压电陶瓷材料及应用..
压电陶瓷分类及应用
压电陶瓷分类及应用
压电陶瓷是一种具有压电效应的陶瓷材料。
压电效应是指在外加机械应力或电场作用下,压电陶瓷会发生尺寸变化或极化现象,从而产生电荷分布。
根据压电陶瓷材料的组成和性质,可以将其分为几种不同的分类。
一、根据压电性能可将压电陶瓷分为高压电效应陶瓷和低压电效应陶瓷。
高压电效应陶瓷具有较高的压电系数和较大的震荡频率,适用于高频和高精度的应用,如声子滤波器、超声波发生器、压电换能器等。
低压电效应陶瓷的压电系数较低,主要用于压电传感器、压电陶瓷振动器、电子器件的稳定和控制等应用。
二、根据晶体结构的不同,压电陶瓷可以分为三类:酸性压电陶瓷、硼酸盐压电陶瓷和锆钛酸钾压电陶瓷。
酸性压电陶瓷是指以三方晶系的负电性轴为基础,具有良好的机械和电性能。
硼酸盐压电陶瓷主要以硼酸盐基质为主,具有较高的压电系数和介电常数。
锆钛酸钾压电陶瓷是一类常用的压电陶瓷材料,具有较高的压电系数和压电耦合因子,在声波传感器和应用中得到广泛应用。
三、根据应用领域的不同,压电陶瓷可以分为多种类型。
在声学领域,压电陶瓷广泛应用于扬声器、电麦克风、声波发生器、声子滤波器等装置中。
在控制领域,压电陶瓷用于压电陶瓷驱动器、压电陶瓷换向器、压电陶瓷伺服控制系统等。
在传感领域,压电陶瓷被应用于压力传感器、加速度传感器、应力传感器等。
在医疗领域,压电陶瓷用于超声波显像设备、超声刀、超声治疗仪等医疗器械中。
压电陶瓷材料以其优越的压电性能和物理特性,在电子、声学、控制等领域中具有广泛的应用前景。
随着科学技术的发展,压电陶瓷材料的研究和应用将更加深入和广泛。
压电陶瓷的工作原理与应用
压电陶瓷的工作原理与应用1. 什么是压电陶瓷?压电陶瓷是一种具有压电效应的陶瓷材料,具有特殊的物理性质。
当施加压力或电场时,压电陶瓷会发生正比例的形变或电荷分布变化。
其工作原理基于压电效应,即通过施加压力或电场激发压电陶瓷产生形变或电荷分布的变化。
压电陶瓷材料主要由氧化物和复合材料组成,具有稳定的物理和化学性质。
2. 压电陶瓷的工作原理压电陶瓷的工作原理基于压电效应,分为压电效应和逆压电效应两种模式。
2.1 压电效应压电效应是指当施加机械应力于压电陶瓷时,会在材料内产生电荷分离。
这种电荷分离是由于晶格结构的变化所引起的。
压电效应的量级与施加的压力成正比。
压电效应是压电陶瓷实现能量转换、传感和控制的基础。
2.2 逆压电效应逆压电效应是指当施加电压于压电陶瓷时,会导致陶瓷的形变。
施加电压使得陶瓷内部的电荷重分布,进而引起形变。
逆压电效应可以通过改变施加的电压来精确控制压电陶瓷的形变,因此广泛应用于执行器和传感器等领域。
3. 压电陶瓷的应用压电陶瓷由于其独特的物理性质和工作原理,在众多领域中有着广泛的应用。
3.1 压电陶瓷传感器压电陶瓷传感器是利用压电效应对外界压力或应力进行测量的传感器。
通过安装压电陶瓷传感器可以实现对力、质量、压力等物理量的测量和检测。
压电陶瓷传感器广泛应用于工业自动化、航空航天等领域中。
3.2 压电陶瓷应用于超声波技术压电陶瓷在超声波技术中起到重要的作用。
通过施加交变电场,压电陶瓷可以产生超声波。
超声波技术在医学成像、材料检测和土木工程中有着广泛的应用。
3.3 压电陶瓷控制器压电陶瓷控制器是通过施加电压控制陶瓷的形变的装置。
压电陶瓷控制器可以用于精确控制执行器、阀门等的位置和形变。
在精密仪器、机械控制等领域中被广泛应用。
3.4 压电陶瓷用于发电压电陶瓷可以通过压电效应转换机械能为电能。
将压电陶瓷放置在机械振动环境中,可以利用振动能量产生电能。
这种方法在一些低功率应用中具有潜力,如自动感应式无线传感器等。
压电陶瓷的应用及原理
压电陶瓷的应用及原理引言压电陶瓷是一种特殊的陶瓷材料,具有压电效应和逆压电效应。
其应用广泛,涉及到许多领域,如传感器、换能器、滤波器等。
本文将介绍压电陶瓷的应用及其原理。
压电效应原理压电效应是指将压力施加到压电陶瓷上时,会产生电荷的现象。
这是由于压电陶瓷的晶格结构造成的。
当通过施加压力使晶格略微变形时,晶格内的正负离子会发生位移,使整个陶瓷材料的两端产生电荷差。
这种电荷差可以通过外接电路来利用。
压电陶瓷的应用1. 压电传感器压电陶瓷可以用作压力传感器,用于测量、检测和监测各种参数,如力、压力、加速度等。
在汽车、航空航天、医疗设备等领域有着广泛的应用。
例如,将压电陶瓷安装在汽车刹车系统上,可以用来感知刹车力的大小,从而实现自动刹车或防抱死系统。
2. 压电换能器压电陶瓷还可以用作换能器,将电能转换为机械振动或声波能量。
这种转换是双向的,也可以将机械振动或声波能量转换为电能。
压电陶瓷的换能器应用广泛,如超声波清洗、超声波焊接、声纳等。
3. 压电陶瓷的滤波器由于压电陶瓷具有频率选择性和频率稳定性,它可以用作滤波器。
在通信、电子设备等领域中,使用压电陶瓷制造滤波器可以有效地去除杂散信号,提高信号的质量。
4. 压电陶瓷的振动传感器压电陶瓷也可以用作振动传感器,用于测量和监测结构物体的振动频率、幅度等参数。
在工程结构监测、地震监测等领域有着广泛的应用。
5. 压电陶瓷的声波传感器压电陶瓷还可以用作声波传感器,用于测量和检测声波信号。
在语音识别、声频分析等领域中有着重要的应用。
结论压电陶瓷作为一种特殊的陶瓷材料,具有压电效应和逆压电效应,被广泛用于各种领域。
通过压电效应原理,压电陶瓷可以实现电能和机械能之间的互换,从而应用于传感器、换能器、滤波器等设备中。
随着科技的不断发展,压电陶瓷的应用也将不断扩展,为各行业带来更多的便利和创新。
压电陶瓷用途
压电陶瓷用途压电陶瓷是一种特殊的陶瓷材料,具有压电效应。
它在应用领域有着广泛的用途。
本文将从几个方面介绍压电陶瓷的用途。
一、传感器领域压电陶瓷具有压电效应,当施加力或压力时,会产生电荷或电压。
因此,它在传感器领域有着重要的应用。
例如,压电陶瓷可以用于压力传感器,通过测量电荷或电压的变化来测量外界压力的大小。
此外,压电陶瓷还可以用于加速度传感器、力传感器、声音传感器等。
二、声学设备领域压电陶瓷在声学设备领域有着广泛的应用。
例如,压电陶瓷可以用于扬声器,通过施加电压来产生声音。
同时,它也可以用于麦克风,通过感应声音振动来产生电信号。
此外,压电陶瓷还可以用于超声波发生器、声纳等声学设备。
三、机械设备领域由于压电陶瓷具有压电效应和压电逆效应,可以将机械能转化为电能,也可以将电能转化为机械能。
因此,在机械设备领域有着广泛的应用。
例如,压电陶瓷可以用于振动器,通过施加电压来产生机械振动。
同时,它也可以用于马达或执行器,通过施加电压来实现精确的运动控制。
四、医疗设备领域压电陶瓷在医疗设备领域也有着重要的应用。
例如,压电陶瓷可以用于超声波医疗设备,通过施加电压来产生超声波,用于医学诊断和治疗。
此外,压电陶瓷还可以用于人工耳蜗,将声音转化为电信号,帮助聋哑人恢复听力。
五、电子设备领域压电陶瓷在电子设备领域也有着广泛的应用。
例如,压电陶瓷可以用于压电陶瓷滤波器,通过施加电压来改变其振动频率,实现信号的滤波和调谐。
此外,压电陶瓷还可以用于电子驱动器、电子开关等电子设备。
压电陶瓷具有广泛的应用领域,包括传感器、声学设备、机械设备、医疗设备以及电子设备等。
它的独特性能使其成为许多领域中不可或缺的材料。
随着科技的不断发展,相信压电陶瓷的应用领域还将不断拓展和深化。
压电陶瓷的原理和应用
压电陶瓷的原理和应用概述压电陶瓷是一种特殊的材料,它具有压电效应,能够将机械能转化为电能。
压电陶瓷在许多领域都有广泛的应用,如声音传感器、振动马达、压力传感器等。
本文将介绍压电陶瓷的原理和一些常见的应用。
压电效应原理压电效应是指当施加在压电材料上的压力或变形时,会在其表面产生电荷。
这种效应是由于压电材料的晶格结构具有非对称性导致的。
压电效应可以通过外电场和外压力来激活,也可以通过压电材料的自身应力来激活。
压电陶瓷的结构压电陶瓷通常由铁电陶瓷和铅酸铌酸铁锆陶瓷两种材料组成。
铁电陶瓷具有铁电性质,能够在外电场的作用下产生电荷。
而铅酸铌酸铁锆陶瓷则具有高压电效果。
常见应用声音传感器压电陶瓷在声音传感器方面有着广泛的应用。
它可以将声波转化为电信号,用于测量声音的频率和强度。
声音传感器常被应用于无线通讯设备、音频设备等。
振动马达压电陶瓷的振动性能使其成为振动马达的理想材料。
通过施加交变电场,压电陶瓷可以产生机械振动,用于实现各种振动设备,如手机震动、电动牙刷等。
压力传感器由于其压电效应,压电陶瓷可用于制造高灵敏度的压力传感器。
当施加压力时,压电陶瓷会产生电荷输出,用于测量压力的大小。
压力传感器广泛应用于工业自动化、机械设备等领域。
超声波产生器压电陶瓷可以将电能转化为超声波的机械能,因此被广泛应用于超声波产生器中。
通过控制电场的频率和强度,压电陶瓷可以产生高频率的超声波,用于医疗成像、清洗设备等。
光学设备压电陶瓷的机械性能和光学性能使其成为光学设备中的重要组成部分。
压电陶瓷可以用于调整光学元件的位置和形状,实现自动对焦、光阑调控等功能。
总结压电陶瓷凭借其独特的压电效应,在许多领域都有着重要的应用。
从声音传感器到光学设备,压电陶瓷都为这些设备的正常运行提供了关键的功能支持。
随着科学技术的不断发展,压电陶瓷的应用前景将会更加广阔。
压电陶瓷材料成分
压电陶瓷材料成分
压电陶瓷材料是一种具有压电效应的陶瓷材料,其成分主要包括铈酸锂(LiCeO2)、钛酸锂(LiTiO3)、锆酸铅(PbZrO3)等。
下面将分别介绍这些成分的特点和应用。
铈酸锂是一种高温压电材料,具有较高的压电系数和良好的稳定性。
它的主要特点是压电系数高,能够在高温下工作,因此在高温环境下被广泛应用。
铈酸锂可以用于传感器、声纳、换能器等领域,比如在航空航天领域中,可以用于制作高温传感器,监测发动机温度变化,确保发动机的安全运行。
钛酸锂是一种具有优良压电性能的陶瓷材料。
钛酸锂的主要特点是具有较高的压电系数和较低的机械耗散。
由于其良好的压电性能和稳定性,钛酸锂被广泛应用于传感器、声波滤波器、振荡器等领域。
例如,在移动通信领域中,钛酸锂可以用于制作滤波器,过滤掉杂波,提高通信信号的质量和稳定性。
锆酸铅是一种具有较高压电系数和良好稳定性的压电材料。
锆酸铅的主要特点是具有较高的压电系数和较低的机械耗散,能够在较宽的温度范围内工作。
锆酸铅被广泛应用于声纳、换能器、超声波清洗等领域。
例如,在医疗领域中,锆酸铅可以用于制作超声波清洗器,清洗器的超声波振子由锆酸铅制成,能够产生高频振动,实现对物体的深层清洁。
压电陶瓷材料成分包括铈酸锂、钛酸锂和锆酸铅。
这些材料具有不同的特点和应用领域,但都能够实现压电效应,并在各个领域中发挥着重要的作用。
随着科技的不断发展,压电陶瓷材料的研究和应用将会越来越广泛,为各行业的发展带来新的机遇和挑战。
压电生物陶瓷
压电生物陶瓷
压电生物陶瓷是一种特殊类型的陶瓷材料,具有压电效应。
压电效应是指某些材料在受到力或压力作用时可以产生电荷,或者在施加电场时可以发生形变或振动。
压电生物陶瓷通常是由钛酸锆钠(PZT)等压电陶瓷材料制成。
这些陶瓷材料在生物医学领域中具有广泛的应用,例如:
1. 超声成像:压电生物陶瓷可以用作超声探头中的压电晶体,将电能转换为声能,从而产生超声波。
这些超声波可以用于医学成像,如超声心动图和超声检查。
2. 聆听设备:压电生物陶瓷也可用于人工耳蜗和听力辅助设备中。
它们可以将声音信号转换为电信号,然后传输到听神经中,使听力受损的人能够感知声音。
3. 骨科修复:压电生物陶瓷可以用于骨科修复和骨折治疗。
它们可以作为骨植入物,通过施加电场刺激骨细胞的生长和修复,促进骨骼愈合。
4. 神经刺激:压电生物陶瓷可以用于神经刺激和神经调控。
通过施加电场刺激神经组织,它们可以用于治疗神经性疾病、缓解疼痛和恢复神经功能。
压电生物陶瓷的优点包括其稳定性、可靠性和生物相容性。
它们可以根据特定应用的需求进行制备和形状设计,并且在医学和生物领域中具有广泛的应用潜力。
压电陶瓷片有哪些应用?
