电动力学复习总结第一章电磁现象的普遍规律2012答案
电动力学期末考试复习知识总结及试题
电动力学期末考试复习知识总结及试题第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。
在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
完成由普通物理到理论物理的自然过渡。
二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。
②磁场与它激发的电场间关系是电磁感应定律的微分形式。
(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。
② 若空间各点与无关,则为稳恒电流,电流线闭合。
稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。
2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。
2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。
介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。
向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。
4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。
说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。
电动力学的第一章总结
第一章 电磁现象的普遍规律本章重点:从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
主要内容:讨论几个定律,总结出静电场、静磁场方程;找出问题,提出假设,总结真空中麦氏方程; 讨论介质电磁性质,得出介质中麦氏方程; 给出求解麦氏方程的边值关系;引入电磁场能量,能流并讨论电磁能量的传输。
§1. 电荷和静电场一、 库仑定律和电场强度1. 库仑定律一个静止点电荷Q 对另一静止点电荷Q '的作用力为:34rrQ Q F o πε'=⑴ 静电学的基本实验定律 (2)两种物理解释超距作用: 一个点电荷不需中间媒介直接施力与另一点电荷。
场传递: 相互作用通过场来传递。
对静电情况两者等价。
2. 点电荷电场强度每一电荷周围空间存在电场:即任何电荷都在自己周围空间激发电场。
它的基本性质是:电荷对处在其中的其它电荷具有作用力。
对库仑定律重新解释:描述一个静止点电荷激发的电场对其他任何电荷的电场力。
描述电场的函数——电场强度定义:试探点电荷F ,则30()4F Q rE x Q rπε==' 它与试探点电荷无关,给定Q ,它仅是空间点函数,因而是一个矢量场——静电场。
3.场的叠加原理(实验定律)n 个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:3110()4nni ii i i i Q r E x E r πε====∑∑。
4.电荷密度分布体密度: ()0limV Q dQx V dVρ∆→∆'==''∆ 面密度: ()0lim S Q dQx S dS σ∆→∆'==''∆ 线密度 : ()0lim l Q dQx l dl λ∆→∆'==''∆ ()dQ x dV ρ''=()()(),,VSLQ x dV Q x dS Q x dl ρσλ''''''===⎰⎰⎰5.连续分布电荷激发的电场强度()30()4Vx r E x dV r ρπε''=⎰或()30()4S x r E x dS rσπε''=⎰ 或 ()30()4L x rE x dl r λπε''=⎰ 对于场中的一个点电荷,受力F Q E '=仍然成立。
(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动力学总结
c) 给定边界条件
a)做替代时,所研究空间的泊松方程不能被改变(即自由 点电荷位置、Q 大小不能变)。所以假想电荷必须放在 所求区域之外。
b)不能改变原有边界条件(实际是通过边界条件来确定假 想电荷的大小和位置)。
c)一旦用了假想(等效)电荷,不再考虑原来的电荷分布。 d)坐标系选择仍然根据边界形状来定。
2、在所求区域的介质中若有自由电荷分布,则要求 自由电荷分布在真空中产生的势为已知。 一般所求区域为分区均匀介质,则不同介质分界
面上有束缚面电荷。区域V中电势可表示为两部分
的和,即 0, 0 为已知自由电荷产生
的电势, 不满足 20 , 为束缚电荷产生 的电势,满足拉普拉斯方程 20
但注意,边值关系还要用 而不能用
Z
0
0
Y(y) Cek2y Dek2y Z(z) Esinkz Fcoskz
2. 柱坐标
2 1 (r) 1 2 2 0 r r r r22 z 2
讨论 (r,) ,令 ( r , ) f( r )g ()
d2g() d2
2g()
0
1 r
d (r dr
df)2
dr r2
面或导体表面上的电荷一般 点电荷时,可以将导体面上感
非均匀分布的,造成电场缺 应电荷分布等效地看作一个或
乏对称性。
几个点电荷来给出尝试解。
3. 电象法概念、适用情况
电象法:
用假想点电荷来等效地 代替导体边界面上的面 电荷分布,然后用空间 点电荷和等效点电荷迭 加给出空间电势分布。
注意:
适用情况:
a) 所求区域有少许几个点电荷, 它产生的感应电荷一般可以 用假想点电荷代替。
郭硕鸿《电动力学》习题解答完全版(章)
= (µµ −1)∇× Hr = ( µ −1)rj f ,(r1 < r < r2)
0
µ0
αrM = nr× (Mr 2 − Mr 1),(n从介质1指向介质2
3ε
r3
= − ε −ε 0 ρ f (3− 0) = −(ε −ε 0 )ρ f
3ε
ε
σ P = P1n − P2n
考虑外球壳时 r r2 n从介质 1指向介质 2 介质指向真空 P2n = 0
-5-
电动力学习题解答
第一章 电磁现象的普遍规律
σ P = P1n = (ε −ε 0)
r 3 − r13 ρ f rr r=r2 3εr 3
= cos(kr ⋅rr)(kxerx + k yery + kzerz )Er0 = cos(kr ⋅rr)(kr ⋅ Er) ∇×[Er0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er0
4. 应用高斯定理证明
∫ dV∇× fr = ∫S dSr× fr
V
应用斯托克斯 Stokes 定理证明
∫S dSr×∇φ = ∫Ldlrφ
证明 1)由高斯定理
dV∇⋅ gr = ∫S dSr ⋅ gr
∫
∫ ∫ 即
V
(∂ g x ∂x V
+ ∂g y ∂y
+ ∂g zz )dV = ∂
g
S
xdS x + g ydS y + g zdS z
而 ∇× frdV = [(∂ f z − ∂∂z f y )ir ∂+ ( f x − ∂∂x f z )rj∂+ ( f y − ∂∂y f x )kr]dV
电动力学 知识点总结
第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。
在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
完成由普通物理到理论物理的自然过渡。
二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。
②磁场与它激发的电场间关系是电磁感应定律的微分形式。
(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。
② 若空间各点与无关,则为稳恒电流,电流线闭合。
稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。
2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。
2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。
介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。
向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。
4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。
说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。
2.麦克斯韦方程、电荷守恒定律、边值关系、极化强度与极化电荷的关系、磁化强度与磁化电流的关系、应用它们进行计算和证明。
郭硕鸿《电动力学》习题解答完全版(1-6章)
微商 (∇ = e x
r ∂ r ∂ r ∂ + ey + e z ) 的关系 ∂x ∂y ∂z r r r r r r 1 r r r ' ' 1 ' r ∇r = −∇ r = , ∇ = −∇ = − 3 , ∇ × 3 = 0, ∇ ⋅ 3 = −∇ 3 = 0.(r ≠ 0) r r r r r r r
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
3. 设 r =
( x − x ' ) 2 + ( y − y ' ) 2 + ( z − z ' ) 2 为源点 x ' 到场点 x 的距离 r 的方向规定为从 r ∂ r ∂ r ∂ + e y ' + e z ' ) 与对场变数求 ∂x ' ∂y ∂z
源点指向场点 1 证明下列结果 并体会对源变数求微商 (∇ = e x
证明
r ∂( x − x ' ) ∂( y − y ' ) ∂( z − z ' ) ∇⋅r = + + =3 ∂x ∂y ∂z r ex r ∂ ∇×r = ∂x x − x' r ey ∂ ∂y y − y' r ez ∂ =0 ∂z z − z'
郭硕鸿电动力学习题解答完全版(1_6章)
