九上数学期末复习
最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版
最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版最新浙教版初中九年级《数学》上册全册期末总复知识点考点重难点要点整理复汇总,是一份完整、完美、必备的复资料。
1.二次函数1.1 二次函数二次函数是形如y=ax²+bx+c (其中a,b,c是常数,a≠0)的函数。
a为二次项系数,b为一次项系数,c为常数项。
1.2 二次函数的图像二次函数y=ax²(a≠0)的图像是一条抛物线,关于y轴对称,顶点在坐标原点。
当a>0时,抛物线开口向上,顶点为最低点;当a0时)或向左(当m0时)或向下(当k<0时)平移|k|个单位得到,顶点为(m,k),对称轴为直线x=m。
1.3 二次函数的性质二次函数y=ax² (a≠0)的图像具有如下性质:1)对称轴为x=-b/2a;2)最值点为顶点,最大值为k (当a0时);3)图像开口方向由a的符号确定。
1.4 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。
注意:由此求得的最大值或最小值对应的自变量必须在自变量的取值范围内。
2.简单事件的概率2.1 事件的可能性根据事件是否发生的可能性,可以将事件分为三类:必然事件、不可能事件、不确定事件或随机事件。
2.2 简单事件的概率将事件发生可能性的大小称为事件发生的概率,一般用P 表示。
事件A发生的概率记为P(A)。
必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),那么事件A发生的概率为:P(A)=m/n。
使用公式P(A)=m/n来计算简单事件发生的概率,需要先确定所有结果的可能性相等,然后确定所有可能的结果总数n和事件A包含的结果数m。
九年级数学上册期末复习综合测试题(含答案)
(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。
人教版九年级上册数学期末考试考前复习高频考点专题练习一遍过《一元二次方程》及答案
人教版九年级数学上册期末考试考前复习高频考点专题练习一遍过《一元二次方程》高频考点一:一元二次方程的定义1. 下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.42.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,23. 方程(4-a2)x2+(a+2)x+1=0,当a________时,它是一元二次方程,当a=________时,它是一元一次方程.4. 数学兴趣小组对关于x的方程(m+1)x m2+1+(m-2)x-1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并写出方程.(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.高频考点二:解一元二次方程1. 用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=192. 已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7 B.﹣1 C.7或﹣1 D.﹣5或33. 已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足x1-x2=3,则k的值是.4. 已知代数式7x(x+5)+10与代数式9x﹣9的值互为相反数,则x=.5. 现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.6. 解方程:(1)(2x﹣3)2=x2.(2)x2+4x﹣1=0.高频考点三:一元二次方程与参数问题1. 若关于x的方程mx2-2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<-13B.m≤13,且m≠0 C.m<13,且m≠0D.m>132. 若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1D.k>53. 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为.4. 如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是.5. 已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为.6. 已知关于x的一元二次方程x2+(2m-1)x+m2-3=0有实数根.(1)求实数m的取值范围;(2)当m取满足条件的最大整数时,求方程的解.高频考点四:一元二次方程的综合应用1.