物理必修二天体运动各类问题

合集下载

2025高考物理总复习天体运动的四大问题

2025高考物理总复习天体运动的四大问题
A.质量之比、质量之和
B.线速度大小之比、线速度大小之和
C.质量之比、线速度大小之比
D.质量之和、线速度大小之和
B.在A点短时间开动发动机使航天飞机减速
C.在轨道Ⅱ上运动的周期等于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
解析 在轨道Ⅱ上运动过程,只有引力做功,机械能守恒,故经过A的机械能等
于经过B的机械能,A错误;在轨道Ⅰ上A点短时间开动发动机使航天飞机减
速做近心运动,B正确;在轨道Ⅱ上运动的半长轴小于在轨道Ⅰ上运动的半
径,由开普勒第三定律可知,在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的
0
周期,C错误;由牛顿第二定律可得 a=G,A点到地心距离一定,故在轨道Ⅱ
2
上经过A的加速度等于在轨道Ⅰ上经过A的加速度,D错误。
考向三 飞船对接问题
典题3 2023年1月21日,神舟十五号3名航天员在400 km
高的空间站向祖国人民送上新春祝福,空间站的运行轨
B.嫦娥五号从轨道Ⅰ进入轨道Ⅱ需点火加速
C.嫦娥五号在轨道Ⅰ和Ⅱ运行至P处时速率相等
D.嫦娥五号在轨道Ⅰ和Ⅱ运行至P处时加速度大小不相等
解析
1 3
根据开普勒第三定律有 2
1
=
2 3
,由于轨道Ⅰ的半径小于轨道Ⅱ的半
2 2
长轴,可知嫦娥五号在轨道Ⅰ上的运行周期小于在轨道Ⅱ上的运行周期,故 A
错误;对于中心天体月球而言,轨道Ⅰ是低轨道,轨道Ⅱ是高轨道,由低轨道到
高轨道,需要在切点位置向后喷气加速,可知嫦娥五号从轨道Ⅰ进入轨道Ⅱ
需点火加速,故 B 正确;根据上述可知,嫦娥五号在轨道Ⅰ运行至 P 处时的速
0
0

高中物理天体运动知识

高中物理天体运动知识

“万有引力定律”习题归类例析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。

2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确.二、人造地球卫星的运动参量与轨道半径的关系问题根据人造卫星的动力学关系可得由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为()A.B.C.D.[解析]由可得卫星的运动周期与轨道半径的立方的平方根成正比,由可得轨道半径,然后再由得线速度。

天体运动的典型问题

天体运动的典型问题
Mm G 2 mg R 即 : GM gR
2
mM M mg h G 得g h G 2 2 ( R h) ( R h)
尝试练习一
地球半径为R0,地面重力加速度为g,若卫
星在距地面R0处做匀速圆周运动,则( AB ) g 2R g A.卫星速度为 2 B.卫星的角速度为 8 R g C.卫星的加速度为 2 D.卫星周期为 2 2R
0
0
0
g
二、人造卫星的变轨问题
Q
3
2
>V3、ω1 >ω3 T1 < T3 、 a1 > a3 2、V2P > V2Q 3、V1P < V2P 、 V3Q > V2Q
1、V1
1
P
4、a1P
=
a2P 、 a3Q
= a2Q 、 aP >aQ
尝试练习二
2013年5月2日凌晨0时06分,我国“中星11号”通信卫 星发射成功.“中星11号”是一颗地球同步卫星,它主 要用于为亚太地区等区域用户提供商业通信服务.图 2 为发射过程的示意图,先将卫星发射至近地圆轨道1, 然后经点火,使其沿椭圆轨道2运行,最后再一次点火, 将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、 3相切于P点,则当卫星分别在1、2、3轨道上正常运行 时,以下说法正确的是( )D
A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的角速度大于在轨道1上的角速度 C.卫星在轨道1上经过Q点时的速度大于它在轨道2 上经过Q点时的速度 D.卫星在轨道2上经过P点时的速度小于它在轨道3 上经过P点时的速度
课堂小结
一、分析天体运动问天体运动的典型问题
知识回顾
2
1、做圆周运动的物体需要向心力,向心力Fn的大 4 v 2 F m Fn m 、 r 小可以用公式 Fn man 、 F m r 、 T 计算。 当F Fn 时,物体做匀速圆周运动;当 F Fn 时, 物体做离心运动;当 F Fn 时,物体做近心运动。 万有引力 2、行星、卫星做匀速圆周运动的向心力由 提 Mm F G 供。这个力的计算公式是 。 r 3、不同轨道上的卫星转动的快慢不同,轨道半 径越大, T 越大, an , v, 越小。 4、在天体表面物体的重力近似的等于它所受到 Mm mg G 的万有引力,这一规律列式表示为 R ,化 简得 GM gR ,这一式子被称为黄金代换式。

高中物理(教科版必修二):第3章 1.天体运动 含答案

高中物理(教科版必修二):第3章 1.天体运动 含答案

学业分层测评(七)(建议用时:45分钟)1.关于太阳系中各行星的轨道,以下说法中不正确的是( )A .所有行星绕太阳运动的轨道都是椭圆B .有的行星绕太阳运动的轨道是圆C .不同行星绕太阳运动的椭圆轨道的半长轴是不同的D .不同的行星绕太阳运动的轨道各不相同【解析】 八大行星的轨道都是椭圆,A 对、B 错.不同行星离太阳远近不同,轨道不同,半长轴也就不同,C 对、D 对.【答案】 B2.如图3­1­5所示,某人造地球卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球运转半径的19,设月球绕地球运动的周期为27天,则此卫星的运转周期大约是( )【导学号:22852056】图3­1­5A.19天 B.13天 C .1天D .9天 【解析】 由于r 卫=19r 月,T 月=27天,由开普勒第三定律r 3卫T 2卫=r 3月T 2月,可得T卫=1天,故选项C正确.【答案】 C3.某行星绕太阳运行的椭圆轨道如图3­1­6所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳位于( )图3­1­6A.F2B.AC.F1D.B【解析】根据开普勒第二定律:太阳和行星的连线在相等的时间内扫过相同的面积,因为行星在A点的速率比在B点的速率大,所以太阳和行星的连线必然是行星与F2的连线,故太阳位于F2.【答案】 A4.如图3­1­7所示是行星m绕恒星M运动情况的示意图,下列说法正确的是( )图3­1­7A.速度最大点是B点B.速度最小点是C点C.m从A到B做减速运动D.m从B到A做减速运动【解析】 由开普勒第二定律可知,近日点时行星运行速度最大,因此A 、B 错误;行星由A 向B 运动的过程中,行星与恒星的连线变长,其速度减小,故C 正确,D 错误.【答案】 C5.太阳系有八大行星,八大行星离地球的远近不同,绕太阳运转的周期也不相同.下列能反映周期与轨道半径关系的图像中正确的是( )【解析】 由开普勒第三定律知R 3T 2=k ,所以R 3=kT 2,D 正确. 【答案】 D6.宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( )A .3年B .9年C .27年D .81年【解析】 根据开普勒第三定律R 3地T 2地=r 3船T 2船,得T 船=27年. 【答案】 C7.月球绕地球运动的周期约为27天,则月球中心到地球中心的距离R 1与地球同步卫星(绕地球运动的周期与地球的自转周期相同)到地球中心的距离R 2之比R 1∶R 2约为( )【导学号:22852057】。