1. 根据算符∇的微分性与矢量性 推导下列公式∇(Ar ⋅ Br) = Br × (∇× Ar) + (Br ⋅∇)Ar + Ar ×(∇× Br) + (Ar ⋅∇)Br Ar × (∇× Ar) = 1 ∇Ar 2− (Ar ⋅∇)Ar2 解1 ∇(Av ⋅ Bv) = Bv × (∇× Av) + (Bv ⋅∇)Av + Av × (∇× Bv) + (Av ⋅∇)Bv首先 算符∇是一个微分算符 其具有对其后所有表达式起微分的作用 对于本题 ∇将作用于 Av 和Bv又∇是一个矢量算符 具有矢量的所有性质因此 利用公式 cv × (av ×bv) = av ⋅(cv ⋅bv) − (cv ⋅av)bv 可得上式 其中右边前两项是 ∇作用于 v v A 后两项是∇作用于 Bv v2 根据第一个公式 令 A B 可得证2. 设 u 是空间坐标 x y z 的函数 证明∇f (u) = df∇u du∇⋅ Ar(u) = ∇u ⋅ dArdur ∇× Ar(u) = ∇u × .dA du证明 1∇f (u) = ∂f (u) er x + ∂f (u) er y + ∂f (u) er z = df du ⋅ e x + r ∂u er y + df ∂ur ⋅⋅ e z = df ∇u ∂u ∂x ∂y ∂zdu ∂y du ∂z du 2∂Ar y (u) ∂y dAr y (u) du ∂Ar x (u) + ∂x + ∂Ar z z(u) = dAr x (u) ⋅ ∂u + ⋅ ∂u + dAr z (u) ⋅ ∂u r∂z = ∇u ⋅ du ∇⋅ Ar(u) = dA∂z du ∂x ∂y dz 3r r r e z ∂ e e ∂Ar y )er x + (∂Ar − ∂z∂Ar ∂Ar x )er z = ∂y r rx y ∇× Ar(u) = = (∂ x − ∂ )e y + ( y − ∂x∂ ∂ A A r z z ∂x ∂y A y (u) A z (u) ∂z ∂y ∂z ∂x r r r A x(u)= (dAr z ∂ dAr y ∂u r dAr x ∂u − dA r r u − dA u r dAr)e y + (dA u − du ∂z )e x + ( ∂u r ∂ ∂ r x y z du ∂x du ∂y )e z = ∇u × dudu ∂y du ∂z du ∂x3. 设r = (x − x ' ) 2+ (y − y ' ) 2+ (z − z' ) 2为源点 x'到场点 x 的距离 r 的方向规定为从 源点指向场点r ∂ ' + er ∂ '+ er ∂ 1 证明下列结果 并体会对源变数求微商 (∇'= e ∂z ' )与对场变数求zx ∂x y ∂y 微商(∇ = er x ∂ r ∂ r∂+ e z ∂z)的关系∂x + e y ∂y r r r r r r 1 r ' 1 r r r r r∇r = −∇'r = ,∇ = −∇ = − ,∇×r 3 = 0,∇⋅ r = −∇' 3 = 0.(r ≠ 0)r r 3 3 r (最后一式在人 r 0点不成立 见第二章第五节) 2 求∇⋅rr,∇×rr,(ar ⋅∇)rr,∇(ar ⋅rr),∇⋅[Er 0 sin(kr ⋅rr)]及∇×[Er 0 sin(kr⋅rr)],其中ar,kr 及Er 0均为常矢量证明 ∇⋅rr=∂(x − x ∂x ') + ∂(y − y∂y ') + ∂(z − z ') =3 ∂zr r r e e e x y z ∇×rr =∂ ∂ ∂ = 0 ∂x x − x ∂y y − y ∂z z − z' ' '∂ v(av ⋅∇)rr = [(a x ev x + a y ev y + a z ev z ) ⋅ ( e x + ∂∂y ev y + ∂∂z ev z )][(x − x')ev x + (y − y')er y + (z − z')ev z ]∂x = (a x ∂ + a y ∂ + a z )[(x − x')ev x + (y − y')er y +(z − z')ev z ] ∂ ∂x ∂y ∂z= a x ev x + a y ev y + a z ev z =av∇(av ⋅rv) = av × (∇×rv) + (av ⋅∇)rv + rr × (∇×av) + (rv ⋅∇)⋅av= (av ⋅∇)rv + rv ×(∇×av)+ (rv ⋅ar)⋅av= av + rv × (∇×av) + (rv ⋅∇)⋅av∇⋅[Er 0 sin(kr ⋅rr)] = [∇(sin(kr ⋅rr)]⋅ Er 0 + sin(kr ⋅rr)(∇⋅ Er 0)= [∂∂x sin(kr ⋅rr)er x + ∂∂y sin(kr ⋅rr)er y + ∂∂z sin(kr ⋅rr)er z ]E 0= cos(kr ⋅rr)(k x er x + k y er y + k z er z )Er 0 = cos(kr⋅rr)(kr⋅ Er) ∇×[Er 0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er 0 4. 应用高斯定理证明dV ∇× fr = ∫S dSr × fr∫V应用斯托克斯 Stokes 定理证明∫S dSr ×∇φ =∫Ldlr φ证明 1)由高斯定理dV ∇⋅ gr = ∫SdSr ⋅ gr∫ V ∂g 即 (∂ g ∂x ∂g ∫ V x + y + z z )dV = ∫ g x dS x + g y dS y + g z dS z∂∂y S而 ∇× frdV = [( f z − ∂∂z f y )ir + ( f x − ∂∂x f z )rj + ( f y − ∂∂y f x )kr]dV ∂ ∂ ∂ ∫ V∫ ∂y ∂z ∂x= ∫ [∂∂x ( f y kr − f z rj) + ∂∂y ( f z ir − f x kr)+ ∂∂z ( f x rj − f y ir)]dVr r [( f z dS y − f y dS z )ir + ( f x dS z − f z dS x )rj + ( fy dS x − f x dS y )kr] ( fy kr − f z rj)dS x + ( f z ir − f x kr)dS y + ( f x rj − f y ir)dS z∫ S dS × f= ∫ 又S = ∫ 若令H x = f y kr − f z rj,H y = f z ir − f x kr,HZ= f x rj − f y ir则上式就是∇⋅ HrdV = ∫S dSr ⋅ Hr ,高斯定理 则证毕 ∫V 2)由斯托克斯公式有fr ⋅dlr = ∫S ∇× fr ⋅dSr ∫lfr ⋅dlr =l ( f x dl x + f y dl y + fzdl z) ∫ ∫l ∫S∇× fr ⋅dSr = ∫Sf z− ∂ f y)dS x+ ( f x− ∂ f z)dS y+ ( f y− ∂ f x)dS z∂z ∂z ∂x ∂x ∂y ∂ ∂ ∂ (∂y而∫dlr φ=∫l∫SdSr ×∇φ= ∫S(dS z)ir + ( dS x)rj + ( ∂y dS y )kr ∂φ dS − ∂φ ∂φ dS − ∂φ ∂φ dS−∂φ ∂x yzx ∂z ∂y x ∂z r ∂φ rj)dS +(∂φ r i − ∂∂φx kr)dS y +(∂∂φx rj − ∂φ∂y ir)dSz∂φ = ∫ ( k −x ∂y ∂z∂z 若令 f x = φi , f y = φ j , f z = φk 则证毕5. 已知一个电荷系统的偶极矩定义为Pr(t) = ρ(x ,t)x dV, r ' r ' '∫ V 利用电荷守恒定律∇⋅ Jr +∂ρr ∂t = 0证明 P 的变化率为dPr =dt rr 'J(x ,t)dV '∫ V ∂Pr = ∂ρ r ' r '∂t x dV r ∫ V ' = − ∫ V ∇ ' j 'x dV r '' 证明 ∂t r∂t ) x = −∂Pr ' ∇'rj 'x 'dV ' = −∫[∇' ⋅(x ' j ) − (∇'x ')⋅rj ']dV ' = r '( ∫ V ∫ V ( j x' −∇' ⋅(x ' j )dV ' = ∫ j x dV ' − ∫S xrj ⋅dSr 若S → ∞,则( )⋅ xj dSr r ∫ = 0,(rj S= 0)r ∂t ) y =r ∂ρ ,(∂ρ∂t ) z = j dV ( ∫ j dV y' ∫' 同理 即z dPr = r r '∫ j x ,t)dV '( dt V mr × Rr 的旋度等于标量ϕ = mr ⋅ Rr 的梯 6. 若m 是常矢量 证明除 R 0 点以外 矢量 Ar =rR3R3度的负值 即∇× Ar =−∇ϕ其中 R 为坐标原点到场点的距离 方向由原点指向场点 证明mv × Rv)1 r 1 r 1 v r1 r ∇× Av = ∇× (= −∇×[mv × (∇ R1 )] = (∇⋅mv)∇ + (mv ⋅∇)∇−[∇⋅(∇ )]m −[(∇ )⋅∇]mv R 31 = (mv ⋅∇)∇ ,(r ≠ 0)r∇ϕ = ∇(mv⋅ Rv 1 r 1 r 1 r 1 r ) = −∇[mv ⋅(∇ )] = −mv ×[∇× (∇ )]− (∇ )× (∇×mv) − (mv ⋅∇)∇ R 3−[(∇ )⋅∇]mv = −(mv ⋅∇)∇ 1 r 1 r ∴∇× Av = −∇ϕ7 有一内外半径分别为 r 1和 r 2的空心介质球 介质的电容率为ε 使介质内均匀带静止自 由电荷 ρ f 求1 空间各点的电场2 极化体电荷和极化面电荷分布 ∫ 解 1∫S Dr⋅dSr =ρ f dV , (r 2>r>r 1)即 D ⋅ 4πr 2 = 43π (r 3 − r 13)ρ f(r 3 − r 13)ρ f 3εr 3∴Er= rr,(r 2 > r > r 1) r r Q = 4π (r 23 − r 13)ρ f ,(r > r 2) 3ε 0f 由 E ⋅dS =∫ 0 ∴Er = (r 23 − r 13) 3ε 0r 3 rρ f rr,(r > r 2) r < r 1时 E 0r 2) P ε 0χe Er = ε 0 r E = (ε −ε 0)Er ε −εε 0∴ρP = −∇⋅ Pr = −(ε −ε 0)∇⋅ Er = −(ε −ε 0)∇⋅[ (r 3 − r 13) 3εr 3 ρ f rr] =−ε −ε 0 ρ f ∇⋅(rr − r r 3 r)1 3ε r 3 = − ε −ε 0 ρ f (3− 0) = −(ε−ε 0 )ρ f 3ε εσ P = P 1n − P 2n考虑外球壳时 r r 2n 从介质 1指向介质 2 介质指向真空 P 2n = 0r 3 − r 133εr 3) r 23 − r 13 σ P = P 1n = (ε −ε 0) ρ f rr r=r 2= (1− ε 0ε ρ f 3 3r 2 考虑到内球壳时 r r 2σ P = −(ε −ε 0) r 3 − r 1 ρ f r r=r 1 = 0 3 r 3εr 38 内外半径分别为 r 1和 r 2的无穷长中空导体圆柱 沿轴向流有恒定均匀自由电流 J f 导体 的磁导率为µ 求磁感应强度和磁化电流 解Hr ⋅dlr = I f + ddt∫S Dr ⋅dSr =I f∫ 当r < r 1时,I f = 0,故Hr = Br = 0l H ⋅dlr = 2πrH = j f ⋅dSr = j f π(r 2 − r 12) r r∫ l∫ S当 r 2>r>r 1时µj f (r 2 − r 12)2rBv = = µ( r 2 − r 12r 2)rj f ×rr 2 当 r>r 2时 2πrH = πj f (r 22 −r 12)Br = µ0(r 22 2)rj f ×rr− r 1 2r 2 J M = ∇× Mr = ∇× (χM Hr ) = ∇× (µ − µ0) r µ −1)∇× (rjf ×r2r r − r 12 )µ0 )H = (µ02r 2 = (µµ −1)∇× Hr = ( µ −1)rj f ,(r 1 < r < r 2) 0 µ0α r M = nr × (Mr 2 − Mr 1),(n 从介质1指向介质2在内表面上 M1 = 0,M2 = (µµ −1) r 2 −r 12 ) r=r = 02r 21故αM = nr × Mr 2 = 0,(r= r 1) r 在上表面 r r 2时r M = nr × (−Mr 1) = −nr × Mr 1 r=r 2= − × r r 2 − r 12 r j f ×rr r=r 2 = − r 2 − r 12 r j ( µ −1) µr α f r 2 r 2 r 2 2r 0 r 22 − r 12 r 2= −(µµ−1) jf9 证明均匀介质内部的体极化电荷密度 ρP 总是等于体自由电荷密度 ρ f 的− (1− εε0 )倍ρP = −∇⋅ Pr = −∇⋅(ε −ε 0)Er = −(ε −ε 0)∇⋅ Er = −(ε −ε 0) ρ f = −(1−εε0 )ρ f 证明ε10 证明两个闭合的恒定电流圈之间的相互作用力大小相等 方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律) 证明1 线圈 1在线圈 2的磁场中的受力I 2dlv 2×rv 12 Bv 2 = µ0∫ 3 4π l r 12 2dFv 12 = I 1dlv 1 ×Bv 2µ0 I 1dlv 1 × (I 2dlv 2 ×rv 12) = µ0I 1I 2dlv 1 × (dlr 2×rv 12) ∴Fv 12 = ∫∫ 4π r 3 4π ∫∫ r 3l l 12 l l 12 1 2 1 2v r = µ0I 1I 2 4π ∫∫dl (dl ⋅ ) −132 (dlv 1 ⋅dlv 2) v v rv 12 r 31212 1r 12l l 1 2 2 线圈 2在线圈 1的磁场中受的力 同 1 可得v v r Fv 21 = µ0I 1I 2 4π∫∫dl (dl ⋅ 231 ) − 231 (dlv 2 ⋅dlv 1) v v r 21 2r 21 r 21l l 2 1分析表达式 1 和 21 式中第一项为v v rv 12 r 12dlv 2∫dl ⋅ 12 v v r = v dr 12 dlv 2 ⋅(− 1 ) 一周 = 0 ∫∫dl (dl ⋅ 3 ) = ∫ ∫ dl ∫ = r 2 ∫ 2 1 1 32 r r l l l 12 l l 1 12 l 12 1 2 2 2 2v v v r2 式中第一项 ∫∫dl (dl ⋅231 ) = 0同理 对 1 2 r l l 21 2 1r r∴Fv 12 = Fv 21 = − µ0I 1I 2 4π∫∫ 132 (dlv 1 ⋅dlv 2) r 12 l l 1 2 11. 平行板电容器内有两层介质 它们的厚度分别为 l 1和 l 2 电容率为ε1和ε 2 今再两板 接上电动势为Ε的电池 求1 电容器两板上的自由电荷密度ω f2 介质分界面上的自由电荷密度ω f若介质是漏电的 电导率分别为 σ1和σ 2 当电流达到恒定时 上述两问题的结果如 何解 在相同介质中电场是均匀的 并且都有相同指向l 1E 1 + l 2E 2 = Ε D − D 2n = ε1E 1 −ε 2E 2 = 0 介质表面上σ f = 0), 则1n ε 2Ε ε1Εl 1ε 2 +l 2ε1故 E 1 = l 1ε 2 + l 2ε1 ,E 2= 又根据D 1n − D 2n = σfn 从介质 1指向介质 2在上极板的交面上D 1 − D 2 = σ f 1 D 2是金属板 故 D 2 0ε1ε 2εl 1ε 2 + l 2ε1即 σ f 1 = D 1=而σ f = 02σ f = D 1' − D 2' = −D ,(D 1'是下极板金属 故D 1' =0)' 2 3 ε1ε 2εl 1ε 2 + l 2ε1∴σ f = − = −σf13若是漏电 并有稳定电流时Er 1 = rj ,Er 2 = rj1σ1 2σ 2r 1 又 1 σ1 2 σ 2 rj 2j = Εr l + l j = j 2n = j 1 = j 2, 稳定流动 电荷不堆积 1nE 1 = j 1 = σ 2Εσ1 l 1σ 2 +l 2σ1 σ1Ε Ε得 j 1 = j 2 = ,即:l 1 + l 2 j 2 E 2 = = σ1 σ 2σ 2 l 1σ 2 + l 2σ 1ε1`σ 2Ε l 1σ 2 + l 2σ1 ε 2σ1Εl 1σ 2 + l 2σ1σ = D 3 = σ f 下 = −D 2 = − f 上= ε 2σ1 −ε2σσ f = D 2 − D 3中 1 Ε l σ + l σ11 2 2 12. 证明1 当两种绝缘介质得分界面上不带面自由电荷时 电场线的曲折满足tan θ 2 = ε 2tan θ1 ε1其中ε1和ε 2分别为两种介质的介电常数 θ1和θ 2分别为界面两侧电场线与法线的夹角 2 当两种导电介质内流有恒定电流时 分界面上电场线曲折满足tan θ 2 = σ2tan θ1 σ1其中σ1和σ 2分别为两种介质的电导率 证明(1)根据边界条件 n × (Ev 2 − Ev 1) = 0,即 E 2 sin θ 2 =E 1 sin θ1由于边界面上σ f = 0 故 nv ⋅(Dv 2 − Dv 1) = 0 即 ε 2E 2 cos θ 2 =ε1E 1 cos θ1∴有tg θ 2 = tg θ1 ,即 tg θ ε 2 2 =tg θ1 ε1ε 2 ε1 (2)根据 Jv = σEv 可得 电场方向与电流密度同方向j 1 j 2cos θ 2 cos θ1由于电流 I 是恒定的 故有= σ1E 1 cos θ 2cos θ1σ E 2 n × (Ev 2 − E ) v 1 v 2 = 0 即 E 2 sin θ 2 = E 1sin θ1即 = 而 tg θ1 = σ1tg θ 2 σ2故有13 试用边值关系证明 在绝缘介质与导体的分界面上 在静电情况下 导体外的电场线 总是垂直于导体表面 在恒定电流的情况下 导体内电场线总是平行于导体表面 证明 1 导体在静电条件下达到静电平衡∴导体内Ev 1而nv × (Ev 2 − Ev 1) = 0v∴nv × Ev 2 = 0 故 E 0垂直于导体表面3 导体中通过恒定电流时 导体表面σ f = 0v v∴导体外E 2 = 0,即 D 2 = 0而nv ⋅(Dv 2 − Dv 1) = σ f = 0,即: nv ⋅ Dv 1= nv ⋅ε 0Ev 1 = 0 ∴nv ⋅ Ev 1 = 0导体内电场方向和法线垂直 即平行于导体表面14 内外半径分别为 a 和 b 的无限长圆柱形电容器 单位长度电荷为λ f 板间填充电导率 为σ 的非磁性物质1 证明在介质中任何一点传导电流与位移电流严格抵消 因此内部无磁场2 求λ f 随时间的衰减规律3 求与轴相距为 r 的地方的能量耗散功率密度4 求长度为 l 的一段介质总的能量耗散功率 并证明它等于这段的静电能减少率r∂ρ f∂t 1 证明 由电流连续性方程 ∇⋅ J += 0据高斯定理ρ f = ∇⋅Dr ∂∇⋅ Dr ∂t ∂Dr =∂t ∴∇⋅ Jr + ∴∇⋅(Jr+= 0 即 ∇⋅ Jr +∇⋅∂Dr ∂t ∂D r ) = 0.∴Jr + ∂t = 0 即传到电流与位移电流严格抵消∫ (2)解 由高斯定理得 Dr ⋅ 2πrrdl =λ f dl ∫ ∴Dr = 2λπf r er r ,Er = λ f 2πεre rr∂Dr∂t又 Jr + = 0,Jr = σEr,Dr= εEr∂Er ∂t ∴σEr +ε = 0,Er = Er 0eσ= t ε∴ 2λπεf r er r = λr −σ ε r te r2πεr e电动力学习题解答第一章 电磁现象的普遍规律σ ε − t ∴λ f = λ fe0 3 解∂Dr ∂t Jr = − = − ∂ λ f σε σ λ f ⋅ − t ∂t (2πr e ) =ε 2πr1 = ( λ f)2σ2πεr能量耗散功率密度 J 2ρ = J2σ 5 解单位体积dV = l ⋅2πrdr Pr =λ f )2σl2πrdr = l2σπλε f2 ln ba 2b ∫(2πεr a r r b 1 l λ2f ∫ l λ f 2b1 a2 D ⋅ EdV = a 2 2πεr dr = 12 ⋅ 2πε ⋅ln ba静电能 W = ∫减少率 − ∂W = − l λ f∂λ f∂t 2= l λ 2ln baf σ2πε2πε ln ba ⋅ ∂tr2 1.一个半径为 R 的电介质球 极化强度 P=K r 电容率为 (1)计算束缚电荷的体密度和面密度 (2)计算自由电荷体密度 (3)计算球外和球内的电势(4)求该带电介质球产生的静电场总能量 解 (1)r ρ P = −∇⋅ Pr = −K ∇⋅ 2 = −K(∇ r ⋅r + 12 ∇⋅rr) = −K / r r 1 r 2 2r rσ P = −nr ⋅(Pr 2 − Pr 1) R又 球外无极化电荷r Pr 2 = 0 σ p = nr ⋅ Pr 1 R = nr ⋅ K rr 2 R = K / R(2) 由公式 Dr = εErDr = ε 0Er + PrεPr ε −εDr =ρ f = ∇⋅ Dr = ∇⋅ Pr = 2 `ε εK(ε −ε)rε −ε 0(3)对于球外电场 由高斯定理可得r E 外 ⋅dsr =Qε 0 ∫ εK∫∫∫ (ε −ε 0)r 2 ⋅rε 02sin θdrd θd ϕ 2 = ∫ ρ fdV ∴Er 外 ⋅ 4πr ∴Er 外 = ε 0εKR ε 0(ε −ε0)rr r 3 r r r 内Kε −ε 0 同理可得球内电场 E ⋅ r2∞Er 外 ⋅drr εKR ε 0(ε −ε 0)r∴球外电势ϕ外∫ ∞∞Er 外⋅drr R Er 内 ⋅drr εK ε 0(ε −ε 0) ε −ε 0 K ln Rr球内电势ϕ内∫ R∫ +rKrr ⋅ K ε ε 0r r εKr D 内 ⋅ Er 内21 2 1 2 ε ε 0 ε 4 ω内 ⋅ ⋅ ⋅ 2 ε ε 0 r 2 ∴ r 2r 2 ∫∫∫ 1 εK 2 K ∴W 内 ω dV ∫ ⋅ r 2 ⋅ r 2sin θdrd θd ϕ 2πεR ε −ε 0 ) 22 内 2 (ε −ε 0) 1 ε 2 K 2 R 2 1 ⋅ r 2 ⋅sin θdrd θd ϕR 2 ε 0(ε −ε 0)2 r 42 22πε RK ε 0(ε −ε 0)2W 外 ∫ ω外dV = ∫∫∫ ⋅ ∴W =W 内 W 外 2πεR(1+εε )( K ) 2 0 ε −ε2 在均匀外电场中置入半径为 R 0的导体球 试用分离变数法球下列两种情况的电势 1 导体球上接有电池 使球与地保持电势差φ0; 2 导体球上带总电荷 Q.解 1 当导体球上接有电池 与地保持电势差φ0时 以地为电势零点本问题的定解条件如下φ内 φ0R= R 0ϕ R →∞ = −E 0Rcos θ ϕ 0 外 ∇ 2ϕ外 0 R> R 0 且 ϕ 0是未置入导体球ϕ 外R=R 0= φ0前坐标原点的电势∞bn R n∑ a nRn根据有关的数理知识 可解得 ϕ外P n cos θ )1n 由于ϕ外= −E 0Rcos θ ϕ0即R →∞ϕ外 a 0 + a 1Rcos θ + a n R n P n (cos θ) + b 0 ∞ + b 1R 2 cos θ + ∞b n R n+1 P n (cos θ ) R →∞ = −E 0Rcos θ +ϕ 0∑ ∑ R n=2 n=2故而有 a 0 = ϕ 0,a 1 = −E 0,a n = 0(n > 1),b n = 0(n >1)b 0 R b 1 2cos θ∴ϕ外 ϕ 0 E 0Rcos θ+ Rb 0 R 0 b 1又ϕ外 R=R 0= φ0,即 ϕ外 R=R 0= ϕ 0 −E 0Rcos θ+ 2 cos θ = φ0R 0 ϕ + b 0 =φ0 0 R 0故而又有∴b 1 − E 0R 0 cos θ + 2cosθ = 0 R 0 得到b 0 = (φ0 −ϕ 0)R 0,b 1 =E 0R 02最后 得定解问题的解为ϕ外 = −E 0Rcos θ +ϕ 0 + (φ0 −ϕ 0)R 0 + E 0R 3 0cos θ(R > R 0)R R2 当导体球上带总电荷 Q 时 定解问题存在的方式是∇ 2 2 φ内 0(R < R 0) φ外 0(R > R 0) ∇φ 有限 内 R →0φ E 0Rcos θ +ϕ 0(ϕ 0是未置入导体球前坐标原点的电势 外 R →∞ φ φ外内 R R 0 ∂φ外 − ∫ s ε 0ds Q(R = R 0) ∂R 解得满足边界条件的解是b nR n ∑ n=0a n R n P n cos θ ∑ n=0ϕ内ϕ外 ϕ 0E 0Rcos θ1 P n cos θ由于ϕ外 R →∞ 的表达式中 只出现了 P 1(cos θ cos θ项 故 b n = 0(n > 1)b 0 R b 1 2cos θ∴ϕ外 ϕ 0 E 0Rcos θ+ R又有ϕ外 R=R 0 是一个常数 导体球是静电平衡b 0 R 0 b 1 2 cos θ = C ϕ外 R=R 0 = ϕ 0 −E 0R 0cos θ+ Rb 1 ∴−E 0R 0 cos θ + 2 cos θ = 0即b 1 = E 0R30 R 0ϕ外 ϕ 0 E 0Rcos θ + b 0 + E 0R 3cos θR R 2∂φ外 Q4πε又由边界条件− ∫ s ε 0 ds Q ∴b 0 =∂r Q∴ϕ内−ϕ 0,R < R 0 4πε 0R 0 Q4πε 0R E R 0 2 3ϕ外+ 0 R cos θ E 0Rcos θ R > R 03 均匀介质球的中心置一点电荷 Q f 球的电容率为ε 球外为真空 试用分离变数法求空间电势 把结果与使用高斯定理所得结果比较 提示 空间各点的电势是点电荷Q f 的电势Q f 4πεR 与球面上的极化电荷所产生的电势的叠加 后者满足拉普拉斯方程 解 一. 