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对2. 某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315C.560(1﹣2x)2=315 D.560(1﹣x2)=3153. 如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=.4. 要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?5. 某小区在绿化工程中有一块长为18m、宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.6. 在△ABC中,∠B=90°,AB=6cm,BC=3cm,点P从A点开始沿着AB边向点B以1cm/s的速度移动,点Q从B 点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发:(1)经过多长时间,S△PQB=1S△ABC?2(2)经过多长时间,P,Q间的距离等于4√2cm?。
九年级数学第一学期期末考试综合复习测试题(含答案)
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
新人教版九年级数学上学期期末复习知识点填空(最佳、最优、最全、最有效)
期末复习重点知识点:一、一元二次方程1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 次的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n+=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是 .公式法解方程的步骤 1.变形: 化已知方程为一般形式ax 2+bx +c =0; 2.确定系数:用a ,b ,c 写出各项系数; 3.计算: b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出; 若b 2-4ac <0,则方程没有实数根. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.(4)ac b 42-≥0⇔一元二次方程()002≠=++a c bx ax 有 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .同时:若α、β为一元二次方程0132=++x x 的两个实数根,则有01α3α2=++ 和01β3β2=++5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
人教版九年级上册数学期末复习测试卷附解析学生版
人教版九年级上册数学期末复习测试卷附解析学生版一、单选题1.如图,AB是⊙O的直径,CD是⊙O的弦,如果⊙ACD=36°,那么⊙BAD等于()A.36°B.44°C.54°D.56°2.如图,在⊙O中,弦AB⊙CD,OP⊙CD,OM=MN,AB=18,CD=12,则⊙O的半径为()A.4B.4√2C.4√6D.4√33.已知⊙O的半径为2cm,点P到圆心O的距离为4cm,则点P和⊙O的位置关系为()A.点P在圆内B.点P在圆外C.点P在圆上D.不能确定4.平面上有四个点,过其中任意3个点一共能确定圆的个数为()A.0或3或4B.0或1或3C.0或1或3或4D.0或1或45.如图,⊙ABC中,⊙C=90°,BC=5,⊙O与⊙ABC的三边相切于点D、E、F,若⊙O的半径为2,则⊙ABC的周长为()A.14B.20C.24D.306.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分⊙BAC,则AD长()A.4 √5cm B.3 √5cm C.5 √5cm D.4 cm7.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.B.C.D.8.边长为1的正六边形的内切圆的半径为().A.2B.1C.D.9.如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.⊙AOB=90°,弧AB的半径OA 长是6米,C是OA的中点,点D在弧AB上,CD⊙OB,则图中休闲区(阴影部分)的面积是()A.(10π−9√32)米2B.(π−9√32)米2C.(6π−9√32)米2D.(6π−9√3)米2 10.一个扇形的半径为8cm,弧长为πcm,则扇形的圆心角为()A.60°B.120°C.150°D.180°11.用一个半径为3,面积为6π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.112.如图,将⊙ABC绕点C(0,﹣1)旋转180°得到⊙A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)13.