d[j]=temp;
}
path[1]=1;
path[k]=n;
for(j=2;j<k;j++)
path[j]=d[path[j-1]];
}
void bgraph(int bcost[],int path1[],int d[]) {
int r,j,temp,min;
for(j=0;j<=n;j++)
bcost[j]=0;
for(j=2;j<=n;j++)
{
temp=12;
min=c[temp][j]+bcost[temp];
for(r=0;r<=n;r++)
{
if(c[r][j]!=MAX)
{
if((c[r][j]+bcost[r])<min)
{
min=c[r][j]+bcost[r];
temp=r;
}
}
}
bcost[j]=c[temp][j]+bcost[temp];
d[j]=temp;
}
path1[1]=1;
path1[k]=n;
for(int i=4;i>=2;i--)
{
path1[i]=d[path1[i+1]];
}
}
void main()
{
int cur=-1;
int cost[13],d[12],bcost[13];
int path[k];
int path1[k];
init(cost);
fgraph(cost,path,d);
cout<<"使用向前递推算法后的最短路径:\n\n";
for(int i=1;i<=5;i++)
{
cout<<path[i]<<" ";
}
cout<<"\n";
cout<<endl<<"最短路径为长度:"<<cost[1]<<endl;
cout<<"\n";
cout<<"\n使用向后递推算法后的最短路径:\n\n";
bgraph(bcost,path1,d);
for(i=1;i<=5;i++)
{
cout<<path1[i]<<" ";
}
cout<<"\n";
cout<<endl<<"最短路径为长度:"<<bcost[12]<<endl;
cout<<"\n";
}
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。