高斯法rE ⋅dsr = Q 总 Q f + Q P = QfR > R 0 ,由高斯定理有 ε 0 ∫对于整个导体球 在球外 而言 束缚电荷Q P = 0)∴Er = Q f4πε 0R 2Q f积分后得 ϕ外4πε 0R + C.(C 是积分常数又由于ϕ外 R →∞= 0,∴C =Q f∴ϕ外 = 4πε 0R (R > R 0)在球内 R < R 0 ,由介质中的高斯定理 ∫Dr ⋅dsr = Q f又 Dr =εEr,∴Er = Q f4πεR 2Q f4πεR积分后得到 ϕ内+ C 2.(C 2是积分常数Q f 4πε 0R 04πεR 0Q f由于ϕ内ϕ外 R=R 0,故而有 = + C 2Q f 4πε 0R 0Q f∴C 2 = − 4πεR 0 (R < R 0).Q f 4πεR 4πε 0R 0Q f Q f ∴ϕ内− 4πεR 0 (R < R 0)二. 分离变量法本题所求的电势是由点电荷Q f 与介质球的极化电荷两者各自产生的电势的叠加 且有Q f4πεR 着球对称性 因此 其解可写作 ϕ =+ϕ' 由于φ'是球对称的 其通解为 ϕ'= a +bRQ f4πεR由于球心有Q f 的存在 所以有ϕ内 R →0∞ 即ϕ内aQ f 4πεR b R在球外有ϕ外 R →∞即ϕ外由边界条件得Q f 4πεR 0 Q f + b ϕ内 ϕ外 R 0 ,即R+ a4πεR 0 R 0∂ϕ内 ∂ϕ外 ε Q f2 − ε 0b = −εQ f ε ε 0 R 0,即0 4πεR 0 R2 4πεR 02 ∂R ∂RR 0∴b = Q 1 − ε1),a 1 −ε1) Q f f 4πε(ε 0 4πR 0 (εQ fϕ 4πε 0R ,R > R 0 Q f 外 ∴ Q f 4πεR 4πε 0R 0 4πεR 0Q fϕ内 − ,R < R 0r4 均匀介质球 电容率为ε1 的中心置一自由电偶极子 P 球外充满了另一种介质 电 f容率为ε 2 求空间各点的电势和极化电荷分布r rP ⋅ R 3 +φ',而φ'满足拉普拉斯方程 f 提示 同上题 φ =4πε R1 ∂φ 解 ε1 内 = ε2 ∂R ∂φ外∂R∂φ内 2P f cos θ +∑lA l R 又ε1 R 0 = ε1(− l 0 1P l∂R 4πε1R 03 ∂φ外 = ε 2(− 2P f cos θ 4πε1R 03B ll ε 2 −∑(l 1 R 2 P l R 0∂R 0比较 P l (cos θ)系数B 0 0 A 0 02ρ f3 +ε1A 1 = − 2ε 2ρ f3 − 2 3 2ε B 1,及A 1 = R 03 B 1 4πR 0 4πε1R 0 R2(ε1 −ε 2)ρ f 2(ε1 −ε2)ρ f得 A 1 = 3 ,B 1 = 4πε1(ε1 + 2ε 2)R 04πε1(ε1 + 2ε 2)比较 P 2(cos θ )的系数3B 2 4 , A 2 = RB 22ε1A 2R 04R 01及 A 2(1+ ε1R 0 ) =所以 A 2 = 0,B 2 = 0 同理 A l = B l = 0,(l = 2,3L) 最后有ρr f ⋅ Rr 2(ε1 −ε2)ρ fρ f ⋅ Rr 3 + 2(ε1 −ε 2)ρr f ⋅ Rr r φ内 3 + 3 Rcos θ = 3 ,(R < R 0) 4πε1R ρr f ⋅ Rr4πε1(ε1 + 2ε 2)R 0 4πε1R 4πε (ε + 2ε )R 1 1 2 0ρ f ⋅ Rr 3 + 2(ε1 −ε 2)ρr f ⋅ Rr 3 = 3ρr f ⋅ Rr r 2(ε1 −ε2)ρ fφ外 3 + 2 cos θ = 3 ,(R > R 0) 4π (ε1 + 2ε 2)R 4πε1R 4πε1(ε1 + 2ε 2)R 4πε1R 4πε (ε + 2ε )R1 1 2球面上的极化电荷密度σ P = P 1n − P 2n ,nr 从 2指向 1 如果取外法线方向则σ p = P 外n − P 球n = [(ε 2 −ε 0)∇φ外)]n −[(ε1 −ε 0)∇φ内)]n∂φ外∂φ内 = −(ε 2 −ε 0) ∂R + (ε1 −ε 0) ∂RR R 0 − 6ρ f cos θ 3 − (ε1 −ε 0)[6(ε 0 −ε 2)ρ f cos θ − 2(ε1 −ε 2) − 2(ε1 + 2ε 2)ρ cos θ] 1 1 2= (ε 2 −ε 0)f 4π (ε1 + 2ε 2)R 03 4πε (ε + 2ε )R 3 0 4π (ε1 + 2ε 2)R 0 = 6ε1(ε 0 −ε 2) + 6ε 2(ε1 −ε 0) ρ cos θ = −3ε 0(ε1 −ε 2) 3 ρ f cos θ f 3 04πε (ε +2ε )R 2πε1(ε1 + 2ε 2)R 01 12求极化偶极子P = qlr 可以看成两个点电荷相距 l 对每一个点电荷运用高斯定理 就得到在每个 rf点电荷旁边有极化电荷ε 0 ε0 q P = ( −1)q f ,−q P = ( −1)(−q f ) 两者合起来就是极化偶极子ε1 ε1 P P = ( −1)Pr f r ε0 ε1r5.空心导体球壳地内外半径为 R 1和 R 2 球中心置一偶极子P 球壳上带电 Q 求空间各点 电势和电荷分布 解R2φ3∇2φ3 = 0,φ3 r →∞ = 0 φR 1φ = C,φ2 r →0 = ∞ φ2r P ⋅rrφ1 = 3 +φ1',φ1' r →0为有限值4πε 0rB ll+1 ∑ rφ3 P l (cos θ ),φ3 r −R = C2 φ = C,φ2 r=R 1 = C 2r P f ⋅rr∂φ3 ∫ ∂r dS r=R∂φ1 = Q∑ 3 + A l r l P l (cos θ)φ = + ∫ ∂r dS r=R 1 4πε 0r 2 1εB B B 2 3 2 0 + 12 cos θ + R P 2 +L = CR R 2 2 P f cos θ2 + A 0 + A 1R 1 cos θ +L = C 4πε 0R 1即 A 0 = R 0 = C,(A R 1 +2P f 2 )cos θ = 0,B l = 0(l = 1.2.3L), A l = 0(l =2.3.4L) B1 4πεR12P f cos θ 3 4πε 0R 1 P f cos θ PL = − 3 + A 1 cos θ +L 2πε 0R 1又 ∂φ1 =− ∂r+∑lA l R l −1 1 ∂φ B l r B 02 − 2 RB 13 cos θ+L ∂r 3 =∑(−l−1)l+2 P l = − R 1 1 ∂φ3 ∂r B 2 dS = RB 02 ∫dS = 4πR 1 2 = 4πB 02 B 0 R 1 ∫ dS = ∫ 0 则 − R 11 P f− P f∂φ1 ∂r 2π π 2π π∫ dS = ∫ ∫− 2πε 0R 13 cos θR 12 sin θd θd ϕ+∫ ∫ 3 cos θR 12 sin θd θd ϕ = 0 + 0 = 0 00 4πε 0R 1∂φ3 ∂r ∂φ1 0 = εQ∫ dS + ∫ = 4πB ∂r 故 −− P f Q QB 0 = 4πε 0 , A 0 = 4πε 0R 2 , A 1 =34πε 0R 1最后有Pr f ⋅rr Pr ⋅rr 2 − Q φ1 = 3 + 4πε 0R 2 ,(r <R 1) 4πε 0R 1 4πε 0r Q φ = 4πε 0r ,(r > R 2) 3 φ 2 = 4πε 0R 2 ,(R 1 < r < R 2) Q电荷分布在 r R 1的面上− P f cos θ − P f cos θ = −P f cos θ ∂φ σ P = ε 0 1 = + ∂r 2πR 3 4πR 3 3 4πR11 1 1在 r R 2面上∂φ σ P = −ε 03 =∂r Q2 4πR 22r6 在均匀外电场 E 0中置入一带均匀自由电荷 ρ f 的绝缘介质球ε 求空间各点的电势B l )P l (cos θ ) (A l r l + r l+1 ∑ φ 外1 ρ f r 2+φ ' 解 φ内6ε = 0 ∇ 2 φ 'rφ内是由高斯定理解得的 ρ f 的作用加上 E 0的共同作用 φ外 r →∞ = −E 0r cos θ,φ ' r →0 有限 B l r l∑ φ E 0r cos θ + +1 P l (cos θ ) 外φ内 1 ρ f r 2 +∑c e r l P l (cos θ )6ε φ内 φ外 r = R 0) :B 0 B 1 B 21 ρ f R 02 + c + c 1R 0 cos θ + c 2R 0 2P 2+ 6εE 0R 0 cos θ + R 0 R 0 2 + R+ 3 P 2 + 0即 ρ f6ε R 0 2 + c 0 = BR 0 B 1E 0R 0 + 2 = c 1R 0 R 0 B 2 23= c 2R 0R 0∂φ ∂φ外∂r 内 = ε∂r ε ∂φ 内 = ρf ρ f R 0 + lcl R 0l −1P l (cos θ) ]= 3 R 0 +εc 1 cos θ + 2εc 2R 0P 2 +L3ε∑ ∂r ∂φ外= ε 0(−E 0 cos θ +∑(−l −1) B l P l)∂r R 0l+2ε0B 0 − 2ε0B 1 cos θ −3ε0B 2 −ε0E 0 cos θ −P 2 +LL R 02 R 0 3 4 R 0 ρ f ε B 02εC 1 = −ε 0E 0 −2ε 0B 1 2εC 2R 0 = − 3ε 0B4 2LL 3 R 0 = −0 R 即R 3 R= − R 3C 0 = −R 02ρ f (3ε10 + 61ε)B 00 3ερ f解方程得B = − 3ε 0E 0R 3 0C = − 3ε 0E 0 1 + E 0R 031 ε + 2εε + 2ε及 2εC 2R 0 = −3ε 0R 0C 2 即 C 2(2εR 0 + 3ε 0R 0) = 0l = 2,3LL C 2 = B 2 = 0同理 C l = B l = 0E 0r cos θ ± R 3 0 ρ f 3 0 cos θ − 3ε 0E 0R 3 + E 0R φ 0 2 cos θ,r > R 0(ε + 2ε 0)r 外 r 2 3r ε 0 得ρ 1 3ε 0 6ε1 3ε 0E 0 6εf r2 ± R 0 2ρ f ( ε + 2ε 2 r cos θ,r< R 