如图,在⊙ABC中,⊙CAB=65°,将⊙ABC在平面内绕点A旋转到⊙AB′C′的位置,使CC′⊙AB,则旋转角的度数为()A.35°B.40°C.50°D.65.14.如图,在Rt⊙ABC中,⊙ABC=90°,AB=BC,点P在⊙ABC内一点,连接PA,PB,PC,若⊙BAP=⊙CBP,且AP = 6,则PC的最小值是()A.2√2B.3C.3√5−3D.3√2二、填空题15.已知⊙O的半径为10,弦AB//CD,AB=12,CD=16,则AB和CD的距离为. 16.如图所示,点B,D,C是⊙A上的点,⊙BCD=130°,则⊙BAD=.17.已知圆外点到圆上各点的距离中,最大值是6,最小值是1,则这个圆的半径是.18.如图,AB为⊙O直径,BC=4,AC=3,CD平分⊙ACB,则AD=.19.如图,在⊙O中,半径r=10,弦AB=16,P是弦AB上的动点,则线段OP长的最小值为.20.如图,⊙ABC中,⊙BAC=60°,⊙ABC=45°,AB= √2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.21.如图,MN是⊙O的直径,MN=2,点A在⊙O上,⊙AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.22.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt⊙ADE,⊙AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为.⌢的23.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是MB中点,P是直径AB上的一动点,若MN=1,则ΔPMN周长的最小值为.24.在Rt⊙ABC中,⊙ACB=90°,AC=BC=1,将Rt⊙ABC绕A点逆时针旋转30°后得到Rt⊙ADE,则图中阴影部分的面积是.25.如图,在矩形ABCD中,已知AB=2,BC=1.5,矩形在直线上绕其右下角的顶点B向右第一次旋转90°至图①位置,再绕右下角的顶点继续向右第二次旋转90°至图②位置,…,以此类推,这样连续旋转4次后,顶点A在整个旋转过程中所经过的路程之和是.26.如图,小明从纸上剪下一个圆形和一个扇形纸片,用它们恰好能围成一个圆锥模型.若圆的半径为1,扇形的圆心角为120°,则此扇形的半径为.27.现要在一个长为35m,宽为22m的矩形花园中修建等宽的小道,剩余的地方种植花草,如图,要使种植花草的面积为625m²,设小道的宽为xm,则根据题意,可列方程为.28.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且⊙ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值是;此时⌢的长度是.BHC29.如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为.30.已知,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,则S⊙ABC=.三、单选题(每题3分,共30分)31.如图所示,以AB为直径的半圆,绕点B顺时针旋转60°,点A旋转到点A′,且AB=4,则图中阴影部分的面积是()A.π3B.8π3C.8D.π6四、解答题32.已知:如图所示,AD=BC。
人教版初中九年级数学上册数学期末总复习(全面)精品课件
一元二次方程根与系数的关系 (韦达定理)
若方程ax bx c 0(a 0)的两根为x1 , x2 ,
2
b c 则x1 x2 , x1 x2 a a
特别地:
2
若方程x px q 0的两根为x1 , x2, 则:x1 x2 p, x1 x2 q
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
7、关于原点对称的点的坐标:
( -a,-b) (a,b)关于原点的对称点是 ______
例、点P(-1,3)关于原点对称的点 的坐标是 ; 点P(-1,3)绕着原点顺时针旋转 90o与P’重合,则P’的坐标为 ______
解得
- 5≤x<3
题型2:二次根式的非负性的应用.
4.已知:
x4 +
2x y
=0,求 x-y 的值.
解:由题意,得 解得
x-4=0 且 2x+y=0 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 5.(2005.湖北黄冈市)已知x,y为实数,且
2 =0,则x-y的值为( +3(y-2) x 1
.
4、已知一元二次方程 2 x2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,c= .
二、选择 2 1、若方程x m x n 0 中有一个根为零,另一个根非零,则m, n 的值为 ( ) A m 0, n 0 B m 0, n 0 C m 0, n 0 D mn 0