高一物理必修二天体运动公式应用教案及练习有答案)

高一物理必修二天体运动公式应用教案及练习有答案)

天体运动公式应用【知识点整理】一.开普勒运动定律(轨道、面积、比值)二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离 的平方成反比。

(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,(称为为有引力恒量,由卡文特许扭称实验测出)。

(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 说明:(1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算,式中的r 是两个球体球心间的距离.(2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r2就不能直接应用计算.(3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.【例题分析】1.下列说法符合史实的是 ( C ) A .牛顿发现了行星的运动规律 B .开普勒发现了万有引力定律 C .卡文迪许第一次在实验室里测出了万有引力常量 D .牛顿发现了海王星和冥王星2.关于开普勒行星运动的公式23TR =k ,以下理解正确的是( AD )A .k 是一个与行星无关的常量B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则2323月月地地T R T R =C .T 表示行星运动的自转周期D .T 表示行星运动的公转周期3.下列关于万有引力定律说法正确的是( ABD )A.万有引力定律是牛顿发现的B.万有引力定律适用于质点间的相互作用C.221r m m GF =中的G 是一个比例常数,没有单位 D.两个质量分布均匀的球体, r 是两球心间的距离 4.如图6-2-1所示,两球的半径远小于R ,而球质量均匀分布,质量为1m 、2m ,则两球间的万有引力大小为( D )A .2121R m m G B.2221R m m GC.()22121R R m m G+ D.()22121R R R m m G++5.引力常量很小,说明了( C )A.万有引力很小B.万有引力很大C.很难观察到日常接触的物体间有万有引力,是因为它们的质量很小D.只有当物体的质量大到一定程度时,物体之间才有万有引力 6.下列关于万有引力定律的适用范围说法正确的是( D )A.只适用于天体,不适用于地面物体B.只适用于质点,不适用于实际物体C.只适用于球形物体,不适用与其他形状的物体D.适用于自然界中任意两个物体之间 7.如果认为行星围绕太阳做匀速圆周运动,下列说法中正确的是( D )A.行星同时受到太阳的万有引力和向心力B.行星受到太阳的万有引力,行星运动不需要向心力C.行星受到太阳的万有引力与它运动的向心力不等D.行星受到太阳的万有引力,万有引力提供行星圆周运动的向心力8.苹果落向地球,而不是地球向上运动碰到苹果,产生这个现象的原因是( )A.由于地球对苹果有引力,而苹果对地球没有引力造成的B.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的C.苹果与地球间的相互引力是相等的,由于地球质量极大,不可能产生明显加速度D.以上说法都不对9.要使两物体间万有引力减小到原来的1/4,可采取的方法是( ABC )A 使两物体的质量各减少一半,距离保持不变B 使两物体间距离变为原来的2倍,质量不变C 使其中一个物体质量减为原来的1/4,距离不变D 使两物体质量及它们之间的距离都减为原来的1/4三.万有引力定律的应用1R 2RR 图6-2-11、解决天体(卫星)运动问题的两种基本思路:一、把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,即222224T r m r m r v m ma r Mm G πω====向二、是地球对物体的万有引力近似等于物体的重力,即mg RMm G =2从而得出2gR GM = (黄金代换) 2、卫星的绕行角速度、周期与高度的关系: (1)由()()22mMv Gmr h r h =++,得()GMv r h =+,∴当h ↑,v ↓ (2)由G()2h r mM+=m ω2(r+h ),得ω=()3h r GM+,∴当h ↑,ω↓(3)由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑【例题分析】1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍? 646倍2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

高中天体运动必备知识及例题讲解

高中天体运动必备知识及例题讲解

次观测。

如果周期是n 24小时,每天能对同一纬度的地方进行n 次观测。

设上星运行周期为T 1,则有2122)(4)(T R h mR h Mm G +=+π物体处在地面上时有g m R GMm 020= 解得:gR h R T 31)(2+=π在一天内卫星绕地球转过的圈数为1Tn T =,即在日照条件下有n 次经过赤道上空,所以每次摄像机拍摄的赤道弧长为122R RS T n T ππ==,将T 1结果代入得 gR h TS 32)(4+=π真题演练1.2010·重庆·16月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,他们都围绕月球连线上某点O 做匀速圆周运动。

据此观点,可知月球与地球绕O 点运动生物线速度大小之比约为 A .1:6400 B.1:80 C. 80:1 D:6400:12. 2010·天津·6探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比A.轨道半径变小B.向心加速度变小C.线速度变小D.角速度变小3. 2010·全国卷Ⅱ·21已知地球同步卫星离地面的高度约为地球半径的6倍。

若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为 A .6小时 B. 12小时 C. 24小时 D. 36小时4. 2010·江苏物理·62009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 (A )在轨道Ⅱ上经过A 的速度小于经过B 的速度(B )在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能 (C )在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期(D )在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度5.2010·海南物理·10火星直径约为地球的一半,质量约为地球的十分之一,它绕太阳公转的轨道半径约为地球公转半径的1.5倍。