0 φ 内7 在一个很大的电解槽中充满电导率为 σ 2的液体 使其中流着均匀的电流 δ f 0今在液 体中置入一个电导率为 σ 1的小球 求稳衡时电流和电荷分布 讨论 σ 1 >> σ 2 及σ 2 >> σ 1两种情况的电流分布特点先求空间电势∇ 2φ内 0 0 φ内 φ外r = R 0∇ 2φ外因为δ内n δ外n (r = R 0) 稳恒电流认为表面无电流堆积 即流入n =流出n 故 σ 12φ2φ外2r 内= σ 22r并且δ外 r →∞ = δ 0 即 φ外 r →∞= −E 0rcos θ( j f = σ 2E 0) 0φ内 r →∞有限 可以理解为在恒流时r → 0的小封闭曲面流入 流出φ 3σ 2σ 12σ 2 E 0r cos θ,r < R 0内这时的解即为σ −σ cos θ φ外 E 0r cos θ + E 0R 0 3(σ 1 + 2σ 2 1 2) ,r > R 0r22φe +2φer θ r 1 r sin θ 2Φ 2φ r e φ ) 求内外电场 E = −∇φ = −( 2r r+ 2θ (2φ内er 12φ内 r 内r + r 2θ er θ ) = σ 1 + 2σ 2 E 0(cos θer r − sin θer θ ) 3σ 2E 2r 3σ 2 σ1 + 2σ2E 0er z =3 E 外 E 0(cos θer r − sin θer θ ) +E 0(cos θer r − sin θer θ ) + E R 0 σ −σ )[2cos θer r + sin θer θ ] 0 r 3 (σ 1 + 2σ 21 2 E R 0 σ −σ 3 )[3cos θer r − cos θer r + sin θer θ ] 0 r 3 (σ 1 + 2σ 21 2 vσ 1 −3E 0 cos θ ev E E 0 + R 03 ( 2 ) σ 1 + 2σ2r − r 0 r 3求电流r 内 v1 内v 外σ 2Ev 外根据 j σEj vj f 0 = σE v 2 0v r v 及( j ⋅r)r = σ 2E 0r cos θr er f 0r r 5r 5 3(rj f ⋅rr)rr r− j 30 ] 3σ1 σ1 2σ 2r , j 外 = rj 内 σ1 σ 2 σ1 2σ 2f 3 R 0得 j 内j [ 0f 0 5 r r) = 3ε 0E 0 cos θ (σ1−σ 2) 1ω f = ε 0(E 2n − E 1n ) = ε 0(E 外n− E 内nσ + 2σ 28.半径为R 0的导体球外充满均匀绝缘介质ε 导体球接地 离球心为 a 处(a > R 0)置一点 电荷Q f 试用分离变数法求空间各点电势 证明所得结果与镜像法结果相同 提示1 r 1 = 1 ( ) ∞R ∑ n= P n (cos θ).(R > a) a a n=0R 2 + a 2 − 2aRcos θ 解 1 分离变数法由电势叠加原理 球外电势Q f 4πεR ' ' +φ ,φ是球面上感应电荷产生的电势 且满足定解条件φ外∇ φ = 0,(r >R 0) 2 ' zφ ' r →∞ = 0 Q f P φ = 0 外r=R 0ar根据分离变数法得∞ B l1 P l (cos θ),(r >R 0) O'= ∑ φ r l+l=0 Q f1∞Bl P l (cos θ)∑ ∴φ外+ *4πε r l+1 a 2 + r 2 − 2ar cos θl=0= Q ( ) P n (cos θ ) + B r l+ 1 P l (cos θ),(r < a)1 4πε a∞ r a ∞f ∑ n ∑ ln=0 l=0Q f R 0 )l + B l∞∑ 又φ外 = [ 4πεa ( a]P l (cos θ) = 0 r=R 0 l+1o R n=0 Q f B 0 Q f R 0 Q f R B l0 )l + R l+1= 04πεa R 0 = 0, 4πεa a 4πεa( a 即+ + B 12 = 0,..., R 0 0 Q f R 3 Oa4πεaQ f ,B l = − R2l+1 Q f 0∴B 0 = −R 0 4πεa ,B 1 = − a l4πεa , 代入 * 式得解2 镜像法如图建立坐标系 本题具有球对称性 设在球z 内r 0处有像电荷 Q ' ,Q '代替球面上感应电荷对空间电场的Q f RR 2 P作用 由对称性 Q '在 O Q f 的连线上 Q’2rR 0先令场点 P 1在球面上 根据边界条件有r Q f r Q f Q ' Q ' ' + = 0,即 r = − Q =常数r Q f P 1Q 'Q f 将Q ' 的位置选在使∆ Q 'P 1O ∆ Q f P 1O,则有r Q 'R a= 常数 为达到这一目的 令Q '距圆心为 r 0 0r Q f r 0 = R 0 ,r 0 = R2 0 a 则R 0 ar Q ' ' = R 0 =常数 Q ' = − R Q f0 并有= − Q r Q f a a Q fR 1 R 2这样 满足条件的像电荷就找到了 空间各点电势为Q fR 0Q f 'Q f Q 1 = [ aφ外 = + −],(r > a).4πεr 1 4πεr 2 4πε a 2 + r 2− 2arcos θ+ (R 0 + 2r R2)r cos θ 2 2a a将分离变数法所得结果展开为 Legend 级数 可证明两种方法所求得的电势相等9 接地的空心导体球的内外半径为 R 1和 R 2 在球内离球心为 a(a<R 0)处置一点电荷 Q 用 镜像法求电势 导体球上的感应电荷有多少 分布在内表面还是外表面 解 球外的电势及导体内电势恒为 0 而球内电势只要满足φ内 R 1 = 0即可r因此做法及答案与上题同 解略QR 11 4πε 0Qa φ内 = [ −]R 2 + a 2 − 2Racos θR 1 42R 1 2R cos θ R2+ 2 − aa 因为球外φ = 0 故感应电荷集中在内表面 并且为Q.10.上题的导体球壳不接地 而是带总电荷 Q 0,或使其有确定电势ϕ0 试求这两种情况的电势 又问ϕ0与 Q 0是何种关系时 两种情况的解是相等的解 由于球壳上有自由电荷 Q 0 并且又是导体球壳 故整个球壳应该是等势体 其电势用 Q + Q 0 4πε 0R 2高斯定理求得为所以球壳内的电势将由 Q 的电势 像电荷−QR 1a 的电势及球壳的电势叠加而成 球外电势利用高斯公式就可得 故QR 11 4πε 0Q Q + Q 0 R 2 a φ内 = [ −+ ].(R < R 1)4 R 2 + a 2 − 2Racos θ R 1 2R 12R cos θ R2+ 2 − φ = aaφ = Q + Q 0 ,(R > R 2) 外 4πε RQR 11 4πε 0 Q a φ内 = [ −]+φ0.(R < R 1) 4R 2 + a 2 −2Racos θR 2R 12R cos θ R 2 + a 12 −或 φ = aφ = Rr 2 φ0,(R > R 2) 外当φ0 = Q + Q 0时两种情况的解相同4πε R 2 011 在接地的导体平面上有一半径为 a 的半球凸部 如图 半球的球心在导体平面上 点电荷 Q 位于系统的对称轴上 并与平面相距为 b b>a 试用电象法求空间电势 解 如图 利用镜像法 根据一点电荷附近置一P无限大接地导体平板和一点电荷附近置一接地导体 球两个模型 可确定三个镜像电荷的电量和位置Q − ba QRQ 1 = − ba Q,r 1 = abrr2Oa Q Q 2 = ba Q,r 2 = − ab r2rQ 3 = −Q,r 3 = −brr b-QQ 4πε 0 1 1 a φ = [ − + R 2 + b 2 − 2Rbcos θ R 2 + b 2 + 2Rbcos θ a b 4 2 + 2 a 2b R 2+ b Rcos θa+],(0 ≤θ < π2,R > a)a b4 2 − 2 abRcos θ 2 b R 2+12. 有一点电荷 Q 位于两个互相垂直的接地导体平面所围成的直角空间内 它到两个平面的距离为 a 和 b求空间电势z P(x, y, z) Q(x 0,a,b) a -Q(x 0,-a,b) b解 可以构造如图所示的三个象电荷来代替 两导体板的作用y+Q-Q(x 0,a,-b)(x 0,-a,-b)Q 4πε 0 1 1 φ = − [ − −(x − x 0)2 + (y − a)2 + (z −b)2 (x − x 0)2 + (y − a)2 + (z+ b) 21 1 + ],(y,z > 0)(x − x 0) 2 + (y + a) 2 + (z −b) 2 (x − x 0) 2 + (y + a) 2 + (z + b)213.设有两平面围成的直角形无穷容器 其内充满电导率为 的液体 取该两平面为 xz 面和 yz 面 在 x 0,y 0,z 0 和 x 0,y 0,-z 0 两点分别置正负电极并通以电流 I 求导电液体中的 电势解 本题的物理模型是 由外加电源在 A B 两点间建立电场 使溶液中的载流子运动形z 成电流 I,当系统稳定时 是恒定场 即 ∇⋅rj + ∂ρ∂t = 0 中∂ρ∂t = 0对于恒定的电流 可按静电场的方式处理r jA(x 0,y 0,z 0)于是 在 A 点取包围 A 的包围面ir⋅dsr i = Er ⋅σσEr ⋅dsr = Q 而又有r I = ∫ }⇒ σ1 I = Er⋅dsr ∫y∫ ε n1 I =ε Q ⇒ Q = I ε1 1 r jx∴有对 B σ σ B(x 0,y 0,z 0)Q = −Q = − I ε1zQ BσQ(-x 0,-y 0,z 0)Q(x 0,-y 0,z 0) Q(x 0,y 0,z 0)rj n = 0,即元电流流入容器壁 又在容器壁上 Q(x 0,y 0,z 0)由rj = σEr 有 j n = 0时 E n = 0r r y∴可取如右图所示电像-Q(-x 0,y 0,z 0)-Q(-x 0,y -z 0)0,-Q(x 0,-y 0,z 0)-Q(x 0,y 0,-z 0)x的图 说明 ρ = −(Pr ⋅∇)δ (xr)是一个位于原点的偶极子的电荷密度 d δ (x) 14.画出函数 d δ (x) dx 解 δ (x) =0,x ≠ 0∞,x =0 dxd δ (x) = lim δ (x + ∆x)−δ (x) dx ∆xx∆x →0 1 x ≠ 0时 d δ (x) = 0 dx0 − ∞ =−∞ ∆x 2 x = 0时a ∆x > 0, d δ (x) = lim dx ∆x →0 b)∆x < 0, d δ (x) = lim 0 − ∞ = +∞ dx ∆x∆x →0 15 证明1a 1 δ (ax) = δ (x).