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
新冀教版九年级上册数学全册期末复习必背知识点归纳
新冀教版九年级上册数学全册期末复习必背知识点归纳1. 有理数的四则运算- 加法:有理数相加时保留同号后合并绝对值,异号先转化为同号再合并绝对值。
- 减法:有理数相减转化为加法,注意减去一个数等于加上这个数的相反数。
- 乘法:有理数相乘符号同正负规律,绝对值相乘。
- 除法:有理数相除符号同正负规律,绝对值相除。
2. 代数式与多项式- 代数式:由数字、字母及运算符号组成的式子。
- 多项式:由多个代数项经过加法或减法运算得到的代数式。
3. 分式与整式- 分式:由分子和分母分别用代数式表示的符号。
- 整式:没有分式的代数式。
4. 图形的坐标表示- 直角坐标系:一个平面上以两条互相垂直的直线为基准线,确定平面上的点位置。
- 坐标:平面上的点在直角坐标系中的位置。
5. 一次函数- 函数:根据一些输入值通过某种规则得到输出值的关系。
- 一次函数:函数的自变量的最高次数为1的函数。
6. 二次根式- 平方根:数的平方根是指一个数的平方等于这个数。
- 二次根式:含有平方根的式子。
7. 平面图形与空间图形- 平面图形:在平面上画出的图形。
- 空间图形:在空间中用线段、射线、直线画的图形。
8. 数据的收集整理与概述- 数据收集:通过观察或实验,获得或记录相关事物数量或特征的过程。
- 数据整理:对收集到的数据进行筛选、处理和归纳,并用合适的图表形式展示。
- 数据概述:根据数据的统计特征和分布规律描述、分析和总结数据。
9. 事件与概率- 事件:对随机试验可能结果的划分。
- 概率:事件发生的可能性。
10. 统计抽样与统计推断- 统计抽样:从总体中抽取样本进行统计。
- 统计推断:通过对样本的统计数据作出关于总体的推断。
以上是《新冀教版九年级上册数学全册》期末复习必背知识点的详细归纳,希望能对你的复习有所帮助。
浙教版2022-2023学年九年级上册数学期末复习试卷(含解析)
浙教版2022-2023学年九年级上册数学期末复习试卷一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点(2,3),则k 等于()A .2B .3C .-6D .62.若关于x 的一元二次方程x 2+x -k =0有两个实数根,则k 的取值范围是()A .k >-14B .k ≥-14C .k <-14D .k ≤-143.如图,直线AD ∥BE ∥CF ,若ABBC =12,DE =9,则EF 的长是()A .4.5B .18C .9D .124.如图,在Rt △ABC 中,∠C =90°,cos A =13,则tan B 的值为()A .2B .3C .324D .245.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由56元降为31.5元,设平均每次降价的百分率是x ,则根据题意,下列方程正确的是()A .56(1-2x )=31.5B .56(1-x )2=31.5C .31.5(1+x )2=56D .31.5(1+2x )=566.一组数据4,5,6,a ,b 的平均数为5,则a ,b 的平均数为()A .4B .5C .8D .107.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为点D ,CD =1,则AB 的长为()A .2B .23 C.33+1 D.3+18.如图,△ABC中,点D,E分别在AB,AC上,且ADDB=AEEC=12,下列结论正确的是()A.DE∶BC=1∶2B.△ADE与△ABC的面积比为1∶3 C.△ADE与△ABC的周长比为1∶2D.DE∥BC9.下列方程没有实数根的是()A.x2+4x=10B.3x2+8x-3=0C.x2-2x+3=0D.(x-2)(x-3)=1210.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D运动的速度为1cm/s,点E运动的速度为2cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是()A.3s或4.8s B.3s C.4.5s D.4.5s或4.8s二、填空题(每题3分,共24分)11.已知α为锐角,且tanα=1,则α=________.12.若x=3是一元二次方程x2-2x+c=0的一个根,则c=________. 13.某学校为了解学生课间体育活动情况,随机抽取本校100名学生对他们喜爱的项目进行调查,整理收集到的数据,绘制成如图所示不完整的统计图.若该校共有800名学生,则估计喜爱“踢毽子”的学生有________名.14.已知m,n是方程x2-2x-1=0的两实数根,则1m+1n=________.15.