专题十六:天体运动典型问题

专题十六:天体运动典型问题

专题十六:天体运动典型问题专题十六:天体运动在研究天体运动时,我们可以将其看作匀速圆周运动。

此时,根据牛顿第二定律,天体所受合外力F万等于向心力F向,即F万=F向。

此外,我们还需要使用黄金代换公式:在天体表面,有GMm/R2=mg,其中G为万有引力常数,M和m分别为天体和物体的质量,R为天体半径,g为重力加速度。

对于卫星(行星)模型,其特征是卫星(行星)绕中心天体做匀速圆周运动。

因此,我们可以讨论卫星(行星)的动力学特征和轨道特征。

动力学特征包括向心加速度、绕行速度和角速度之间的关系。

根据公式得知,向心加速度与半径成反比,与周期成正比;绕行速度与半径成反比,与周期成正比;角速度与半径成反比,与周期成正比。

如果我们已知卫星绕中心天体做匀速圆周运动的周期和半径,就可以通过公式计算出中心天体的质量或密度。

如果我们已知卫星绕中心天体做匀速圆周运动的线速度和半径,也可以通过公式计算出中心天体的质量或密度。

同样地,如果我们已知卫星绕中心天体做匀速圆周运动的线速度和周期,也可以通过公式计算出中心天体的质量或密度。

最后,如果我们已知中心天体表面的重力加速度和球半径,也可以通过公式计算出中心天体的质量或密度。

除此之外,我们还可以探讨一些有关天体运动的基本规律。

例如,地球的第一宇宙速度是指能够使人造地球卫星环绕地球运转的最小速度。

又如,太阳质量与地球质量之比可以通过地球公转的轨道半径和周期以及月球绕地球运转的轨道半径和周期计算得出。

此外,进行空间交会对接时,宇宙飞船和目标飞行器的运行速度应该介于第一宇宙速度和第二宇宙速度之间。

另外,赤道上的物体受到的万有引力远大于随地球自转所需的向心力。

B.卫星在轨道3上的角速度比在轨道1上的角速度大。

C.卫星在轨道2上经过Q点时的速度比在轨道1上经过Q点时的速度大。

D.卫星在轨道2上经过P点的加速度等于在轨道3上经过P点时的加速度。

7.在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ。

高考物理课程复习:天体运动中的四类问题

高考物理课程复习:天体运动中的四类问题

水平面内做匀速圆周运动,各卫星排列位置如图所示,则(
)
A.a的向心加速度等于重力加速度g,c的向心加速度大于d的向心加速度
B.在相同时间内b转过的弧长最长,a、c转过的弧长对应的角度相等
C.c在4
π
h内转过的圆心角是 3 ,a在2
π
h内转过的圆心角是 6
D.b的运动周期一定小于d的运动周期,d的运动周期一定小于24 h
4
3
地=ρ1× πR ,m
3
期 T2 与地球同步卫星的周期
月 2
G
2
4π 2
=m2 2 r,地球质量和
2
4 3
月=ρ2× πr ,ρ1=kρ2,联立可得轨道舱飞行的周
3
2
T1 的比值
1
=

,A
3
项正确。
3.(多选)有a、b、c、d四颗地球卫星,a还未发射,在赤道表面上随地球一起
转动,b是近地轨道卫星,c是地球同步卫星,d是高空探测卫星,它们均在同一
环月轨道。整个奔月过程简化如下:嫦娥四号探测器从
地球表面发射后,进入地月转移轨道,经过M点时变轨进
入圆形轨道Ⅰ,在轨道Ⅰ上经过P点时再次变轨进入椭
圆轨道Ⅱ。下列说法正确的是(
)
A.嫦娥四号沿轨道Ⅱ运行时,在P点的加速度大于在Q点的加速度
B.嫦娥四号沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期
C.嫦娥四号在轨道Ⅰ上的运行速度小于月球的第一宇宙速度
圆周Ⅰ
不做功



圆周Ⅲ
不做功



A→B

减小
增大
B→A

增大
减小

天体运动常见问题总结解析

天体运动常见问题总结解析

问题9:会讨论重力加速度g 随离地面高度h 的变化情况。

例15、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为A 、1;B 、1/9;C 、1/4;D 、1/16。

分析与解:因为g= G 2RM ,g , = G 2)3(R R M +,所以g/g ,=1/16,即D 选项正确。

问题10:会用万有引力定律求天体的质量。

通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。

例16、已知地球绕太阳公转的轨道半径r=1.49⨯1011m, 公转的周期T=3.16⨯107s,求太阳的质量M 。

分析与解:根据地球绕太阳做圆周运动的向心力来源于万有引力得: G 2rMm =mr(2π/T)2 M=4π2r 3/GT 2=1.96 ⨯1030kg.例17、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。

经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。

若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。

已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。

求该星球的质量M 。

分析与解:设抛出点的高度为h,第一次平抛的水平射程为x,则有x 2+h 2=L 2由平抛运动规律得知,当初速度增大到2倍时,其水平射程也增大到2x,可得(2x )2+h 2=(3L)2设该星球上的重力加速度为g ,由平抛运动的规律得: h=21gt 2 由万有引力定律与牛顿第二定律得: mg= G2R Mm 联立以上各式解得M=22332GtLR 。

问题11:会用万有引力定律求卫星的高度。

通过观测卫星的周期T 和行星表面的重力加速度g 及行星的半径R 可以求出卫星的高度。

例18、已知地球半径约为R=6.4⨯106m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约m.(结果只保留一位有效数字)。

高中物理天体运动章节测试题新人教版必修2

高中物理天体运动章节测试题新人教版必修2

⾼中物理天体运动章节测试题新⼈教版必修2天体运动测试题1、据媒体报道,“嫦娥⼀号”卫星环⽉⼯作轨道为圆轨道,该卫星离⽉球表⾯的⾼度为200 km, 运⾏周期为127min。