(a > 0) 若 a<0,结果如何2 x δ (x) =δ (x − x k 所以δ (ax) =δ (x)证明 1 根据δ[φ(x)]=∑φ'(x k )a 2 从δ (x)的定义可直接证明有任意良函数 f(x),则 f (x)⋅ x = F(x)也为良函数f (x)x δ (x)dx = f (x)⋅ x x=0 = 0∫16 一块极化介质的极化矢量为 Pr(xr ') 根据偶极子静电势的公式 极化介质所产生的静电势为Pr(xr ')⋅rrdV '4πε r 3 0ϕ = ∫V另外 根据极化电荷公式 ρ = −∇' ⋅ Pr(xr ')及σ = nr ⋅ Pr,极化介质所产生的电势又可表为r r P P ∇' ⋅ Pr(xr ') dV' +∫S ∫VPr(xr ')⋅dS r '4πε0rP ϕ = −4πε0rr试证明以上两表达式是等同的X ’O证明Pr(xr ')⋅∇'1r dV ' 1 4πε0 Pr(xr ')⋅rr r 3 1 dV ' = 4πε 0 ϕ = ∫ V ∫ V又有 ∇'p (P ) = ∇' ⋅ P + Pr ⋅∇ r r 1 r 1 r ' 1 r∇' ⋅ Pr P ∇' ⋅( ) r r 1 ∇' ⋅ Pr r P rdV '] = 4πε 0 [−∫ ∫ V 则 ϕ = 4πε 0 [−∫VdV ' + dV ' +∫S r ⋅dSr] 1 ' r ' V ' ∇' ⋅ Pr dV ' +∫S [ 1 Pr ⋅nr dS] = 1 4πε 0 ρ s σ r 4πε 0 [− ∫ V ' ∫ VP dV ' +∫S dS] P = r r r r 刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17 证明下述结果 并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧 电势法向微商有跃变 而电势是连续的2 在面偶极层两侧 电势有跃变ϕ 2 −ϕ 1 = ε10 nr ⋅ Pr而电势的法向微商是连续的 各带等量正负面电荷密度±σ 而靠的很近的两个面 形成面 偶极层 而偶极矩密度 Pr = limσlr.)σ →∞ l →0z2E ⋅∆s = σ ⋅∆s , E证明 1 如图可得ε1+xσ σ z − σ z =0 ∴E = 2ε ,φ1 −φ2 =S22ε 0 2ε 00 E= Er 1 = σer z 02 = ∂n 2E r 2 = 2ε 0∂φ1 ∂n 1 ∂φ σ(−er z ) 面2ε∴ ∂φ − ∂φ = σε 0 1 ∂n 12 2∂n 2)可得 Er =σ re +r z nrr1 ε 0nr ⋅ Prε 0∴φ2 −φ1 = limEr ⋅lr = limσ nr ⋅lr = 2-ε l →0 l →0 0r = Er ∂φ1 ∂n ∂φ2∂n又= E , z∴ ∂φ ∂n − ∂φ ∂n2 1= 0.18.一个半径为 R 0 的球面 在球坐标 0 <θ < π 的半球面上电势为ϕ0 在 <θ < π 的半π 22球面上电势为−ϕ0 求空间各点电势P (x) − P (x)1 , 01P (x)dx =n 1 + n −1 2n +1 ∫ 0n 提示 P n (1) = 1 0,(n =奇数)P n (0) = n1⋅3⋅5⋅⋅⋅(n − 1) 2⋅4⋅ 6(−1) 2,(n =偶数) 解∇2φ内 0 ∇2φ外 = 0 φ 内 r →0 < ∞ φ外 r →∞ = 0 φ0,0 ≤θ < π 2φ r=R = f (θ) =0 π −φ0, <θ ≤ π2 ∑ A l r l P l (cos θ) 这是φ内按球函数展开的广义傅立叶级数 A l r l 是展开系数 φ内 = 12l +1[ φ内 R P l (cos θ)d cos θ] = 2l +1[− π A l R 0l = f l = φ内 R P l (cos θ)⋅sin θd θ ]∫ −1 ∫ 2 2 0 0 0 π 2l +1[− φ0P l (cos θ)sin θd θ + π π = = ∫ ∫ 2 0 ∫ φ0P l (cos θ)sin θd θ ] 2 2 2l +1[φ0 0P l (x)dx −φ0 −1P l(x)dx]∫ 0 2 1 = 2l +1φ0[− 0 P l (x)dx + 1P l (x)dx ∫ ∫ 2−1 0 由 P l (−x) = (−1)lP l (x)2l +1φ ∫ 则 A l R 0l = 0[(−1) l+1∫1P(x)dx +1P(x)dx] 2。
《电动力学》课后答案
电动力学答案第一章电磁现象的普遍规律1.根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇A A A A )()(221∇⋅−∇=×∇×A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=c c c c BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+×∇×=⋅∇,所以A A A A A A )()()(21∇⋅−⋅∇=×∇×即A A A A )()(221∇⋅−∇=×∇×A2.设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )(,u u u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ×∇=×∇证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=×∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zx y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)(u A ×∇=3.设222)'()'()'(z z y y x x r −+−+−=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学课后习题解答(参考)
∂ ∂y
∂ ∂z
=
(
∂Az ∂y
−
∂Ay ∂z
)ex
+
(
∂Ax ∂z
−
∂Az ∂x
)ey
+
(
∂Ay ∂x
−
∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y
−
∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z
−
∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x
−
(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r
电动力学总结1-3
第一章 电磁现象的普遍规律§1电荷和静电场1.库伦定律(真空中静止点电荷Q 对另一静止点电荷Q '的作用力)r r Q Q F 304πε'= ;两种解释:1)超距作用:一个电荷的作用力直接施加于另一电荷;2)场传递:两电荷的作用通过电场传递——实践证明为正确的。
2.电场的描述1).点电荷电场强度30()4F Q r E x Q r πε==';与试探点电荷无关,给定Q ,它仅是空间点函数,是一个矢量场——静电场。
2).场的叠加原理 n 个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:3110()4n ni i i i i iQ r E x E r πε====∑∑。
3).连续分布电荷激发的电场强度()30()4Vx rE x dV rρπε''=⎰3. 高斯定理和散度 1)0SQ E dS ε⋅=⎰;微分形式: 0E ρε∇⋅=2)旋度()01SVV E d S E d V x d V ρε'⋅=∇⋅=⎰⎰⎰⇒0E ρε∇⋅=。
4. 静电场的旋度(场的环流性质) 由环路定理()0LSE dl E dS ⋅=∇⨯⋅=⎰⎰⇒0E ∇⨯=§2.电流和静磁场1.电荷守恒定律1)电流强度和电流密度(矢量)I :单位时间通过空间任意曲面的电量(单位安培);Q I t=∆;若是一个小面元,则用dI 表示,dQdI t=∆J:方向:沿导体内一点电荷流动方向;大小: 单位时间垂直通过单位面积的电量。
cos dQ J tdS θ=∆ c o s dIJ dS θ=,cos J dI J dS J dS θ==⋅I 与J 的关系 S S I dI J dS ==⋅⎰⎰,2)电荷守恒的实验定律 积分形式: SVJ dS dV t ρ∂⋅=-∂⎰⎰;微分形式: 0J tρ∂∇⋅+=∂(恒定电流:0=∙∇J )2.毕—萨定律闭合导线:034L Idl r B r μπ⨯=⎰;闭合导体: 034VJ rB dV r μπ⨯=⎰3.安培环路定理和磁场的旋度 1)环路定理0LB d l I μ⋅=⎰(SI J dS =⋅⎰为L 中所环连的电流强度()J J x =)。
电动力学习题答案第一章电磁现象普遍规律
第一章电磁现象的普遍规律根据算符的微分性与矢量性,推导以下公式:解:矢量性为①②③微商性④⑤由②得⑥⑦⑥+⑦得上式得令得设μ是空间坐标x,y,z的函数,证明:解:①②③设为原点到场点的距离,的方向规定为从原点指向场点。
证明以下结果,并体会对原变数求微商〔〕与对场变数求微商〔〕的关系〔最后一式在r=0点不成立,见第二章第五节〕⑵求及,其中及均为常矢量。
解:⑴⑵4. 4. ⑴应用高斯定理证明⑵应用斯托克斯〔Stokes〕定理证明解:⑴⑵5. 5. 一个电荷系统的偶极矩定义为利用电荷守恒定律证明的变化率为解:取被积区域大于电荷系统的区域,即V的边界S上的,那么。
6. 假设是常矢量,证明除R=0点以外矢量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。
解:有一内外半径分别为和的空心介质球,介质的电容率为,使介质内均匀带静止自由电荷,求空间各点的电场;⑵极化体电荷和极化面电荷分布。
解:⑴对空间Ⅰ做高斯面,由:对空间Ⅱ:做高斯面,由对空间Ⅲ:做高斯面,由⑵由时,由边值条件:(由1指2)向8. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为μ,求磁感应强度和磁化电流。
解:⑴由所以所以方向为对区域Ⅱ由方向为对区域Ⅲ有:(2) (2) 由由由同理由证明均匀介质内部的体极化电荷密度总是等于体自由电荷密度的倍。
即:解:由均匀介质有①②③④由①②得两边求散度由③④得10.证明两个闭合的恒定电流圈之间的相互作用力大小相等,发向相反。
〔但两个电流元之间的相互作用力一般并不服从牛顿第三定律〕解:令两个线圈中的电流分别为和。
电流圈对另一个电流圈中的电流元的作用力为:⑴其中⑵是电流圈在电流元处激发的磁感应强度,是从中的电流元到电流元的矢径。
将⑵式代入⑴式,并对积分,利用斯托克斯定理,同时注意到,即得到电流圈对的作用力:⑶同样,电流圈对中的电流元的作用力为:⑷其中⑸是电流圈在电流元处激发的磁感应强度,是从电流元到电流元的矢径。
电动力学答案chapter1
r r r r r r r r ∂Ax (u ) ∂A y (u ) ∂Az z (u ) dAx (u ) ∂u dA y (u ) ∂u dAz (u ) ∂u dA ∇ ⋅ A(u ) = + + = ⋅ + ⋅ + ⋅ = ∇u ⋅ ∂x ∂y ∂z du ∂x du ∂y dz ∂z du
S
若 S → ∞, 则 ( xj ) ⋅ dS = 0, ( j 同理
(
r ∂ρ ) ∂t
∫
r
r
r
S
= 0)
y
= ∫ j y dV ' , (
r ∂ρ ) z = ∫ j z dV ' ∂t
即
r r r dP = ∫ j ( x ' , t )dV ' V dt
r r r r r m ×R m⋅R r 的旋度等于标量 ϕ = 的梯 6. 若 m 是常矢量 证明除 R 0 点以外 矢量 A = R3 R3
电动力学习题解答 1. 根据算符 ∇ 的微分性与矢量性 推导下列公式
Байду номын сангаас
第一章
电磁现象的普遍规律
r r r r r r r r r r ∇( A ⋅ B) = B × (∇ × A) + ( B ⋅ ∇) A + A × (∇ × B) + ( A ⋅ ∇) B r r r r 1 r A × (∇ × A) = ∇A 2 − ( A ⋅ ∇) A 2 v v v v v v v v v v 解 1 ∇( A ⋅ B ) = B × (∇ × A) + ( B ⋅ ∇) A + A × (∇ × B ) + ( A ⋅ ∇) B
电动力学知识总结.