压电陶瓷片有哪些应用?
压电陶瓷片是一种具有压电效应的陶瓷材料,当施加机械压力或电场时,可以产生电荷分离和电势差。
由于其特殊的性质,压电陶瓷片在许多领域有广泛的应用。
以下是一些常见的应用领域:
1. 声学设备:压电陶瓷片可以用于声学传感器和扬声器,用于声波的发射、接收和转换,如超声波传感器、麦克风、声纳等。
2. 振动和运动控制:压电陶瓷片可以将电能转换为机械振动能量,用于振动传感器、振动马达、精密定位装置和精密控制系统。
3. 气体点火器:压电陶瓷片可以产生高电压放电,用于点燃燃气、液化石油气等燃料,如燃气灶、燃气热水器等。
4. 压力传感器:压电陶瓷片可以将压力转换为电信号,用于测量和监测压力变化,如压力传感器、压力开关等。
5. 温度补偿器:压电陶瓷片的电性质随温度变化较小,可以用于温度补偿器,用于精确测量和控制温度。
6. 超声波清洗和焊接:压电陶瓷片可以产生高频超声波振动,用于清洗和焊接应用,如超声波清洗机、超声波焊接机等。
7. 医疗设备:压电陶瓷片可以用于医疗设备,如超声波成像、超声波治疗、超声波刀等。
此外,压电陶瓷片还在其他领域有一些应用,如流量计、压力控制器、电子锁、电子烟、汽车喇叭等。
由于其高效、可靠和精确的性能,压电陶瓷片在现代科技中扮演着重要的角色。
压电陶瓷的应用实例
压电陶瓷的应用实例压电陶瓷是一种具有压电效应的陶瓷材料,广泛应用于传感器、换能器、马达和声波器件等领域。
它的压电效应表现为在施加机械应力或者电场时产生电荷,比如压电陶瓷在马达中能够将电能转化为机械能,广泛应用于汽车雨刷器、燃油喷射系统和阻尼器件中。
以下将介绍压电陶瓷在压电传感器、声波器件和医疗设备中的应用实例。
一、压电传感器应用实例1.1 压力传感器压电陶瓷作为一种良好的压电材料,可以应用在压力传感器中。
通过将压电陶瓷固定在传感器结构上,当外部施加压力变化时,压电陶瓷将产生相应的电荷信号。
这种压电传感器可以用于测量汽车发动机的油路压力、液压系统的压力、化工设备的压力等。
在工业自动化控制系统中,通过安装压电陶瓷传感器可以实现对压力的准确测量和监控,保障生产设备的安全运行,并且实现智能化的生产管理。
1.2 加速度传感器压电陶瓷还可以用于制作加速度传感器,通过压电陶瓷的压电效应可以实现对加速度的测量。
加速度传感器在汽车安全系统中应用广泛,例如车载气囊系统、车辆稳定控制系统等,通过安装压电陶瓷传感器可以实现对车辆的加速度变化进行实时监测,从而保障车辆和乘车人员的安全。
二、声波器件应用实例2.1 超声波清洗压电陶瓷作为一种能够产生超声波的材料,可以应用于超声波清洗设备中。
通过在超声波清洗设备中引入压电陶瓷换能器件,其在外加电压的作用下将电能转化为超声波能量,从而实现对工件表面的高效清洗。
超声波清洗广泛应用于电子元件、精密零部件、医疗器械、眼镜等领域,通过使用压电陶瓷换能器件可以实现清洗效果更加彻底、清洗时间更短、清洗效率更高的优势。
2.2 超声波医疗器械压电陶瓷还应用于超声波医疗器械中,例如超声波图像设备、超声波治疗仪器等。
通过在超声波医疗器械中使用压电陶瓷换能器件,可以实现对超声波的产生和控制,从而实现对人体组织的成像和治疗。
超声波成像中通过压电陶瓷换能器件产生的超声波可以实现对内部器官的清晰成像,帮助医生进行准确诊断。
压电陶瓷材料
压电陶瓷材料
压电陶瓷材料是一种能够产生压电效应的陶瓷材料。
压电效应是指当压电材料受到外界压力或拉力时能够产生电荷分离,从而形成电压差。
压电陶瓷材料具有稳定性好、能耗低、响应速度快等优点,因此在许多领域有着广泛的应用。
首先,压电陶瓷材料在传感器和控制装置中有着重要的应用。
由于压电陶瓷材料能够将机械能转换为电能,因此它可以作为传感器来检测物体的压力或力量。
例如,在工业机械中,压电陶瓷材料可作为加速度传感器,通过检测机械振动来判断设备的运行状况。
此外,在医学领域,压电陶瓷材料可用于心脏和肌肉等生物组织的压力测量。
其次,压电陶瓷材料还可以应用于声波和超声波技术中。
压电陶瓷材料能够产生声波和超声波,并且具有高频率和高能量的特点,因此适用于超声波清洗装置、医学超声波成像设备等。
此外,压电陶瓷材料还可以用作声纳探测装置,如潜艇和鱼群探测。
此外,压电陶瓷材料在振动控制和能量收集方面也有着广泛的应用。
由于压电陶瓷材料具有压力和拉力之间的相互转换能力,它可以用于振动控制装置中,通过施加适当的电压来调节振动的幅度和频率。
此外,压电陶瓷材料还可以用于能量收集装置中,通过收集周围的振动能量并转化为电能储存起来,从而实现能源的可持续利用。
总之,压电陶瓷材料是一种应用广泛的材料,它在传感器、声
波和超声波技术、振动控制和能量收集等领域都有着重要的作用。
随着科技的不断发展,压电陶瓷材料的应用也在不断拓展,相信它将在未来的科技领域中发挥更为重要的作用。
压电陶瓷材料在储能装置中的应用
压电陶瓷材料在储能装置中的应用随着科技的不断进步,人们的生活水平也在不断提高,同时能源的需求也不断增加。
因此,储能装置的需求也越来越迫切,而这时压电陶瓷材料的应用便大有作用。
本文将重点探讨压电陶瓷材料在储能装置中的应用。
一、压电陶瓷的基本概念压电陶瓷,指的是在某些特定电压下,受到压力或拉伸引起表面电势变化的陶瓷材料。
它具有一定的压电效应和热稳定性,并且具有高硬度、高强度、高耐磨性等特点。
因此,压电陶瓷材料常被用作机电式传感器、振动器、滤波器等电子元器件中。
二、压电陶瓷材料在储能装置中的应用由于压电陶瓷材料具有压电效应,在机械应力下会产生电荷分布,因此其在储能装置中具有很好的应用前景,可以用于储能元件中的电荷存储和转换,进而实现储能装置的高效率、高储能量、高安全性等特点。
1.压电陶瓷在电容储能装置中的应用电容储能装置是利用电场将电荷密度分布在两个电极之间,实现能量的储存和释放。
而压电陶瓷具有压电性质和电容性质,因此在电容储能装置中有着广泛的应用。
利用压电陶瓷材料的压电效应,可以通过施加机械振动来实现能量的储存,而通过施加电场,则可以将其中的能量释放出来。