若还知道引⼒常量和⽉球半径,仅利⽤上述条件能求出的是()A.该卫星的质量B.⽉球对该卫星的万有引⼒C.该卫星绕⽉球运⾏的速度D.⽉球表⾯的重⼒加速度2、如图所⽰,在圆轨道上运⾏的国际空间站⾥,⼀宇航员A静⽌(相对空间舱)“站”于舱内朝向地球⼀侧的“地⾯”B上,下列说法正确的是A.宇航员A受空间站的的作⽤⼒是由B指向A“竖直向上”⽅向B.该空间站的运⾏速度⼤于地球的第⼀宇宙速度C.宇航员A所受地球引⼒与他受到B的⽀持⼒⼤⼩相等D.该轨道上的另⼀颗卫星的向⼼加速度与空间站的向⼼加速度⼤⼩相等3、地球半径为R,在距球⼼r处(r>R)有⼀同步卫星.另有⼀半径为2R的星球A,在距球⼼3r处也有⼀同步卫星,它的周期是72h,那么A星球平均密度与地球平均密度的⽐值为()A.1∶9B.3∶8C.27∶8D.1∶84、设想⼈类开发⽉球,不断把⽉球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,⽉球仍沿开采前的圆周轨道运动,则与开采前相⽐()A.地球与⽉球间万有引⼒将变⼤B.地球与⽉球间万有引⼒将变⼩C.⽉球绕地球运动的周期将变长D.⽉球绕地球运动周期将变短5、“嫦娥⼆号”探⽉卫星于2010年10⽉1⽇成功发射,⽬前正在⽉球上⽅100km的圆形轨道上运⾏。

已知“嫦娥⼆号”卫星的运⾏周期、⽉球半径、⽉球表⾯重⼒加速度、万有引⼒恒量G。

根据以上信息可求出A.卫星所在处的加速度B.⽉球的平均密度C.卫星线速度⼤⼩D.卫星所需向⼼⼒6、我国于2007年10⽉发射了探⽉卫星“嫦娥l号”。

假设该卫星的绕⽉轨道是圆形的,且贴近⽉球表⾯。

已知⽉球的质量约为地球质量的l/81,⽉球的半径约为地球半径的l/4,地球上的第⼀宇宙速度约为7.9km/s,则该探⽉卫星绕⽉运⾏的速率约为()a.0.4km/s b.1.8km/s c.1lkm/s d.36km/s7、在圆轨道上运动的质量为m的⼈造地球卫星,它到地⾯的距离等于地球半径R,地⾯上的重⼒加速度为g,则()A.卫星运动的速度为B.卫星运动的周期为C.卫星运动的加速度为g D.卫星的动能为mgR8、设嫦娥号登⽉飞船贴近⽉球表⾯做匀速圆周运动,测得飞船绕⽉运⾏周期为T。

高中物理必修二第二章天体运动习题.

高中物理必修二第二章天体运动习题.

必修二:第二章天体运动习题(一)1.宇航员在围绕地球作匀速圆周运动的航天飞机中,会处于完全失重状态,下列说法中正确的是( )A 宇航员仍受重力作用B 宇航员受力平衡C 重力为向心力D 宇航员不受任何力作用2.行星绕恒星运动的椭圆轨道的半长轴R 的三次方与周期T 的平方的比值为常量,设23TR =k ,则k 的大小( )A .只与恒星的质量有关B .与恒星的质量及行星的质量有关系C .只与行量的质量有关系D .与恒星的质量及行星的速度有关系3.我国的“神舟七号”飞船于2008年9月25日晚9时10分载着3名宇航员顺利升空,并成功“出舱”和安全返回地面.当“神舟七号”在绕地球做半径为r 的匀速圆周运动时,设飞船舱内质量为m 的宇航员站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示飞船所在处的重力加速度,N 表示航天员对台秤的压力,则下列关系式中正确的是( )A .g ′=0B .g ′=R 2r 2gC .N =mgD .N =R rmg 4.关于地球同步通讯卫星,下述说法正确的是A 已知它的质量为1t ,若增为2t ,其同步轨道半径将变为原来的2倍B 它的运行速度应为第一宇宙速度C 它可以通过北京的正上方D 地球同步通讯卫星的轨道是唯一的,在赤道上方一定高度处5.宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站A 只能从较低轨道上加速B 只能从较高轨道上加速C 只能从空间站同一高度轨道上加速D 无论在什么轨道上,只要加速都行6.宇宙飞船到了月球上空后以速度v 绕月球作圆周运动,如右图所示,为了使飞船落在月球的B 点,在轨道的A 点火箭发动器作出短时间发动,向外喷射高温燃气。

喷气的方向A 与v 的方向一致B 与v 的方向相反C 垂直v 的方向向右D 垂直v 的方向向左7.“神舟六号”飞行到第5圈时,在地面指挥控制中心的控制下,由近地点250km 圆形轨道1经椭圆轨道2转变到远地点350km 的圆轨道3。

高中物理天体运动六大题型整理(有题有答案有解析)

高中物理天体运动六大题型整理(有题有答案有解析)

天体运动题型整理天体运动六大题型:1、开普勒定律2、赤道和两极3、万有引力和牛顿运动结合4、求质量和密度5、双星/多星问题6、宇宙速度和卫星变轨一、开普勒定律1.(2018·甘肃省西北师范大学附属中学模拟)若金星和地球的公转轨道均视为圆形,且在同一平面内,如图所示。

在地球上观测,发现金星与太阳可呈现的视角(太阳与金星均视为质点,它们与眼睛连线的夹角)有最大值,最大视角的正弦值为k,则金星的公转周期为A.(1-k2)年B.(1-k2)年C.年D.k3年1.C【解析】金星与太阳的最大视角出现的情况是地球上的人的视线看金星时,视线与金星的轨道相切,如图所示。

θ为最大视角,由图可知:sinθ=;根据题意,最大正弦值为k,则有:;根据开普勒第三定律有:;联立以上几式得:;解得:年,C正确,ABD错误;故选C。

2.(2018·河北省石家庄市模拟)地球和木星绕太阳的运动可近似看成是同一平面内的同方向绕行的匀速圆周运动,已知木星的轨道半径约为地球轨道半径的5.2倍,估算木星与地球距离最近的相邻两次时间间隔约为 A .1年 B .1.1年 C .1.5年 D .2年2.B 【解析】地球、木星都绕太阳运动,所以根据开普勒第三定律可得3322=R R T T 木地地木,即333== 5.21=11.9R T T R ⨯木木地地年,设经时间t 两星又一次距离最近,根据t θω=,则两星转过的角度之差2π2π2πt T T θ⎛⎫∆=-= ⎪ ⎪⎝⎭地木,解得 1.1t =年,B 正确。