如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=3∶5,则四边形ABCD与四边形A′B′C′D′的面积比是________.16.如图,为了测量校园内旗杆AB的高度,九年级数学应用实践小组根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O处,然后观测者沿着水平直线BO后退到点D,这时恰好能在镜子里看到旗杆顶点A,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD=1.7m,BD=11m,则旗杆AB的高度约为________m(结果取整数,3≈1.7).17.如图,在▱ABCD中,过点B的直线与AC,AD及CD的延长线分别相交于E,F,G.若BE=6,EF=2,则FG等于________.18.在平面直角坐标系中,已知反比例函数y=1x(x>0)的图象,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立一个“凡尔赛阶梯”,那么A2的坐标为______________.三、解答题(19,20题每题8分,22,23题每题10分,21,24题每题15分,共66分)19.计算或解方程:(1)tan260°+4sin30°·cos45°;(2)x2-2x-15=0.20.已知关于x的方程3x2+2x-m=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程的一个根为-1,求方程的另一个根.21.一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的表达式;(2)点A,B在某个反比例函数图象上,点B的横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.23.一名徒步爱好者来衡阳旅行,他从宾馆C处出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆C处南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离.(2)若这名徒步爱好者以100米/分的速度沿BC从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?24.沂水县所产大樱桃色泽艳丽,果肉细腻,汁甜如蜜,个大味美,营养丰富,深受消费者喜爱.夏蔚镇果农张先生几年前种植了甲、乙两个樱桃园,各栽种200棵樱桃树,成活率为99%,现已挂果.为分析收成情况,他分别从两个樱桃园随机抽取5棵树作为样本,并采摘完样本树上的樱桃,每棵树的产量如图所示.(1)分别计算甲、乙两个樱桃园样本数据的平均数;(2)请根据样本估计甲、乙两个樱桃园樱桃的总产量;(3)根据样本,通过计算估计哪个樱桃园的樱桃产量比较稳定.答案一、1.D 2.B 3.B4.D【点拨】因为在Rt△ABC中,∠C=90°,cos A=13,所以cos A=ACAB=13,不妨假设AC=1,则AB=3,由勾股定理求得BC=22,所以tan B=ACBC=122=24,故选D.5.B6.B【点拨】∵一组数据4,5,6,a,b的平均数为5,∴4+5+6+a+b5=5,∴a+b=10,∴a,b的平均数为a+b2=102=5,故选B.7.D【点拨】因为CD⊥AB,AB=AD+DB,所以可在Rt△ADC和Rt△CDB 中分别求出AD和DB的长,进而求出AB的长.8.D【点拨】∵ADDB=AEEC=12,∴AD∶AB=AE∶AC=1∶3.又∵∠A=∠A,∴△ADE∽△ABC,∴DE BC=1∶3,故A错误;∵△ADE∽△ABC,AD AB =1∶3,∴△ADE与△ABC的面积比为1∶9,周长比为1∶3,故B和C错误;∵△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,故D正确.故选D. 9.C10.A【点拨】根据题意,设当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是x s.①若△ADE∽△ABC,则AD∶AB=AE∶AC,即x∶6=(12-2x)12,解得x=3;②若△ADE∽△ACB,则AD AC=AE AB,即x∶12=(12-2x)6,解得x=4.8.所以当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是3s或4.8s.二、11.45°12.-3【点拨】将x=3代入一元二次方程x2-2x+c=0即可求得c的值.13.20014.-2【点方法】可根据根与系数的关系求解,由题意可知m+n=2,mn=-1,则1 m+1n=n+mmn=2-1=-2.15.9∶2516.17【点拨】由题意知∠COD=∠AOB=60°,∠CDO=∠ABO=90°,∴△COD∽△AOB.∵CD=1.7m,∴OD=CDtan60°=1.73≈1(m),∴OB≈11-1=10(m).