2.压电陶瓷在电池储能装置中的应用电池储能装置是利用化学反应将化学能转换成电能,实现能量的储存和释放。
虽然电池储能装置已经得到了广泛的应用,但是其具有一些缺陷,例如成本高、寿命短、储能密度低等。
而压电陶瓷材料则具有良好的力学性能和电性能,因此在电池储能装置中也有着广泛的应用前景。
通过在电池储能装置中引入压电陶瓷材料,可以提高其储能密度和寿命,同时还可以增加其储能效率和稳定性,从而实现更加高效和安全的储能。
3.压电陶瓷在超级电容储能装置中的应用超级电容储能装置是一种具有高储能密度和高功率密度的储能技术,其具有快速充放电、长寿命、可靠性好等特点。
而压电陶瓷材料其则具有压电效应和电容性质,并且具有耐高温、高稳定性等特点,因此在超级电容储能装置中有着广泛的应用。
压电陶瓷材料的合成及应用
压电陶瓷材料的合成及应用压电陶瓷材料是一种能够将机械能转化为电能或将电能转化为机械能的材料,广泛应用于超声波发生器、声波过滤器等领域。
其独特的电学和机械性能,使得压电陶瓷材料被广泛关注和研究。
本文将探讨压电陶瓷材料的合成及应用。
一、压电陶瓷材料的合成1. 碳酸铅法碳酸铅法是目前最主要的压电陶瓷材料制备方法之一,其制备过程是将碳酸铅和钛酸铅混合在一起,经过多次煅烧和压制、烧结而成。
碳酸铅法制备的压电陶瓷材料具有稳定的性能、良好的压电性能和介电性能等特点。
2. 气相沉积法气相沉积法是利用化学气相沉积技术,在高温高压下合成压电陶瓷材料。
该方法制备出的压电陶瓷材料具有良好的均匀性和致密性,具有良好的压电响应和热稳定性。
3. 溶胶-凝胶法溶胶-凝胶法是通过溶胶-凝胶化学反应来合成陶瓷材料。
该方法具有简单、可控性强等优点,制备出的压电陶瓷材料具有均匀性好、结晶度高等特点。
二、压电陶瓷材料的应用1. 超声波发生器压电陶瓷材料具有压电效应,能够将电信号转化为机械运动,因此被广泛应用于超声波发生器中。
超声波发生器是利用压电片振动产生超声波,应用于水处理、非损检测、超声波清洗等领域。
2. 声波过滤器声波过滤器是利用压电陶瓷片的压电效应来调节机械振动谐振频率的装置,通常作为电子器件的支持层。
由于其具有稳定性好、压电响应时间短等特点,被广泛应用于无线电器件、计算机器件等领域。
3. 振动传感器振动传感器是利用压电陶瓷材料的压电效应来测量机械振动的装置,是工业控制中常用的传感器之一。
该传感器具有精度高、灵敏度高、可靠性高等特点,被广泛应用于飞行器、兵器装备、船舶、汽车等领域。
总之,压电陶瓷材料具有压电效应、介电效应等特点,被广泛应用于超声波发生器、声波过滤器、传感器等领域,具有重要的科学研究价值和实际应用价值。
未来,需要进一步探索陶瓷材料制备新方法,提高制备工艺的稳定性和效率,推动压电陶瓷材料的快速发展。
压电陶瓷的应用实例
压电陶瓷的应用实例
压电陶瓷是一种能够产生压电效应的陶瓷材料,具有良好的压电性能和稳定性,被广泛应用于各个领域。
以下是一些压电陶瓷的应用实例:
1. 声波发生器:将电能转换为声能的装置,通过压电陶瓷的压电效应产生声波,常用于喇叭、扬声器等声学设备。
2. 振动传感器:利用压电陶瓷的压电效应,将机械振动转换为电信号,用于振动测量、天平、加速度计等领域。
3. 超声波清洗器:通过压电陶瓷的压电效应产生高频振动,产生超声波,用于清洗和去污。
4. 压电陶瓷马达:利用压电陶瓷的压电效应,将电能转换为机械能,实现转动或线性运动,常用于精密仪器和精密定位设备。
5. 压电陶瓷压力传感器:利用压电陶瓷的压电效应,将外界压力转换为电信号,常用于压力测量和控制。
6. 陶瓷电容器:利用压电陶瓷的压电效应,将机械能转换为电能,用于存储和释放电能。
7. 压电陶瓷发电器:通过压电陶瓷的压电效应,将机械能转换为电能,实现能量的收集和转换。
8. 压电陶瓷驱动器:利用压电陶瓷的反压电效应,将电能转换
为机械能,用于驱动精密仪器和调整装置。
9. 压电陶瓷电子滤波器:通过压电陶瓷的压电效应,实现对电子信号的滤波和调节,用于电子设备中的信号处理。
10. 压电陶瓷剖面机:利用压电陶瓷的压电效应,实现对气象
雷达、船舶雷达、风电等设备的剖面测量。
以上仅为几个压电陶瓷的应用实例,压电陶瓷在传感器、马达、滤波器等领域具有广阔的应用前景。
压电陶瓷的工作原理及其应用
压电陶瓷的工作原理及其应用1. 什么是压电陶瓷嘿,朋友们,今天咱们就聊聊一个神奇的材料——压电陶瓷。
乍一听这个名字,可能会让你觉得有点高大上,但其实它可比你想的要简单有趣多了!压电陶瓷是一种能够把机械压力转化为电能的陶瓷材料。
听着是不是感觉像魔法?其实,这就是科学的魅力所在!它们就像是“电力小精灵”,无论我们是用手一碰,还是给它施加点压力,它们就能乖乖地输出电流,太神奇了吧!1.1 工作原理说到工作原理,咱们就要提到“压电效应”了。
简单来说,压电效应就是那些陶瓷在受到压缩时,内部的分子结构发生了变动,从而产生电荷。
这种原理就像我们玩橡皮泥,捏捏搓搓后,形状有了变化,当然,压电陶瓷一旦受到力的作用,电流便会流动起来!所以乍一看,这可不是一个传统的电池,但说它是一个“力”的发电机,应该是无可厚非的。
同样,它也能反向运作——当施加电压时,陶瓷会发生微小的形变,变得扭来扭去,宛如小舞者一样,摸起来可是特别有趣哦。
1.2 材料构成说到这里,有人可能会好奇,压电陶瓷到底是什么“做”的呢?实际上,它们一般是由一种叫做钛酸铅或锆钛酸铅的化合物制成的。
这些材料在高温下经过特殊处理,就能形成压电特性。
嘿,这听起来是不是好像科学实验室里那些复杂的步骤?别担心,这只是为我们赠送了这些神奇小玩意的“开机”密码!而且,压电陶瓷的种类也很多,像是单晶压电材料、陶瓷复合材料等等,各种各样的人才齐上阵,因为不同的应用需求,各有所长嘛。
2. 压电陶瓷的应用说完了原理,咱们再聊聊这些压电陶瓷到底能在哪儿派上用场。
其实,咱们的日常生活中,很多地方都藏着它们的身影哦。
比如说——声纳和麦克风,这些小玩意能把声波转化成电信号,或者把电信号转化为声波,而其中的关键材料就是压电陶瓷。