3.(2018·江西省浮梁一中模拟)如图所示,由中山大学发起的空间引力波探测工程“天琴计划”于2015年启动,拟采用三颗全同的卫星(SC1、SC2、SC3)构成一个边长约为地球半径27倍的等边三角形阵列,地球恰好处于三角形中心,卫星将在以地球为中心、高度约10万公里的轨道上运行,对一个周期仅有5.4分钟的超紧凑双白矮星系统RX10 806.3+1 527产生的引力波进行探测,若地球近地卫星的运行周期为T 0,则三颗全同卫星的运行周期最接近A .6T 0B .30T 0C .60T 0D .140T 03.C 【解析】由几何关系可知,等边三角形的几何中心到各顶点的距离等于边长的,所以卫星的轨道半径与地球半径的关系,由开普勒第三定律的推广形式,可知地球近地卫星与这三颗卫星的周期关系,所以,C 最为接近,C正确。

物理必修二天体运动各类问题

物理必修二天体运动各类问题

天体运动中的几个“另类”问题解决的原理及方法比较单一, 处理的基本思路是: 将天 根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。

2如有必要,可结合黄金代换式」…'简化运算过程。

不过,还有几类问题仅依靠基本思路和方法,会让人感觉力不从心, 甚至就算找出了结果但仍心存疑惑,不得要领。

这 就要求我们必须从根本上理解它们的本质, 把握解决的关键,不仅要知其然,更要知其所以然。

一、变轨问题例:某人造卫星因受高空稀薄空气的阻力作用, 绕地球运转的轨道会慢慢改变。

每次测 量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为B.〔,二CD ■分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨亠Mmv ,a卧吗二桝一道运动,由于,”,而要作近(向)心运动,直到向心力再次供需平Mm v ,,a - G —7- = F^= m ——衡,即•厂,卫星又做稳定的圆周运动。

天体运动部分的绝大多数问题, 体的运动近似看成匀速圆周运动,■,后来变为[,以’1、-亠表示卫星在这两个轨道上的线速度大小, 周期,则()订、丄表示卫星在这两个轨道上绕地球运动的*如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数值超过原先减少的数值。

所以I ■二,又由’—:可知1,。

解:应选C选项。

说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。

卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。

F>懈—以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力,,要使卫星改做圆周运动,必须满足. :'和-_ ■,而-_ ■在远点明显成立,所以v2禰—二F只需增大速度,让速度增大到“成立即可,这个任务由卫星自带的推进器完成。

最新整理物理必修二天体运动各类问题资料讲解

最新整理物理必修二天体运动各类问题资料讲解

天体运动中的几个“另类”问题天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。

如有必要,可结合黄金代换式简化运算过程。

不过,还有几类问题仅依靠基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。

这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。

一、变轨问题例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。

每次测量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则()A.,,B.,,C.,,D.,,分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数值超过原先减少的数值。

所以、,又由可知。

解:应选C选项。

说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。

卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。

以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力,要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。

“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。

二、双星问题例:在天体运动中,将两颗彼此相距较近的行星称为双星。

高一物理必修2天体变轨与能量问题

高一物理必修2天体变轨与能量问题
B.若v与R成反比,则环是连续物
C.若v2与R成正比,则环是卫星群
D.若v2与R成反比,则环是卫星群
练习8.2008年9月25日我国成功发射了“神舟七号”载人飞船,随后航天员圆满完成了太空出舱任务并释放了伴飞小卫星,若小卫星和飞船在同一圆轨道上,相隔一段距离一前一后沿同一方向绕行。下列说法正确的是( )
B.月球绕地运行的向心加速度等于地球同步卫星的向心加速度
C.地球同步卫星与静止在赤道上物体的角速度相同
D.地球同步卫星相对地心的线速度与静止在赤道上物体相对地心的线速度大小相等
练习2.关于近地卫星、同步卫星、赤道上的物体,以下说法正确的是()
A.都是万有引力提供向心力
B.赤道上的物体和同步卫星的周期、线速度、角速度都相等
C.赤道上的物体和近地卫星的轨道半径相同但线速度、周期不同
D.同步卫星的周期大于近地卫星的周期
练习3.如图所示,地球赤道上的山丘e,近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动.设e、p、q运动速率分别为v1、v2、v3,向心加速度大小分别为a1、a2、a3,则下列说法正确的是( )
10、由于煤、石油等化石燃料消耗的急剧增加,产生了大量的二氧化碳,使空气中的二氧化碳含量不断增加,导致全球气候变暖、土壤沙漠化、大陆和两极冰川融化,给全球环境造成了巨大的压力。练习6.宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量相等的星球位于等边三角形的三个顶点上,任意两颗星球的距离均为R,并绕其中心O做匀速圆周运动.忽略其他星球对它们的引力作用,引力常量为G,以下对该三星系统的说法正确的是()
A.陶瓷片做平抛运动
B.陶瓷片做自由落体运动
C.陶瓷片按原圆轨道做匀速圆周运动