∵△COD∽△AOB,∴CDAB=ODOB,即1.7AB=110,∴AB=17m.17.16【点思路】根据平行四边形的性质,可知AD∥BC,由此判断△AEF与△CEB相似是解题的关键.)【点拨】∵反比例函数的表达式为y=1x(x>0),∴A3所在的正方形的边长为1,设A2所在的正方形的边长为m,则A2(m,m+1),∴m(m+1)=1,解得m=-1+52(负值舍去),∴A2的坐标为三、19.解:(1)原式=(3)2+4×12×22=3+ 2.(2)原方程可化为(x +3)(x -5)=0,所以x 1=-3,x 2=5.20.解:(1)∵关于x 的方程3x 2+2x -m =0有两个不相等的实数根,∴Δ=22-4×3×(-m )>0,解得m >-13,即m 的取值范围是m >-13.(2)设方程的另一个根为a ,根据根与系数的关系得a +(-1)=-23,解得a =13,即方程的另一个根为13.21.解:(1)由题设这个一次函数的表达式为y =kx +1,把A (2,3)的坐标代入,得3=2k +1,解得k =1,∴这个一次函数的表达式为y =x +1.(2)如图,设反比例函数表达式为y =m x ,把A (2,3)的坐标代入,得3=m 2,解得m =6,∴反比例函数表达式为y =6x .当x =6时,则y =66=1,∴B (6,1),∴AB =(6-2)2+(1-3)2=2 5.∵将点B 向上平移2个单位得到点C ,∴C (6,3),BC =2.∵A (2,3),C (6,3),∴AC ∥x 轴.∵B (6,1),C (6,3),∴BC ⊥x 轴,∴AC ⊥BC ,∴∠ACB =90°,∴△ABC是直角三角形,∴cos ∠ABC =BC AB =225=55.22.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°.∴∠DAF =∠AEB .∵DF ⊥AE ,∴∠AFD =∠B =90°.∴△ABE ∽△DFA .(2)解:∵E 是BC 的中点,BC =4,∴BE =2.∵AB =6,∴AE =AB 2+BE 2=62+22=210.∵四边形ABCD 是矩形,∴AD =BC =4.∵△ABE ∽△DFA ,∴AB DF =AE AD .∴DF =AB ·AD AE =6×4210=6510.23.解:(1)如图,过点C 作南北方向线l ,作CD ⊥AB 于D 点,根据垂线段最短可知线段CD 的长是从石鼓书院走到雁峰公园的途中与宾馆的最短距离.由题意知,∠1=30°,AB ∥l ,所以∠A =∠1=30°.在Rt △ACD 中,AC =2000米,所以CD =12AC =1000答:这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离为1000米.(2)由(1)可知CD =1000米.由题意知,∠2=45°,l ∥AB ,所以∠B =∠2=45°.在Rt △BCD 中,BC =2CD =10002米.设这名徒步爱好者从雁峰公园返回宾馆用了x 分钟,根据题意,得100x =1000 2.解得x =10 2.因为102<15,所以这名徒步爱好者在15分钟内能到达宾馆.24.解:(1)由题图可得,甲的样本数据分别为40,45,54,46,40,∴平均数为(40+45+54+46+40)÷5=45;乙的样本数据分别为43,38,49,42,48,∴平均数为(43+38+49+42+48)÷5=44.(2)估计甲、乙两个樱桃园的总产量为200×99%×(45+44)=17622(千克).(3)甲的样本方差为s2甲=15×[(40-45)2+(45-45)2+(54-45)2+(46-45)2+(40-45)2]=26.4;乙的样本方差为s2乙=15×[(43-44)2+(38-44)2+(49-44)2+(42-44)2+(48-44)2]=16.4.∵s2甲>s2乙,∴估计乙樱桃园的樱桃产量比较稳定.。
人教版九年级数学上册 期末复习(易错题精选、一元二次方程)二套含答案
人教版九年级数学上册期末复习01—易错题精选一、选择题(每小题3分,共24分)1.关于x 的方程22210m x x --+=()有实数解,那么m 的取值范围是( )A .2m ≠B .3m ≤C .3m ≥D .32m m ≤且≠2.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大3.如图①是33⨯正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A .4种B .5种C .6种D .7种4.如图,在正方体的表面展开图中,要将a -、b -、c -填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字和均为零的概率为( ) A .12 B .13C .14D .16 5.