第一章电磁现象的普遍规律§1.1 电荷与电场1、库仑定律(1)库仑定律如图1-1-1所示,真空中静止电荷Q'对另一个静止电荷Q的作用力F为F=14πε0Q'Q ' (1.1.1) '3r-rr-r()式中ε0是真空介电常数。
(2)电场强度E静止的点电荷Q在真空中所产生的电场强度E为 'E=14πε0Q'r-r'3 (r-r) (1.1.2)'(3)电场的叠加原理rN个分立的点电荷在处产生的场强为NE=∑i=1Qi'4πε0r-ri'3 (r-r) (1.1.3)'i体积V内的体电荷分布ρ(r')所产生的场强为E=14πε0⎰ρ(r')dV' 'r-r'3 V (r-r) (1.1.4)' rr式中为源点的坐标,为场点的坐标。
2、高斯定理和电场的散度高斯定理:电场强度E穿出封闭曲面S的总电通量等于S内的电荷的代数和(∑Qi)除以ε0。
用公式表示为i或 S 1E⋅dS=ε0∑Qii (分离电荷情形)(1.1.5)S 1E⋅dS=ε0⎰V ρdV (电荷连续分布情形)(1.1.6)其中V为S所包住的体积,dS为S上的面元,其方向是外法线方向。
应用积分变换的高斯公式 SE ⋅dS =⎰V∇⋅E dV由(1.1.6)式可得静电场的散度为∇⋅E =1ερ3. 静电场的旋度由库仑定律可推得静电场E 的环量为 LE ⋅dl =0应用积分变换的斯托克斯公式 LE ⋅dl =⎰S∇⨯E ⋅dS从(1.1.8)式得出静电场的旋度为∇⨯E =0 1.1.7) 1.1.8) 1.1.9)(((§1.2 电流和磁场1、电荷守恒定律不与外界交换电荷的系统,其电荷的代数和不随时间变化。
对于体积为V,边界面为S的有限区域内,有d J⋅dS=-ρdV (1.2.1)S⎰Vdt或∂ρ ∇⋅J+=0 (1.2.2)∂t这就是电荷守恒定律的数学表达式。
电动力学电磁现象的普遍规律
电动力学复习资料第一章 电磁现象的普遍规律第一节 电荷和电场不是。
点电荷的概念是一种理想的概念,实际上不存在真正的点电荷,而是当r >> 电荷线度l 时,我们可以把电荷看成点电荷。
而当0→r 时,电荷不能再看成点电荷,也就是不能应用点电荷场强公式。
场点:欲求场的地点。
源点:激发场的地点。
不必须,如求均匀带电球内部的场强。
1、 点电荷的场强公式304Q rE rπε= ,当r →0时,E →∞,事实是否真的如此?2、 关于场点和源点,你能说些什么?它们是否必须位于不同区域内?3、 静电场是有源场还是无源场?是有旋场还是无旋场?静电场是有源无旋场。
第二节 电流和磁场1、通过导体中各处的电流密度不同,那么电流能否是恒定电流?为什么?举例说明。
可以是恒定电流。
如恒定电流通过粗细不均的导体,导体中各处的电流密度不同2、 电荷守恒定律0J tρ∂∇+=∂ 是一个普遍成立的公式,在稳恒电流情况下,它变成什么形式?0=∙∇'J 。
因为稳恒情况下0=∂∂t ρ。
3、稳恒电流的磁场是有旋还是无旋,是有源还是无源?并讨论非稳恒电流磁场的情况。
稳恒电流的磁场是有旋无源场 非稳恒电流的磁场也是有旋无源场第三节 麦克斯韦方程组1、简述麦克斯韦方程组的建立过程。
① 由高斯定理和库仑定律得真空中静电场的微分方程:0ερ=∙∇E , 0=⨯∇E② 由毕奥——萨伐尔定律得真空中静磁场的微分方程:0=∙∇B, J B 0μ=⨯∇③ 加上电磁感应定律和位移电流假设得真空中麦克斯韦方程:0ερ=∙∇E , t B E ∂∂-=⨯∇ ,0=∙∇B , t EJ B ∂∂+=⨯∇000εμμ 。
2、考察真空中的麦克斯韦方程组,总结电场、磁场的产生方式及性质。
电场有两种产生方式:① 电荷产生的电场是有源无旋场,② 变化的磁场产生的电场是无源有旋场。
磁场有两种产生方式:① 电流产生的磁场是有旋无源场,② 变化的磁场产生的电场是有旋无源场。
郭硕鸿《电动力学》习题解答完全版(1-6章)
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
节) 2 求
r r r r r r r r r r r r r r r ∇ ⋅ r , ∇ × r , (a ⋅ ∇)r , ∇(a ⋅ r ), ∇ ⋅ [ E 0 sin(k ⋅ r )]及∇ × [ E 0 sin(k ⋅ r )], 其中a , k 及E 0 均为常矢量
r (r 3 − r13 ) ρ f r ∴E = r , (r2 > r > r1 ) 3εr 3
7 有一内外半径分别为 r1 和 r2 的空心介质球 求 介质的电容率为 ε 使介质内均匀带静止自
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)
即
D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
3
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
电动力学复习要点习题选解(2012级)
α M = −(
9.
证明均匀介质内部的体极化电荷密度 ρ p 总是等于体自由电荷密度 ρ f 的 − (1 − ε 0 / ε ) 倍。 证明:在均匀介质中
P = (ε / ε 0 − 1)ε 0 E = (ε − ε 0 ) E 所以 ρ p = −∇ ⋅ P = −(ε − ε 0 )∇ ⋅ E = −(ε − ε 0 )(1 / ε )∇ ⋅ D
当 r1 < r < r2 时, 向量式为
E3 =
(r2 − r1 ) r f
3 3
3ε 0 r 3
r
(2)当 r1 < r < r2 时,
ρ p = −∇ ⋅ P = −∇ ⋅ ( D2 − ε 0 E 2 ) = −∇ ⋅ ( D2 −
= −(1 −
当 r = r1 时,
ε0 ε )∇ ⋅ D2 = −(1 − 0 ) ρ f ε ε
介质 1 中电流密度 介质 2 中电流密度
由于电流恒定, J 1 = J 2 ,
∴
σ 1ω f 1 / ε 1 = σ 2 (ω f 1 + ω f 3 ) / ε 2
∴
再由 E =
ωf3 =
E =
ε 2 σ1 σ 2 ε σ ( − )ω f 1 = ( 2 1 − 1)ω f 1 σ 2 ε1 ε 2 σ 2ε 1
H2 =
J f (r 2 − r12 )
B2 =
µ (r 2 − r12 )
H3 =
J f (r22 − r12 )
µ 0 (r22 − r12 )
M =(
所以
JM
(r 2 − r12 ) µ µ − 1) H 2 = ( − 1) J f ×r µ0 µ0 2r 2 µ µ µ = ∇ × M = ∇ × [( − 1) H 2 ] = ( − 1)∇ × H 2 = ( − 1) J f µ0 µ0 µ0
1.电动力学课后习题答案_第一章
电动力学课后习题答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(21∇⋅-∇=⨯∇⨯A 解:(1)由∇的微分性质得()∇⋅A B 可以变成两项,一次对A 作用()∇⋅A A B ,一次对B 作用()∇⋅B A B 。
由∇的矢量性质,()=()()⨯∇⨯∇⋅-⋅∇B A B A B A B ,可得()=()+()∇⋅⨯∇⨯⋅∇B A B A B A B 。
同理()=()+()∇⋅⨯∇⨯⋅∇A A B B A B A ,则:()=()+()=()()()()∇⋅∇⋅∇⋅⨯∇⨯+⋅∇+⨯∇⨯+⋅∇A BA B A B A B B A B A A B A B综上,原式得证。
(2)在(1)的结论式里令=A B ,得A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,即: 21()()2A ⨯∇⨯=∇-⋅∇A A AA2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, u u u d d )(AA ⨯∇=⨯∇ 解:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)()///()()()xy z x y z u xy z A u A u A u ∇⨯=∂∂∂∂∂∂e e e Az x y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂= z x y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=d d u u=∇⨯A3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学复习总结第一章 电磁现象的普遍规律2012答案
第一章电磁现象的普遍规律一、 填空题 1.已知介质中的极化强度Z e A P =,其中A 为常数,介质外为真空,介质中的极化电荷体密度=P ρ ;与P 垂直的表面处的极化电荷面密度P σ分别等于和 。
答案: 0, A, -A 2.已知真空中的的电位移矢量D =(5xy x e +2z y e )cos500t ,空间的自由电荷体密度为 。
答案: 5cos500y t3.变化磁场激发的感应电场的旋度等于 。
答案: B t∂-∂ 4.介电常数为ε的均匀介质球,极化强度z e A P =A 为常数,则球内的极化电荷密度为 ,表面极化电荷密度等于答案0,cos A θ 5.一个半径为R 的电介质球,极化强度为ε,电容率为2rr K P =,则介质中的自由电荷体密度为 ,介质中的电场强度等于 .答案: 20r K f )(εεερ-= 20r r K εε- 二、 选择题1.半径为R 的均匀磁化介质球,磁化强度为M ,则介质球的总磁矩为A .M B. M R 334π C.343R M π D. 0 答案:B2.下列函数中能描述静电场电场强度的是A .z y x e x e y e x ++32 B.φθe cos 8C.y x e y e xy 236+D.z e a (a 为非零常数)答案: D3.充满电容率为ε的介质平行板电容器,当两极板上的电量t q q ωsin 0=(ω很小),若电容器的电容为C ,两极板间距离为d ,忽略边缘效应,两极板间的位移电流密度为:A .t dC q ωωεcos 0 B. t dC q ωωsin 0 C. t dCq ωωεsin 0 D. t q ωωcos 0 答案:A4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的a 为非零常数A .r e ar (柱坐标) B.y x e ax e ay +- C. y x e ay e ax - D.φe ar答案:A5.变化磁场激发的感应电场是A.有旋场,电场线不闭和B.无旋场,电场线闭和C.有旋场,电场线闭和D.无旋场,电场线不闭和答案: C6.在非稳恒电流的电流线的起点.终点处,电荷密度ρ满足A.J ⋅∇=ρB.0=∂∂t ρC.0=ρD. 0≠∂∂tρ 答案: D7.处于静电平衡状态下的导体,关于表面电场说法正确的是:A.只有法向分量;B.只有切向分量 ;C.表面外无电场 ;D.既有法向分量,又有切向分量 答案:A8.介质中静电场满足的微分方程是 A.;,0tB E E ∂∂-=⨯∇=⋅∇ ερ B.0,=⨯∇=⋅∇E D ρ; C.;0,0=⨯∇=⋅∇E E ερ D.;,tB E D ∂∂-=⨯∇=⋅∇ ρ 答案:B9.对于铁磁质成立的关系是A.H B μ=B.H B 0μ=C.)(0M H B +=μD.)(M H B +=μ答案:C10.线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ⋅21; C. ρφ D. E D ⋅ 答案:B三、 思考题1、有人说:“当电荷分布具有某种对称性时,仅要根据高斯定理的积分形式这一个方程就可以求解静电场的分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章电磁现象的普遍规律一、 填空题 1.已知介质中的极化强度Z e A P =,其中A 为常数,介质外为真空,介质中的极化电荷体密度=P ρ ;与P 垂直的表面处的极化电荷面密度P σ分别等于和 。