高考热点3:天体运动问题》

高考热点3:天体运动问题》

天体运动问题大全天体运动问题, 是万有引力定律和牛顿第二定律(向心力公式)在匀速圆周运动模型中的综合应用.人造卫星、月亮绕地球运动或行星绕恒星运动可视为“环绕模型”, 由万有引力提供向心力: F引=F 向.此模型可计算卫星或行星的环绕速度、角速度、周期、向心加速度以及中心天体(被环绕的天体, 如地球、太阳)的质量和密度.对于卫星而言, 一条轨道, 对应着一个环绕速度, 因为一条轨道对应着一个固定的万有引力(作为向心力), 当卫星的环绕速度改变时, 轨道上所能提供的向心力不足或过量, 则卫星将发生离心或近心运动, 即意味着卫星要变轨, 这就是考题中的变轨问题!为什么当星球的自转速度增大到一定的程度后, 星球赤道表面的物体会“飘起来”, 甚至连星球本身也可能会离散瓦解呢!首先, 当星球自转的速度比较小的时候, 星球表面的物体随星球自转所需的向心力也比较小, 物体受到的万有引力足以提供这么一个向心力, 而且还有剩余!剩余的部分表现为物体的重力:赤道上的物体与地球一起自转时的向心力为GMm/R2-N=mv2/R, N=mg.当自转速度逐渐加快时, 物体所需的向心力也逐渐增大, 则N逐渐减小, 若自转速度继续增加, 当N=0时, 物体就会“飘起来”了.实际上就是当王物体所需的向心力比能提供的大时, 物体作离心运动!学离心运动的时候我们知道, 砂轮转速过大的时候会破碎瓦解, 那么我们把自转的星球看成转动的砂轮又有何妨呢!当星球自转太快时, 星球也会破碎瓦解的!星球表面或附近(距离地面有一定高度)的物体受到的万有引力,绝大部分用来产生物体的重力加速,剩余的一小部分则作为维持物体与星球一起自转所需的向心力.可见重力和万有引力是有所区别的!不过,在要计算重力加速度的考题中,通常忽略星球的自转(因为自转所需的向心力很小),于是认为重力近似等于万有引力,即mg=F引(我们不妨把它记作“近球模型”),据此,我们就可以推导出非常有用的“黄金代换式”:GM=gR2.既然重力可以近似等于万有引力,那么对于近地轨道(环绕轨道近似等于星球半径R)的卫星,则有mg=F向,可求得其环绕速度为v1=,也就是我们在考题中遇到的第一宇宙速度!例题点拨:例题1 (2004年江苏, 4)若人造卫星绕地球做匀速圆周运动, 则下列说法正确的是( )A. 卫星的轨道半径越大, 它的运行速度越大B. 卫星的轨道半径越大, 它的运行速度越小C. 卫星的质量一定时, 轨道半径越大, 它需要的向心力越大D. 卫星的质量一定时, 轨道半径越大, 它需要的向心力越小例题2 发射地球同步卫星时, 先将卫星发射至近地圆轨道1.然后经点火, 使其沿椭圆轨道2运动, 最后再次点火, 将卫星送人同步圆轨道3, 轨道1.2相切于Q点, 轨道2、3相切于P点(见下图), 当卫星分别在1.2、3轨道上正常运行时, 以下说法正确的是( )A. 卫星在轨道3上的速率大于在轨道1上的速率B. 卫星在轨道3上的角速度小于在轨道1上的角速度C. 卫星在轨道1上经过Q点的加速度大于它在轨道2上经过Q点时的加速度D. 卫星在轨道2上经过P点时的加速度等于它的轨道3上经过P点时的加速度例题3 地球赤道上的物体重力加速度为g, 物体在赤道上随地球自转的向心加速度为a, 要使赤道上的物体“飘”起来, 则地球的转速应为原来的( )A. g/a倍B. 倍C. 倍D. 倍例题4(2004年北京, 20)1990年5月, 紫金山天文台将他们发现的第2752号小行星命名为吴健雄星, 该小行星的半径为16 km.若将此小行星和地球均看成质量分布均匀的球体, 小行星密度与地球相同.已知地球半径R=6400km, 地球表面重力加速度为g.这个小行星表面的重力加速度为( )A. 400gB. g /400C. 20gD. g/20针对性训练1. 地球半径R0, 地面重力加速度为g, 若卫星距地面R0处做匀速圆周运动, 则( )A.卫星的速度为 B.卫星的角速度为C. 卫星的加速度为g/2D. 卫星的周期为2.假设地球质量不变, 而地球半径增大到原来的2倍, 那么从地球发射的人造地球卫星第一宇宙速度(球绕速度)大小应为原来的( )A. 倍B. 倍C. 倍D. 2倍3. 三颗人造卫星a、b、c绕地球作圆周运动, a与b的质量相等并小于c的质量, b和c的轨道半径相等且大于a的轨道半径, 则( )A. 卫星b、c运行的速度大小相等, 且大于a的速度大小B. 卫星b、c周期相等, 且大于a的周期C.卫星b、c向心加速度大小相等, 且大于a的向心加速度D. 卫星b所需的向心力最小4.关于绕地球运转的近地卫星和同步卫星, 下列说法中正确的是( )A. 近地卫星可以通过北京地理纬度圈所决定的平面上做匀速圆周运动B. 近地卫星可以在与地球赤道平面有一定倾角且经过北京上空的平面上运行C.近地卫星或地球同步卫星上的物体,因“完全失重”,其重力加速度为零D. 地球同步卫星可以在地球赤道平面上的不同高度运行5.假设一小型飞船, 在高空绕地球做匀速圆周运动, 若沿与其运动相反的方向发射一枚火箭, 则以下说法正确的是( )A. 飞船一定离开原来的轨道运动B. 火箭一定离开原来的轨道运动C. 若飞船继续绕地球匀速圆周运动, 则其运动的轨道的半径一定增大D. 若火箭离开飞船后绕地球做匀速圆周运动, 则其运动的圆轨道的半径一定减小6.关于人造地球卫星, 下列说法正确的是( )A. 轨道半径是地球半径n倍的同步卫星的向心加速度是地表附近重力加速度的倍B. 轨道半径是地球半径n倍的同步卫星的向心加速度是赤道表面物体向心加速度的n倍C. 如果卫星的轨道是椭圆, 则它在近地点比远地点时的动能大、势能小, 但两处的机械能相等D. 如果卫星因受空气阻力的作用, 其半径逐渐减小, 则它的势能逐渐减小, 动能逐渐增大, 机械能逐渐减少7.同一轨道上有一个宇航器和一个小行星,同方向围绕太阳做匀速圆周运动.由于某种原因,小行星发生爆炸而被分成两块,爆炸结束瞬间,两块都有原方向的速度,一块比原速度大,一块比原速度小,关于两块小行星能否撞上宇航器,下列判断正确的是()A. 速度大的一块能撞上宇航器B. 速度大的一块不能撞上宇航器C. 速度小的一块能撞上宇航器D. 速度小的一块不能撞上宇航器8.假设在质量与地球质量相同, 半径为地球半径两倍的某天体上进行运动比赛, 那么与地球成绩相比, 下列说法正确的是( )A. 跳高运动员的成绩会更好B. 投掷铁饼的距离更远C. 举重运动员的成绩会更好D. 游泳运动员的成绩会更好9.2003年10月15日“神舟五号”载人飞船搭载航天员杨利伟发射成功, 经过21小时太空之旅, 飞船返回舱乘载着杨利伟于10月16日6时23分在内蒙古主要着陆场成功着陆, 我国首次载人航天飞行圆满成功。

拓展课 天体运动中的三类典型问题2020(春)物理 必修 第二册 鲁科版(新教材)