有两个一元二次方程:2:0M ax bx c ++=,2:0N cx bx a ++=,其中0a c +=,下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =6.如图,在ABC △中,AB AC =,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是( )A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点7.已知二次函数2y x bx c =++的图象过点1A m (,),3B m (,),若点12M y -(,),21N y -(,),38K y (,)也在二次函数2y x bx c =++的图象上,则下列结论正确的是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.已知抛物线20y ax bx c a =++(>)过20-(,),23(,)两点,那么抛物线的对称轴( ) A .只能是1x =- B .可能是y 轴 C .在y 轴右侧 D .在y 轴左侧二、填空题(每小题4分,共32分)1.请写出一个符合下列全部条件的函数解析式________;(1)图象不经过第三象限;(2)当1x -<时,y 随x 的增大而减小;(3)图象经过点11-(,). 2.若抛物线2y ax c =+与x 轴交于点0A m (,),0B n (,),与y 轴交于点0C c (,),则ABC △称为“抛物三角形”.特别地,当0mnc <时,称ABC △为“倒抛物三角形”,此时a ,c 应分别满足条件________.3.已知圆的两条平行弦分别长6dm 和8dm ,若这圆的半径是5dm ,则两条平行弦之间的距离为________.4.如图,AB 是O e 的弦,6AB =,点C 是O e 上的一个动点,且°45ACB ∠=.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是________.5.有四张正面分别标有数字3-,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为________.6.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转°60得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.7.如图,已知二次函数20y ax bx c a =++(≠)的图象经过点(1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中110x -<<,212x <<,下列结论:①0abc <;②2a b a -<<;③284b a ac +<;④10a -<<,其中正确结论的序号是________.8.如图,已知直线334y x =-+分别交x 轴、y 轴于点A ,B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是________.三、解答题(共64分)1.(6分)用四块如图①所示的瓷砖拼铺一个成正方形的地板,使拼铺的图案成轴对称图形或中心对称图形,请你在图②和③中各画出一种拼法.(要求两种拼法各不相同)2.(8分)张彬和王华两位同学为得到一张观看足球比赛的入场券,商量后计划通过转盘游戏来决定,并各自设计了一种方案:张彬:将一个可以自由转动并标有阴影区域面积的转盘(如图①),随意转动,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将分成4等分且分别标有数字1,2,3,4的转盘,随意转动两次,当指针所指两个数字之和为偶数,王华得到入场券;否则,张彬得到入场券.(1)使用张彬设计的方案,随机转动转盘一次,指针指向阴影区域的概率是多少?(2)请你运用所学的概率知识,帮助张彬和王华选出公平的游戏方案.3.(11分)如图①所示,AB 是O e 的直径,AC 是弦,直线EF 和O e 相切于点C ,AD EF ⊥,垂足为D .(1)求证:DAC BAC ∠=∠;(2)若把直线EF 向上平行移动,如图②所示,EF 交O e 于G ,C 两点,若题中的其他条件不变,试探究与DAC ∠相等的角是哪一个?说明理由.4.(12分)等腰ABC △的直角边10cm AB BC ==,点P ,Q 分别从A ,C 两点同时出发,均以1cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t ,PCQ △的面积为S .(1)求出S 关于t 的函数关系式;(2)当点P 运动几秒时,PCQ ABC S S =△△?(3)作PE AC ⊥于点E ,当点P ,Q 运动时,线段DE 的长度是否改变?证明你的结论.5.(13分)已知Rt ABO △中,边1AB OB ==,°90ABO ∠=.【问题探究】(1)以AB 为边,在Rt ABO △的右边作正方形ABCD ,如图①,则点O 与点D 的距离为________.