压电陶瓷材料及应用..
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电陶瓷材料及应用
一、概述
1.1电介质
电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT 建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。
我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。
近年来,随着电子技术、空间技术、激光技术、计算机技术等新技
术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有:
(1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。
(2)、化学功能陶瓷如各种传感器、化学泵等。
(3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)
功能陶瓷作为信息时代的支柱材料,以其独特的力、热、电、磁、光以及声学等功能性质,在各类信息的检测、转换、处理和存储中具有广泛的应用,是一类重要的、国际竞争极为激烈的高技术材料。压电陶瓷作为重要的功能材料在电子材料领域占据相当大的比重。(材料一)1.2压电材料的分类
具有压电效应的材料称为压电材料。自1880年Jacques Curie 和Pierre Curie发现压电效应以来,压电材料发展十分迅速。利用压电材料构成的压电器件不仅广泛用于电子学的各个领域,而且已遍及日常生活。例如,农村中家家户户屋檐下挂的小喇叭--压电陶瓷扬声器;医院里检查心脏、肝部的超声诊断仪上的探头--压电超声换能器;电子仪器内的各种压电滤波器;石油、化工用各种压电测压器、压电流量仪等等。压电材料主要有压电晶体、陶瓷、压电薄膜、压电聚合物及复合压电材料等(如图1.1所示)。
图1.1 压电材料的分类
压电单晶体是指按晶体空间点阵长程有序生长而成的晶体。这种晶体结构无对称中心,因此具有压电性。如水晶(石英晶体)、镓酸锂等。
压电陶瓷是经过直流高电压极化处理过后具有压电性的铁电陶瓷。这些构成铁电陶瓷的晶粒的结构一般是不具有对称中心的,存在着与其它晶轴不同的极化轴,而且它们的原胞正负电荷重心不重合,即有固有电矩——自发极化(Ps)存在。然而,铁电陶瓷是由许多细小晶粒聚集在一起构成的多晶体。这些小晶粒在陶瓷烧结后,通常是无规则地排列的。而且,各晶粒间自发极化方向杂乱,总的压电效应会互相抵消,因此在宏观上往往不呈现压电性能。在外电场作用下,铁电陶瓷的自发极化强度可以发生转向,在外电场去除后还能保持着一定值——剩余极化(Pr),如图1.2所示,其中Ec为矫顽场,Psat为饱和极化强度(定义)。利用铁电材料晶体结构中的这种特性,可以对烧成后的铁电陶瓷在一定的温度、时间条件下,用强直流电场处理,使之在沿电场方向显
示出一定的净极化强度。这一过程称为人工极化。经过极化处理后,烧结的铁电陶瓷将由各向同性变成各向异性,并因此具有压电效应。由此可见,陶瓷的压电效应来源于材料本身的铁电性。因此,所有的压电陶瓷也都应是铁电陶瓷。
图1.2 铁电材料的电滞回线
相比较而言,压电陶瓷压电性强、介电常数高、可以加工成任意形状,但机械品质因子较低、电损耗较大、稳定性差,因而适合于大功率换能器和宽带滤波器等应用,但对高频、高稳定应用不理想。石英等压电单晶压电性弱,介电常数很低,受切割限制存在尺寸局限,但稳定性很高,机械品质因子高,多用来作标准品率控制的振子、高选择性(多属高频狭带通)的滤波器以及高频、高温超声换能器等。
压电薄膜是一种独特的高分子传感材料,能相对于压力或拉伸力的
变化输出电压信号,因此是一种理想的动态应变片,压电薄膜元件通常由四部分组成:金属电极、加强电压信号压膜、引线和屏蔽层。
压电聚合物,如偏聚氟乙烯(PVDF)(薄膜)等,具有材质柔韧,低密度,低阻抗和高压电电压常数(g)等优点,为世人瞩目且发展十分迅速,现在水声超声测量、压力传感、引燃引爆等方面获得应用。不足之处是压电应变常数(d)偏低,使之作为有源发射换能器受到很大的限制。
复合压电材料,是在有机聚合物基底材料中嵌入片状、棒状、杆状、或粉末状压电材料构成的。至今已在水声、电声、超声、医学等领域得到广泛的应用。如它制成的水声换能器,不仅具有高的静水压响应速率,而且耐冲击,不易受损且可用于不同的深度。(材料一)
1.3发展概况
1942-1945年间发现钛酸钡(BaTiO3)具有异常高的介电常数,不久又发现它具有压电性,BaTiO3压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO3陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO3存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。1954年美国B·贾菲等人发现了压电PbZrO3-PbTiO3(PZT)固溶体系统,这是一个划时代大事,使在BaTiO3时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。
六十年代初,Smolensky等人对复合钙钛矿型化合物进行了系统