拓展课 天体运动中的三类典型问题2020(春)物理 必修 第二册 鲁科版(新教材)

拓展课天体运动中的三类典型问题核心要点人造卫星的发射、变轨问题[要点归纳]1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。

(2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。

2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A 点和B点速率分别为v A、v B。

在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。

(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。

(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。

[经典示例][例1]我国正在进行的探月工程是高新技术领域的一次重大科技活动,在探月工程中飞行器成功变轨至关重要。

如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A 点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则()A.飞行器在B点处点火后,动能增加B.由已知条件不能求出飞行器在轨道Ⅱ上的运行周期C.只有万有引力作用情况下,飞行器在轨道Ⅱ上通过B点的加速度大于在轨道Ⅲ上通过B点的加速度D.飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2πR g0解析在椭圆轨道近月点变轨成为圆轨道,要实现变轨应给飞行器点火减速,减小所需的向心力,故点火后动能减小,故A错误;设飞行器在近月轨道Ⅲ绕月球运行一周所需的时间为T3,则mg0=mR4π2T23,解得T3=2πRg0,根据几何关系可知,轨道Ⅱ的半长轴a=2.5R,根据开普勒第三定律a3T2=k以及轨道Ⅲ的周期,可求出在轨道Ⅱ上的运行周期,故B错误,D正确;只有万有引力作用情况下,飞行器在轨道Ⅱ上通过B点的加速度与在轨道Ⅲ上通过B点的加速度相等,故C错误。

高二物理天体运动试题答案及解析

高二物理天体运动试题答案及解析

高二物理天体运动试题答案及解析1.均匀分布在地球赤道平面上空的三颗同步通信卫星能够实现除地球南北极等少数地区外的“全球通信”。

已知地球半径为R,地球表面的重力加速度为g,地球自转周期为T,三颗卫星中任意两,下面列出的是同步卫星所在位置处的重力加速度,其中正确的是()颗卫星间距离为sA.B.C.D.【答案】AC【解析】由三颗卫星的距离及角度关系可求得卫星半径为,卫星所在位置的万有引力等于该位置的重力,由可求得重力加速度为,AC正确2.(专题卷)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。

则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A.卫星在轨道3上的速率大于在轨道1上的速率。

B.卫星在轨道3上的角速度小于在轨道1上的角速度。

C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间。

D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。

【答案】BCD【解析】轨道1和轨道3都是圆周运动轨道,半径越大线速度越小,A错;由角速度公式可知B对;从轨道1在Q点进行点火加速度才能进入轨道2,所以轨道1在q点的速度小于轨道2的速度, D对;由开普勒第三定律可知轨迹2的半长轴较大,周期较大,C对;3.在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R.地面上的重力加速度为g,则A.卫星运动的速度为B.卫星运动的周期为C.卫星运动的加速度为D.卫星的动能为【答案】BD【解析】本题考查的是天体运动问题。

由,,,可以计算出:只有BD答案正确。

4.(9分)“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步。

已知“嫦娥一号”绕月飞行轨道近似圆周,距月球表面高度为H,飞行周期为T,月球的半径为R,已知引力常量G,试求:月球的质量M是多少?【答案】【解析】设“嫦娥一号”质量为m1,圆周运动时,万有引力提供向心力,则① 5分② 3分本题考查万有引力定律提供向心力,其中半径r为距离球心间的距离5.两颗质量相等的人造地球卫星,绕地球运动的轨道半径r1=2r2.下面说法正确的是()A.由公式F=m知道,轨道半径为r1的卫星的向心力为另一颗卫星的一半B.由公式F=mω2r知道,轨道半径为r1的卫星的向心力为另一颗卫星的两倍C.由公式F=G知道,轨道半径为r1的卫星的向心力为另一颗卫星的四分之一D.因不知地球质量和卫星质量,无法比较两卫星所受向心力的大小【答案】C【解析】由公式F=G知道,轨道半径为r1的卫星的向心力为另一颗卫星的四分之一,所以C正确。

2023新高考物理天体运动,质量,密度,周期,变轨,赤道两级问题

2023新高考物理天体运动,质量,密度,周期,变轨,赤道两级问题

1.我国发射的嫦娥一号探月卫星沿近似圆形轨道绕月球飞行,测出卫星距月球表面高度为h ,运行周期为T ,假若还知道引力常量G 与月球半径R ,仅利用以上条件可求出的物理量正确的是( )A .探月卫星的质量为4π2(R+h )3GT 2 B .月球表面的重力加速度为4π2h 3R 2T 2C .卫星绕月球运行的加速度为4π2(R+h )3R 2T 2 D .卫星绕月球运行的线速度为 2π(R+h )T2.宇航员站在某一星球表面某高处,沿水平方向抛出一小球。

经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。

若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为√3L 0已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G ,求该星球质量M 。

3.天宫一号被长征二号火箭发射后准确进入预定轨道,如图所示,天宫一号在轨道1上运行4周后,在Q 点开启发动机短时间加速,关闭发动机后,“天宫一号”沿椭圆轨道2运行到达P 点,开启发动机再次加速,进入轨道3绕地球做圆周运动,“天宫一号”在图示轨道1、2、3上正常运行时,下列说法正确的是( )A .“天宫一号”在轨道3上的速率大于在轨道1上的速率B .“天宫一号”在轨道3上的角速度大于在轨道1上的角速度C .“天宫一号”在轨道1上经过Q 点的加速度大于它在轨道2上经过Q 点的加速度D .“天宫一号”在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度4.北京航天飞行控制中心对“嫦娥二号”卫星实施多次变轨控制并获得成功.首次变轨是在卫星运行到远地点时实施的,紧随其后进行的3次变轨均在近地点实施.“嫦娥二号”卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近 地点的轨道高度.同样的道理,要抬高远地点的高度就需要在近地点实施变轨.图为“嫦娥二号”某次在近地点A 由轨道1变轨为轨道2的示意图,下列说法中正确的是( )A .“嫦娥二号”在轨道1的A 点处应点火加速B .“嫦娥二号”在轨道1的A 点处的速度比在轨道2的A 点处的速度大C .“嫦娥二号”在轨道1的A 点处的加速度比在轨道2的A 点处的加速度大D .“嫦娥二号”在轨道1的B 点处的机械能比在轨道2的C 点处的机械能大5.2018年12月8日,中国长征三号乙运载火箭在西昌卫星发射中心起飞,把嫦娥四号探测器送入地月转移轨道,“嫦娥四号”经过地月转移轨道的P 点时实施一次近月调控后进入环月圆形轨道Ⅰ,再经过系列调控使之进入准备“落月”的椭圆轨道Ⅱ,于2019年1月3日上午最终实现人类首次在月球背面软着陆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天体运动中的几个“另类”问题
江苏省靖江市季市中学范晓波
天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。