是不是感觉涨知识了呢?此外,在医疗器械中,超声波诊断仪也是用得上压电陶瓷,通过振动产生声波图像,助医生“大显神通”呢!2.1 家庭中的应用你还知道吗,在咱们的家庭中,压电陶瓷其实也贡献了不少力量呢!比如常见的点火器,尤其是在烧烤的时候,叮的一声,火就起来了,这可全靠压电陶瓷的的“点石成金”之功。
压电陶瓷的基本原理和应用
压电陶瓷的基本原理和应用1. 压电陶瓷的定义压电陶瓷是一种具有压电效应的陶瓷材料,能够在受到力或压力作用下产生电荷并反之也能将电荷转换为力或位移。
它是一种特殊的功能陶瓷材料,具有压电效应、热释电效应和压阻效应等特性。
2. 压电陶瓷的基本原理压电效应是压电陶瓷的基本原理,它是指在某些特殊的材料中,当受到力或压力作用时,内部原子或分子发生畸变,产生极化,并形成正负电荷的分离。
当压力消失时,电荷又会聚集在一起。
压电陶瓷的基本原理可以用以下几个方面来解释:•压电效应:当施加压力时,陶瓷会产生电荷,并导致其内部结构的畸变。
•电压效应:当施加电压时,陶瓷会发生形变。
•应变效应:当施加外力时,陶瓷会产生与力大小相等的位移。
3. 压电陶瓷的结构和组成压电陶瓷通常由钛酸锆、铅锆酸钛、硅酸铅和双碱玻璃等高温烧结材料制成。
它的结构可以分为两个部分:•基体:主要由粒子组成的陶瓷基底,具有良好的断裂性能和机械强度。
•极化层:位于基体表面的极化层,负责传递外界压力或电场对陶瓷的刺激。
4. 压电陶瓷的应用领域由于其特殊的物理性质和压电效应,压电陶瓷在许多领域都有广泛的应用。
4.1 声学器件压电陶瓷广泛应用于声学器件中,如扬声器、听筒、麦克风等。
压电陶瓷的压电效应可以将电能转换成声能,可以将声音信号转化为电信号,实现声音的放大、传输和感应。
4.2 传感器压电陶瓷的应变效应使其成为理想的传感器材料。
压电传感器可以用于测量压力、力、加速度、形变等物理量,并将其转化为电信号进行采集和分析。
4.3 振动与控制压电陶瓷的振动和控制特性使其在仪器仪表、振动传感器和控制系统中有广泛应用。
它可以用于实现精确的振动控制,如减震、精密定位和振动补偿等。
4.4 超声波技术压电陶瓷的超声波性质使其在医疗、材料研究和工业领域中得到广泛应用。
压电陶瓷可以用于制造超声波发生器和传感器,实现超声波的产生、检测和测量。
4.5 压电陶瓷电源压电陶瓷可以利用压电效应将机械能转化为电能,用于制造压电陶瓷电源。
压电陶瓷的生产与应用研究
压电陶瓷的生产与应用研究一、引言压电陶瓷是指通过压力作用下会产生电荷分布的功能性陶瓷材料。
其具有压电效应、声表面波效应、频率稳定性等特点,广泛应用于声电子、精密仪器等领域。
本文主要介绍压电陶瓷的生产工艺和应用研究。
二、压电陶瓷的生产工艺压电陶瓷的生产工艺主要包括材料制备、成型、烧结等环节。
1.材料制备常用的材料有钛酸钡、铅锆钛酸钡、铅硅酸钡、铁酸锆等。
首先将这些材料按一定比例混合,经过球磨或搅拌等步骤均匀混合,再经过筛选去除杂质。
然后将混合材料在加热条件下进行干燥处理,以去除其中的水分和挥发性有机物,得到均匀的粉末。
2.成型常见的成型方式有干压成型、注塑成型、压注成型等。
其中,干压成型是最常见的一种方式。
将混合后的粉末通过模具压制成所需的形状,压制后会留下一定的压力,使得陶瓷材料具有压电效应。
3.烧结将成型的陶瓷材料放入烧结炉中,在一定的温度下进行烧结处理。
这个过程中,材料会发生一系列化学反应,使得材料的密度和强度逐渐提高,从而获得压电陶瓷材料。
三、压电陶瓷的应用研究压电陶瓷的应用主要集中在声电子领域和精密仪器领域。
1.声电子领域在声电子领域,压电陶瓷主要应用于扬声器、麦克风等设备。
薄膜压电陶瓷作为扬声器的振动板材料,具有机械刚性好、振动频率稳定等优点,被广泛应用于手机、汽车音响等场合。
而声圈压电陶瓷广泛用于麦克风等设备中,具有电荷稳定、压电系数高等特点,能够提高设备音质、稳定性等。
2.精密仪器领域在精密仪器领域,压电陶瓷主要应用于陀螺仪、压力传感器等设备中。
前者是指利用压电陶瓷材料的压电效应对转动角度进行检测,并结合信号处理与控制器处理后得到最终数据,广泛应用于航空航天领域等。
后者则是指压电陶瓷作为灵敏元件,利用其高灵敏度、快速响应等特点,可用于测量大气压力、流体压力等参数,被广泛应用于工业自动化、医疗卫生等领域。
四、现状和发展趋势压电陶瓷的应用范围越来越广泛,并且有不断的技术创新。
其中,薄膜压电陶瓷材料、高温压电陶瓷材料等就是近年来的创新方向。
压电陶瓷
一、压电材料与应用综述1、概述在1880年,居里兄弟首先在单晶上发现压电效应。
在1940年前,人们知道有两类铁电体:罗息盐和磷酸二氢钾盐,具有压电性。
在1940年后,发现了BaTiO3是一种铁电体,具有强的压电效应。
是压电材料发展的一个飞跃。
在1950年后,发现了压电PZT 体系,具有非常强和稳定的压电效应,具有重大实际意义的进展。
在1970年后,添加不同添加剂的二元系PZT 陶瓷具有优良的性能,已经用来制造滤波器、换能器、变压器等。
随着电子工业的发展,对压电材料与器件的要求就越来越高了,二元系PZT 已经满足不了使用要求,于是研究和开发性能更加优越的三元、四元甚至五元压电材料。
2、压电效应电效应产生的根源是晶体中离子电荷的位移,当不存在应变时电荷在晶格位置上分布是对称的,所以其内部电场为零。
但当给晶体施加应力则电荷发生位移,如果电荷分布不在保持对称就会出现净极化,并将伴随产生一个电场,这个电场就表现为压电效应。
压电陶瓷(piezoelectric ceramics ),是指经直流高压极化后,具有压电效应的铁电陶瓷材料。
晶体受到机械力的作用时,表面产生束缚电荷,其电荷密度大小与施加外力大小成线性关系,这种由机械效应转换成电效应的过程称为正压电效应(力→形变→电压)。
晶体在受到外电场激励下产生形变,且二者之间呈线性关系,这种由电效应转换成机械效应的过程称为逆压电效应(电压→形变)。