答案: 0, A, -A 2.已知真空中的的电位移矢量D =(5xy x e +2z y e )cos500t ,空间的自由电荷体密度为 。
答案: 5cos500y t3.变化磁场激发的感应电场的旋度等于 。
答案: B t∂-∂ 4.介电常数为ε的均匀介质球,极化强度z e A P =A 为常数,则球内的极化电荷密度为 ,表面极化电荷密度等于答案0,cos A θ 5.一个半径为R 的电介质球,极化强度为ε,电容率为2rr K P =,则介质中的自由电荷体密度为 ,介质中的电场强度等于 .答案: 20r K f )(εεερ-= 20r r K εε- 二、 选择题1.半径为R 的均匀磁化介质球,磁化强度为M ,则介质球的总磁矩为A .M B. M R 334π C.343R M π D. 0 答案:B2.下列函数中能描述静电场电场强度的是A .z y x e x e y e x ++32 B.φθe cos 8C.y x e y e xy 236+D.z e a (a 为非零常数)答案: D3.充满电容率为ε的介质平行板电容器,当两极板上的电量t q q ωsin 0=(ω很小),若电容器的电容为C ,两极板间距离为d ,忽略边缘效应,两极板间的位移电流密度为:A .t dC q ωωεcos 0 B. t dC q ωωsin 0 C. t dCq ωωεsin 0 D. t q ωωcos 0 答案:A4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的a 为非零常数A .r e ar (柱坐标) B.y x e ax e ay +- C. y x e ay e ax - D.φe ar答案:A5.变化磁场激发的感应电场是A.有旋场,电场线不闭和B.无旋场,电场线闭和C.有旋场,电场线闭和D.无旋场,电场线不闭和 答案: C6.在非稳恒电流的电流线的起点.终点处,电荷密度ρ满足A.J ⋅∇=ρB.0=∂∂t ρC.0=ρD. 0≠∂∂tρ 答案: D7.处于静电平衡状态下的导体,关于表面电场说法正确的是:A.只有法向分量;B.只有切向分量 ;C.表面外无电场 ;D.既有法向分量,又有切向分量 答案:A8.介质中静电场满足的微分方程是 A.;,0tB E E ∂∂-=⨯∇=⋅∇ ερ B.0,=⨯∇=⋅∇E D ρ; C.;0,0=⨯∇=⋅∇E E ερ D.;,tB E D ∂∂-=⨯∇=⋅∇ ρ 答案:B9.对于铁磁质成立的关系是A.H B μ=B.H B 0μ=C.)(0M H B +=μ D.)(M H B +=μ 答案:C10.线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ⋅21; C. ρφ D. E D ⋅ 答案:B三、 思考题1、有人说:“当电荷分布具有某种对称性时,仅要根据高斯定理的积分形式这一个方程就可以求解静电场的分布。
”对此你的看法如何?答:从物理意义上看,高斯定理只反映了静电场性质的一个侧面(有源场),它对静电场性质的描述是不完备的,只有在特殊情况下,才能依据这种不完备的描述,来确定电场的分布。
在电场分布不具有高度对称的情形下,应配合环路定理,才能充分描述静电场。
从数学上看,在积分结果一定情况下,被积函数不能唯一确定,一般情况下,不能单靠高斯定理求解E 的函数关系,只当电场分布高度对称时可以作出这样的高斯面。
高斯面应满足:(1)高斯面一定要通过待求场强的那一点;(2)高斯面的积分部分或者与E 垂直,或者与E 平行;(3)与E 垂直的那部分高斯面上各点场强相等;(4)高斯面的形状比较简单,只有这样E 作为常量可从积分号中提出,才能由高斯定理求解出E 。
2、有人说:“只要力线不是涡旋状的,矢量场的旋度就一定等于零。
”这句话对否?你能否找到一个反例?答:这句话不对。
力线是涡旋状的场,一定会有一些点的旋度不等于零。
是有旋场;但力线不是涡旋状的场,却不一定处处无旋。
例如:匀速运动的点电荷,电场线仍然不是涡旋状的,但电场的旋度不等于零,0B E t∂∇⨯=-≠∂。
3、平行板电容器的极板面积为S ,板间距离为d ,所带电荷为Q ±,求任一板所受的电场力是2Q s ε0,还是2Q ε02s 。
答:因每个极板受的力是另一板产生的电场对它的作用力,每个极板产生的电场为02σε,所以 220022s Q F sσεε== 4、有人说:“当稳恒电流的分布具有某种对称性时,只要根据安培环路定律就可以求解稳恒电流的磁场分布”。
对此你的看法如何?答:可以利用环路定理求解磁场的电路,要求找到这样的积分路径在此路径上各点B沿路径方向的分量()B B dl相同,可以把它从积分号中提出来,即cos,()cos ,L L B dl B B dl dl ⋅=⎰⎰,这时只对路径积分,而这个路径积分很容易算出的;还有一种情况是,在所选积分路径上的某些部分()cos ,0B B dl =,在其余部分()cos ,B B dl 为一恒量,这时也可以求出磁场B ,但是,如果电流回路是任意的,磁场没有较强的对称性,我们就只能由安培环路定理计算B 的环流L B dl ⋅⎰,而求不出B 。
5、有人说电磁场的场源是电荷、电流,有人说除此之外还有变化的电场和变化的磁场,你的看法如何?答:后者说法正确。
因为变化的磁场激发电场(法拉第电磁感应定律),变化的电场也激发磁场(麦克斯韦位移电流假设)。
6、说明传导电流和位移电流的异同。
答:区别——传导电流:(1)由电荷运动产生与电荷宏观定向移动相关;(2)存在于导体中,方向始终与电场方向相同,j E σ=;(3)有热效应,遵从焦耳—楞次定律。
位移电流:(1)由变化的电场产生,与电荷宏观运动无关;(2)可存在于真空、介质和导体中,方向与电场方向可以相同,也可以相反,D dD j dt=;(3)在导体中无热效应,在介质中发热,不遵从焦耳—楞次定律。
联系:(1)都可以激发磁场;(2)都遵从安培环路定理;(3)都具有相同的单位安培。
7、有人说:“高斯定理本是由库仑定律推证出来的,当ρ随时间改变时,高斯定理仍然成立,但库仑定律却需要修改。
推证出发点的适用范围小于结果的适用范围,这不合逻辑。
应该如何解释这个问题。
答:库仑定律是直接从实验中总结出来的,是整个静电学理论的实验基础,由于它只是从电荷相互作用的角度研究静电现象局限性较大,只适用于相对静止的点电荷的场。
高斯定理和环路定理是库仑定理的推论,由于它们是用场的观点,从两个不同侧面,对静电场的基本性质给出了完整描述。
适用于一切场源电荷激发的场,这是经过实验验证,说明高斯定理0E ρε∇⋅=更具有普遍意义。
当然,从另外一个角度,也可以先从实验中总结出高斯定理和环路定理,再由它们导出库仑定律。
比如:可根据检验空腔导体内不带电的实验得出高斯定理,再将高斯定理应用于中心置一点电荷的闭合球面,即可导出库仑定理,因此高斯定理和环路定理又叫静电场第一、二定律,此时库仑定理只处于推论地位。
8、有人说:“只要自由电荷分布相同,有介质存在时静电场中D 矢量与真空中静电场0E 的关系都是00D E ε=”。
这种说法对吗?正确的说法是什么?答:不对. 正确的说法是:当自由电荷分布相同时,而且均匀介质充满整个空间或者分区充满整个空间,但分界面必须是等势面, 才有00D E ε=.9、根据边值关系完成下列场矢量图。
1)212εε=,0f σ=,已知D 2,画出D 1; 2)212εε=,0f σ=,已知E 1,画出E 2; 3)212μμ=,0f α=,已知H 2,画出H 1; 4)212μμ=,0f α=,已知B 1,画出B 2。
答:(a )2121,2n n t t D D D D ==,(b )12212,n n t t E E E E ==(c )12212,n n t t H H H H ==,(d )122,n nt B B B ==10、 说明体电荷密度ρ和面电荷密度σ的定义和它们之间的关系。
(a) (d) (b) (c) 思考题2-9答:所谓电荷的体密度,就是单位体积内的电荷。
考虑带电体内某点P ,取一体积元v ∇包含P 点,设v ∇内全部电荷代数和为q ∑,则P 点电荷体密度定义为0lime v q vρ∆→∑=∆,0v ∆→是数学上抽象,实际只要v ∇宏观上看足够小即可。
e σ称为电荷面密度,它的物理意义是单位面积电荷0lim e s q s σ∆→∆=∆,s ∆也应是宏观看很小,微观看很大。
我们可以将表面层抽象出一个没有厚度的几何面,如下,可以设表面层厚度为δ,层内电荷体密度e ρ,取面积为s ∆的一块表面层,它的体积为s δ∆,其中包含电荷e q s ρδ∆=∆,0lime s q s σρδ∆→∆==∆,设想0δ→,e ρ→∞,保持乘积e e ρδσ=为有限值。
11、 在双线传输的直流电路中,电磁能流是由电源流向负载的,还是由正极流向负载,再把剩余的带回负极?答:是由电源流向负载的。
在直流电路中电磁能并非通过电流传输,而是通过导线周围的电磁场场从电源传输至负载。
12、 通过导体中各处的电流密度不同,那么电流能否是恒定电流?为什么?举例说明。
答:可以是恒定电流。
恒定电流只是要求,0,0J t ρ∂=∇⋅=∂.某处电流密度与时间无关.但可以是空间坐标的函数.如恒定电流通过粗细不均的导体,导体中各处的电流密度不同.13、 简述真空中麦克斯韦方程组的建立过程。
① 由高斯定理和库仑定律得真空中静电场的微分方程: 0E ρε∇⋅=, 0E ∇⨯= ② 由毕奥——萨伐尔定律得真空中静磁场的微分方程: 0,B ∇⋅= ,0B J μ∇⨯=③ 加上电磁感应定律和位移电流假设得真空中麦克斯韦方0E ρε∇⋅=,B E t∂∇⨯=-∂0,B ∇⋅=000E B J tμμε∂∇⨯=+∂ 14、 考察真空中的麦克斯韦方程组,总结电场、磁场的产生方式及性质。
电场有两种产生方式:a. 电荷产生的电场是有源无旋场,b . 变化的磁场产生的电场是无源有旋场。
磁场有两种产生方式:a .电流产生的磁场是有旋无源场,b. 变化的磁场产生的电场是有旋无源场。
15、 介质中可以有几种电流密度? 答:三种(1)自由电流密度f J ;(2)在外磁场下分子电流的规则取向形成的磁化电流密度M J ;(3)电场变化时介质的极化强度P 发生变化产生的极化电流密度P J 。
16、 麦克斯韦方程组描述了电磁场的规律,而微分形式的麦克斯韦方程组却不能用于介质界面上,是否能得出在介质界面上电磁规律失效?答:不能,在介质界面上,场量会有跃变,因而场量的微分不再存在,使微分方程失效,而不是电磁规律失效;积分形式的麦克斯韦方程组仍然有效。