如有必要,可结合黄金代换式简化运算过程。

不过,还有几类问题仅依靠
基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。

这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。

一、变轨问题
例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。

每次测
量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、
表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则()
A.,,
B.,,
C.,,
D.,,
分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨
道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数
值超过原先减少的数值。

所以、,又由可知。

解:应选C选项。

说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。

卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。

以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力,
要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以
只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。

“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。

二、双星问题
例:在天体运动中,将两颗彼此相距较近的行星称为双星。

它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。

如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线
速度。

分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。

但两者做匀速圆周运动的半径不相等。

解:设行星转动的角速度为,周期为
(1)如图,对星球,由向心力公式可得:
同理对星球有:
两式相除得:(即轨道半径与质量成反比)
又因为
所以,,
(2)因为,所以
(3)因为,所以
说明:处理双星问题必须注意两点(1)两颗星球运行的角速度、周期相等;(2)轨道半径不等于引力距离(这一点务必理解)。

弄清每个表达式中各字母的含义,在示意图中相应位置标出相关量,可以最大限度减少错误。

三、追及问题
例:两颗卫星在同一轨道平面内绕地球做匀速圆周运动,地球半径为,卫星离地面的高度等于,卫星离地面高度为,则:(1)、两卫星运行周期之比是多少?(2)若某时刻两卫星正好同时通过地面同一点正上方,则至少经过多少个周期与
相距最远?
分析:两卫星周期之比可按基本思路处理;要求与相距最远的最少时间,其实是一
个追及和相遇问题,可借用直线运动部分追及和相遇问题的处理思想,只不过,关键一步应该变换成“利用角位移关系列方程”。

解:(1)对做匀速圆周运动的卫星使用向心力公式
可得:
所以
(2)由可知:,即转动得更快。

设经过时间两卫星相距最远,则由图可得:
(、2、3……)
其中时对应的时间最短。

而Φ=ωt ,
所以,得
说明:圆周运动中的追及和相遇问题也应“利用(角)位移关系列方程”。

当然,如果能直接将角位移关系转化成转动圈数关系,运算过程更简洁,但不如利用角位移关系容易理
解,而且可以和直线运动中同类问题的解法统一起来,记忆比较方便。

常见情况下的角位移关系如下,请自行结合运动过程示意图理解。

设,则:
四、超失重问题
例:某物体在地面上受到的重力为,将它放置在卫星中,在卫星以加速度
随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为时,求此时卫星距
地球表面有多远?(地球半径,取)
分析:物体具有竖直向上的加速度,处于超重状态,物体对支持物的压力大于自身实际重力;而由于高空重力加速度小于地面重力加速度,同一物体在高空的实际重力又小于在地面的实际重力。

解:如图,设此时火箭离地球表面的高度为,火箭上物体对支持物的压力为,物
体受到的重力为
根据超、失重观点有
可得
而由可知:
所以
说明:航天器在发射过程中有一个向上加速运动阶段,在返回地球时有一个向下减速阶段,这两个过程中航天器及内部的物体都处于超重状态;航天器进入轨道作匀速圆周运动时,由于万有引力(重力)全部提供向心力,此时航天器及内部的所有物体都处于完全失重状态。

既掌握基本问题的处理方法,又熟悉“另类”问题的分析要点,这样在面对天体运动问题时才能应付自如。

五、变式练习
1.开普勒三定律也适用于神舟七号飞船的变轨运动。

飞船与火箭分离后进入预定轨道,飞船在近地点(可认为近地面)开动发动机加速,之后,飞船速度增大并转移到与地球表面相切的椭圆轨道,飞船在远地点再次点火加速,飞船沿半径为的圆轨道绕地运动。

设地球
半径为,地球表面的重力加速度为,若不计空气阻力,试求神舟七号从近地点到远地
点的时间(变轨时间)。

2.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。

现测得两星中心距离为R,其运动周期为T,求两星的总质量。

3.如图所示,是地球的同步卫星。

另一卫星的圆形轨道位于赤道平面内,离地面
高度为,已知地球半径为,地球自转角速度为,地球表面的重力加速度为,为
地球中心。

(1)求卫星的运行周期;(2)若卫星绕行方向与地球自转方向相同,某
时刻、两卫星相距最近(、、在同一直线上),则至少经过多长时间,他们再一次相距最近?
4.北京时间9月27日17时,航天员翟志刚在完成一系列空间科学实验,并按预定方案进行太空行走后,安全返回神舟七号轨道舱,这标志着我国航天员首次空间出舱活动取得
成功。

若这时神舟七号在离地面高为的轨道上做圆周运动,已知地球半径为,地球表面处的重力加速度为。

航天员站在飞船时,求:(1)航天员对舱底的压力,简要说明理
由。

(2)航天员运动的加速度大小。

5.为了迎接太空时代的到来,美国国会通过一项计划:在2050年前建造成太空升降机,就是把长绳的一端搁置在地球的卫星上,另一端系住长降机。

放开绳,升降机能到达地球上;人坐在升降机里,在卫星上通过电动机把升降机拉到卫星上。

已知地球表面的重力加速
,地球半径为。

求:
(1)某人在地球表面用体重计称得重,站在升降机中,当升降机以加速度
(为地球表面处的重力加速度)竖直上升时,在某处此人再一次用同一体重计称得视重为,忽略地球自转的影响,求升降机此时距地面的高度;
(2)如果把绳的一端搁置在同步卫星上,地球自转的周期为,求绳的长度至少为多
长。

变式练习答案:
1.
2.
3.(1)(2)
4.(1)航天员对神舟七号的压力为零。

因为地球对航天员的万有引力恰好提供了航天员随飞船绕地球做匀速圆周运动所需的向心力,航天员处于完全失重状态;(2)。

5.(1);(2)。

相关文档
最新文档