3、压电性能①压电常数d33压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。
当沿压电陶瓷的极化方向(z 轴)施加压应力T3时,在电极面上产生电荷,则有以下关系式:式中d33为压电常数,足标中第一个数字指电场方向或电极面的垂直方向,第二个数字指应力或应变方向;T3为应力;D3为电位移。
它是压电介质把机械能(或电能)转换为电能(或机械能)的比例常数,反映了应力(T )、应变(S )、电场(E )或电位移(D )之间的联系,直接反映了材料机电性能的耦合关系和压电效应的强弱,从而引出了压电方程。
压电陶瓷的工作原理及应用
压电陶瓷的工作原理及应用1. 压电陶瓷的概述压电陶瓷是一种特殊的陶瓷材料,具有压电效应和逆压电效应。
在外力的作用下,压电陶瓷可以产生电荷分布的变化,从而产生电场;反之,当施加电场时,压电陶瓷也可以发生形变。
因此,压电陶瓷被广泛应用于压力传感、振动传感、声音放大等领域。
2. 压电陶瓷的工作原理压电效应是压电陶瓷的核心工作原理。
当外界施加压力或力对压电陶瓷施加变形时,会使陶瓷内部的晶体结构发生畸变,同时会引起电极上的电荷分布发生变化,导致产生电场。
反之,施加电场时,也会引起压电陶瓷的形变。
3. 压电陶瓷的应用领域3.1 压力传感•压电陶瓷可以将压力转化为电信号,常用于压力传感器。
通过测量压电陶瓷上的电荷变化,可以精确地测量压力的大小,广泛应用于工业、医疗、航空等领域。
3.2 振动传感•压电陶瓷具有较高的频率响应和灵敏度,可以将振动转化为电信号,常被应用于振动传感器。
通过对振动信号的监测和分析,可以实现故障诊断、结构健康监测等应用。
3.3 声音放大•压电陶瓷在声音放大器中起到了关键作用。
在压电陶瓷应用于扬声器时,施加电场可以使压电陶瓷发生形变,产生声音。
此外,将声音转化为电信号,再通过压电陶瓷放大的方式,可以实现音频放大的效果。
3.4 压电陶瓷驱动器•压电陶瓷驱动器是一种将电能转化为机械能的装置。
通过施加电场,将电能转化为压电陶瓷的形变,从而驱动其他机械设备的工作。
压电陶瓷驱动器在精密控制、精密位置传动等领域具有重要应用。
3.5 医疗领域•压电陶瓷在医疗领域中也有广泛应用。
例如,压电陶瓷可以应用于超声波探头中,将电信号转化为机械振动,实现超声波检测;还可以用于体外震波碎石设备中,将电信号转化为压力波,破碎体内结石等。
4. 压电陶瓷的优势和挑战4.1 优势•高灵敏度:压电陶瓷具有较高的灵敏度,可以将微小的压力、振动等转化为电信号。
•宽频带:压电陶瓷具有宽频带特性,可以应对不同频率范围的工作要求。
•高稳定性:压电陶瓷具有较高的稳定性,长期稳定工作不易受到环境因素的影响。
压电陶瓷材料及应用
压电陶瓷材料及应⽤压电陶瓷材料及应⽤⼀、概述1.1电介质电介质材料的研究与发展成为⼀个⼯业领域和学科领域,是在20世纪随着电⽓⼯业的发展⽽形成的。
国际上电介质学科是在20世纪20年代⾄30年代形成的,具有标志性的事件是:电⽓及电⼦⼯程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后⼜建⽴了相应的分会(IEEE Dielectric and Electrical Insulation Society)。
美国MIT建⽴了以Hippel教授为⾸的绝缘研究室。
苏联列宁格勒⼯学院建⽴了电⽓绝缘与电缆技术专业,莫斯科⼯学院建⽴了电介质与半导体专业。
特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分⼦结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。
随着电器和电⼦⼯程的发展,形成了研究电介质极化、损耗、电导、击穿为中⼼内容的电介质物理学科。
我国电介质领域的发展是在1952年第⼀个五年计划制定和实⾏以来,电⼒⼯业和相应的电⼯制造业得到迅速发展,这些校、院、所、⾸先在我国开展了有关电介质特性的研究和⼈才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交⼤于上海交⼤、哈尔滨⼯⼤等院校⼀道为我国培养了数千名绝缘电介质专业⼈才,促进了我国⼯程电介质的发展。
80年代初中国电⼯技术学会⼜建⽴了⼯程电介质专业委员会。
近年来,随着电⼦技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,⼈们创造各种性能的功能陶瓷介质。
主要有:(1)、电⼦功能陶瓷如⾼温⾼压绝缘陶瓷、⾼导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。
(2)、化学功能陶瓷如各种传感器、化学泵等。
(3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光⾊陶瓷、玻璃光纤等。
(电介质物理——邓宏)功能陶瓷作为信息时代的⽀柱材料,以其独特的⼒、热、电、磁、光以及声学等功能性质,在各类信息的检测、转换、处理和存储中具有⼴泛的应⽤,是⼀类重要的、国际竞争极为激烈的⾼技术材料。
压电陶瓷及其应用
压电瓷及其应用一. 概述压电瓷是一种具有压电效应的多晶体,由于它的生产工艺与瓷的生产工艺相似〔原料粉碎、成型、高温烧结〕因而得名。
*些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体外表出现正负束缚电荷,这种现象称为压电效应。
晶体的这种性质称为压电性。
压电性是J·居里和P·居里兄弟于1880年发现的。
几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。
1940年以前,只知道有两类铁电体〔在*温度围不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体〕:一类是罗息盐和*些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。
前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温〔低于—14 C〕下才有压电性,工程使用价值不大。
1942-1945年间发现钛酸钡〔BaTiO〕具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电瓷的发现是压电材料的一个飞跃。
这以前只有压电单晶材料,此后出现了压电多晶材料——压电瓷,并获得广泛应用。
1947年美国用BaTiO瓷制造留声机用拾音器,日本比美国晚用两年。
BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。
1954年美国B·贾菲等人发现了压电PbZrO -PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。
此后又研制出PLZT透明压电瓷,使压电瓷的应用扩展到光学领域。
迄今,压电瓷的应用,上至宇宙开发,下至家庭生活极其广泛。
我国对压电瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已到达或接近国际水平。
二. 压电瓷压电性的物理机制压电瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩〔极化〕发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电陶瓷材料及应用一、概述1.1电介质电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。
国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。
美国MIT 建立了以Hippel教授为首的绝缘研究室。
苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。
特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。
随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。
我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。
80年代初中国电工技术学会又建立了工程电介质专业委员会。
近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。
主要有:(1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。
(2)、化学功能陶瓷如各种传感器、化学泵等。
(3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。
(电介质物理——邓宏)功能陶瓷作为信息时代的支柱材料,以其独特的力、热、电、磁、光以及声学等功能性质,在各类信息的检测、转换、处理和存储中具有广泛的应用,是一类重要的、国际竞争极为激烈的高技术材料。
压电陶瓷作为重要的功能材料在电子材料领域占据相当大的比重。
(材料一)1.2压电材料的分类具有压电效应的材料称为压电材料。
自1880年Jacques Curie 和Pierre Curie发现压电效应以来,压电材料发展十分迅速。
利用压电材料构成的压电器件不仅广泛用于电子学的各个领域,而且已遍及日常生活。
例如,农村中家家户户屋檐下挂的小喇叭--压电陶瓷扬声器;医院里检查心脏、肝部的超声诊断仪上的探头--压电超声换能器;电子仪器内的各种压电滤波器;石油、化工用各种压电测压器、压电流量仪等等。
压电材料主要有压电晶体、陶瓷、压电薄膜、压电聚合物及复合压电材料等(如图1.1所示)。
图1.1 压电材料的分类压电单晶体是指按晶体空间点阵长程有序生长而成的晶体。
这种晶体结构无对称中心,因此具有压电性。
如水晶(石英晶体)、镓酸锂等。
压电陶瓷是经过直流高电压极化处理过后具有压电性的铁电陶瓷。
这些构成铁电陶瓷的晶粒的结构一般是不具有对称中心的,存在着与其它晶轴不同的极化轴,而且它们的原胞正负电荷重心不重合,即有固有电矩——自发极化(Ps)存在。
然而,铁电陶瓷是由许多细小晶粒聚集在一起构成的多晶体。
这些小晶粒在陶瓷烧结后,通常是无规则地排列的。
而且,各晶粒间自发极化方向杂乱,总的压电效应会互相抵消,因此在宏观上往往不呈现压电性能。
在外电场作用下,铁电陶瓷的自发极化强度可以发生转向,在外电场去除后还能保持着一定值——剩余极化(Pr),如图1.2所示,其中Ec为矫顽场,Psat为饱和极化强度(定义)。
利用铁电材料晶体结构中的这种特性,可以对烧成后的铁电陶瓷在一定的温度、时间条件下,用强直流电场处理,使之在沿电场方向显示出一定的净极化强度。
这一过程称为人工极化。
经过极化处理后,烧结的铁电陶瓷将由各向同性变成各向异性,并因此具有压电效应。
由此可见,陶瓷的压电效应来源于材料本身的铁电性。
因此,所有的压电陶瓷也都应是铁电陶瓷。
图1.2 铁电材料的电滞回线相比较而言,压电陶瓷压电性强、介电常数高、可以加工成任意形状,但机械品质因子较低、电损耗较大、稳定性差,因而适合于大功率换能器和宽带滤波器等应用,但对高频、高稳定应用不理想。
石英等压电单晶压电性弱,介电常数很低,受切割限制存在尺寸局限,但稳定性很高,机械品质因子高,多用来作标准品率控制的振子、高选择性(多属高频狭带通)的滤波器以及高频、高温超声换能器等。
压电薄膜是一种独特的高分子传感材料,能相对于压力或拉伸力的变化输出电压信号,因此是一种理想的动态应变片,压电薄膜元件通常由四部分组成:金属电极、加强电压信号压膜、引线和屏蔽层。
压电聚合物,如偏聚氟乙烯(PVDF)(薄膜)等,具有材质柔韧,低密度,低阻抗和高压电电压常数(g)等优点,为世人瞩目且发展十分迅速,现在水声超声测量、压力传感、引燃引爆等方面获得应用。
不足之处是压电应变常数(d)偏低,使之作为有源发射换能器受到很大的限制。
复合压电材料,是在有机聚合物基底材料中嵌入片状、棒状、杆状、或粉末状压电材料构成的。
至今已在水声、电声、超声、医学等领域得到广泛的应用。
如它制成的水声换能器,不仅具有高的静水压响应速率,而且耐冲击,不易受损且可用于不同的深度。
(材料一)1.3发展概况1942-1945年间发现钛酸钡(BaTiO3)具有异常高的介电常数,不久又发现它具有压电性,BaTiO3压电陶瓷的发现是压电材料的一个飞跃。
这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。
1947年美国用BaTiO3陶瓷制造留声机用拾音器,日本比美国晚用两年。
BaTiO3存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。
1954年美国B·贾菲等人发现了压电PbZrO3-PbTiO3(PZT)固溶体系统,这是一个划时代大事,使在BaTiO3时代不能制作的器件成为可能。
此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。
六十年代初,Smolensky等人对复合钙钛矿型化合物进行了系统的研究,提出可以用不同原子价的元素组合取代钙钛矿结构中的A-位和B-位离子,大大增加了钙钛矿型化合物的种类。
如Pb(Mg1/3Nb2/3)O3(PMN)、Pb(Ni1/3Nb2/3)O3(PNN)、Pb(Sb1/3Nb2/3)O3(PSN)等,这些新的二元系压电陶瓷不仅各有特色,而且陶瓷的烧结温度低,工艺重复性好,对压电材料的发展起了积极作用。
1965年,日本松下电气公司的H.Ouchi发表了把Pb(Mg1/3Nb2/3)O3作为第三组分加到PZT陶瓷中制成的三元系压电陶瓷(简称PCM),发现它具有良好的压电性能。
1969年,我国压电与声光技术研究所研制成功把Pb(Mn1/3Sb2/3)O3作为第三组分加到PZT 中的三元系压电陶瓷,性能比PZT和PCM优越。
经过10多年的深入研究和广泛应用,这种材料成为我国自成体系的、具有独特性能的、工艺稳定的三元系压电陶瓷,起名PMS。
PMS压电陶瓷和用它作换能器的压电晶体速率陀螺均先后获国家科委发明奖。
80年代,为了既能满足人类日益增长的物质文化生活需要,又能减少对环境的污染,保护人类赖以生存的生态环境,简化材料制备工艺,开始了非铅基铁电压电陶瓷的研究工作。
非铅基铁电压电陶瓷主要是以铌酸盐和钛酸盐为主的化合物。
虽然这类材料的目前压电性能还不如锆钛酸铅系,但是非铅基铁电压电陶瓷的研究开发已成为压电陶瓷材料领域的研究前沿之一。
二、压电陶瓷的压电机理与性能参数压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。
2.1极化的微观机理在电场的作用下,电介质内部沿电场方向感应出偶极矩,即在电介质表面出现束缚电荷的物理现象。
极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。
极化机理主要有三种。
(1)电子位移极化——在外电场作用下,构成原子外围的电子云相对于原子核发生位移,这种极化称为电子位移极化(电子极化),其极化率称为电子位移极化率e α。
电子位移极化结论是:对于同族元素:e α由上到下增大,因:外层电子数增加,原子半径R 增大;对于同周期元素:不定,因为外层电子数虽然增加,但轨道半径可能减小;离子的电子位移极化率的变化规律与原子大致相同;离子半径大,极化率大;实测电子位移极化率与理论结果仍有差别,但研究发现,304/R e πεα值大,对极化贡献大;电子位移极化率与温度无关,因为,R 与T 无关;极化率为快极化:10-15 –10-16s ,该极化无损耗。
在光频下,只有电子极化,介质的光折射率为:(2)离子位移极化——离子晶体中正、负离子发生相对位移而形成的极化,称为离子(位移)极化(Ionic polarization)。
极化率用i α表示。
离子位移极化结论是:离子位移极化率与电子位移极化率几乎有相同的数量级,均在04πε(10-10)3≈10-40法·米2数量级;离子位移极化只可能在离子晶体中存在,液体或气体介质中不存在离子极化;离子位移极化只与离子晶体结构参数有关,与温度无关;离子位移极化建立或消除时间与离子晶格振动周期有相同数量级,10-12~10-13秒。
(3)取向极化——当极性分子受外电场作用时,偶极子就会产生转矩,由于偶极子与电场方向相同时具有最小位能,于是就电介质整体来看,偶极矩不再等于零,而出现沿电场方向的宏观偶极矩,这种极化现象称为偶极子转向极化,用d α表示。
KT d 320μα= 0μ是极性分子固有偶极矩~米库⋅-3010 (2)根据电介质分子参与极化运动的种类,把极化分成三类:电子位移极化e α;离子位移极化i α;偶极矩转向极化d α。
()EE N E N E p ii d i e ⋅+==-=++=001:,1εαεαεεαααα或电介质的总极化为: (3) 对于各向异性晶体,极化强度与电场存在有如下关系m ,n=1,2,3 (4)式中为极化率,或用电位移写成: (5)图PPt9微观机理图2.2压电性、铁电性与反铁电性2.2.1压电效应压电效应是1880年由JacquesCurie和PierreCurie发现的。
他们在研究热电性与晶体对称性的关系时,发现在一些无对称中心晶体的特定方向上施加压力时,相应的表面上出现正或负的电荷,而且电荷密度与压力大小成正比;同年,他们证实了这类晶体具有可逆的性质,即晶体的形状会受外加电场的作用发生微小的变化(如图2.1所示)。
图2.2 压电效应示意图(a)正压电效应;(b)逆压电效应(ⅰ收缩ⅱ膨胀)。