(2)以AB 为边,在Rt ABO △的右边作等边三角形ABC ,如图②,求点O 与点C 的距离.【问题解决】(3)若线段1DE =,线段DE 的两个端点D ,E 分别在射线OA ,OB 上滑动,以DE 为边向外作等边三角形DEF ,如图③,则点O 与点F 的距离有没有最大值?如果有,求出最大值;如果没有,说明理由.6.(14分)如图,抛物线2:L y x bx c =++经过A (0,3),B (1,0)4两点,点M 为顶点.(1)求b ,c 的值;(2)将OAB △绕点B 顺时针旋转:①当旋转°90时,点A 落在点C 的位置,将抛物线L 通过向上或向下平移后经过点C .求平移后所得抛物线1L 的表达式;②记OAB △绕点B 顺时针旋转过程中点A 的对应点为A ',点O 的对应点为O ',在抛物线1L 上是否存在A ',使得以点O ,A ,O ',A '为顶点的四边形是平行四边形?若存在,求出点A '的坐标;若不存在,请说明理由.期末复习—易错题精选参考答案一、1.【答案】B2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】D .二、1.【答案】211y x =--()(答案不唯一) 2.【答案】0a <,0c >3.【答案】1dm 7dm 或4.【答案】5.【答案】146.【答案】1.57.【答案】①②8.【答案】4144-+-或或三、1.【答案】答案不唯一.2.【答案】解:(1)根据转盘中阴影部分扇形的圆心角度数和°°°10070170+=则P (指针指向阴影区域)°°1701736036==.(2)由(1)得张彬设计的方案中,张彬得到入场券的概率为1736P =,王华得到入场券的概率为171913636P =-=,则张彬的方案不公平. 利用王华的方案画树状图如下:由树状图得,共有16种等可能的结果,两次数字之和为偶数的有8种,则王华得到入场券的概率为81162P ==,张彬得到入场券的概率为12P =,∴王华的设计方案公平. 3.【答案】(1)证明:如图①,连接OC .EF Q 与O e 相切于点C ,OC EF ∴⊥...AD EF AD OC OCA DAC ∴∴∠=∠Q ⊥,∥.OA OC OCA BAC DAC BAC =∴∠=∠∴∠=∠Q ,,(2)解:BAG ∠与DAC ∠相等.理由如下:如图②,连接BC ,则B AGD ∠=∠.AB Q 是直径,AD EF ⊥,°90BCA GDA ∴∠=∠=,°90B BAC ∴∠+∠=,°90AGD DAG ∠+∠=.BAC DAG ∴∠=∠,BAC CAG DAG CAG ∴∠-∠=∠-∠.即BAG DAC ∠=∠.4.【答案】解:(1)当10t <秒时,P 在线段AB 上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). 当10t >秒时,P 在线段AB 的延长线上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). (2)1502ABC S AB BC ==Q g △, 211010502PCQ t S t t ∴=-=△当<秒时,(). 整理,得2101000t t -+=,无解.当10t >秒时,2110502PCQ S t t =-=△().整理,得2101000t t --=,解得5t =±.∴当点P 运动5±(秒时,PCQ ABC S S =△△.(3)当点P ,Q 运动时,线段DE 的长度不会改变.证明:过Q 作QM AC ⊥,交直线AC 于点M .易证APE QCM △≌△,2AE PE CM QM ∴====. ∴四边形PEQM 是平行四边形,且DE 是对角线EM 的一半.又EM AC ==Q ,DE ∴=.∴当点P ,Q 运动时,线段DE 的长度不会改变.同理,当点P 在点B 右侧时,DE =综上所述,当点P ,Q 运动时,线段DE 的长度不会改变.5.【答案】(1(2)过点C 作CD OB ⊥,垂足为点D .连接OC ,则°30CBD ∠=.1AB BC ==Q ,∴在Rt CBD △中,12CD =,BD =,1OD ∴=+.∴在Rt CDO △中,OC ==.(3)点O 与点F 的距离有最大值. 作ODE △的外接圆M e ,连接MD ,ME ,MF ,MO ,OF ,则OF MO MF +≤. 设MF 与DE 交于点N .°°4590AOB DME ∠=∴∠=Q ,.1DE =Q ,∴可得M e 的半径为2MD ME MO ===. MD ME =Q ,DF EF =,MF ∴垂直平分DE .1122MN DE ∴==,22NF EF ==.12OF OM MF ∴+=+≤OF ∴最大值. 6.【答案】解:(1)已知抛物线L 经过点A (0,3),B (1,0),将其代入2y x bx c =++,得310c b c =⎧⎨++=⎩,,解得43.b c =-⎧⎨=⎩, 即b ,c 的值分别为4-和3.(2)①根据点A ,B 坐标,可知3OA =,1OB =,如图,将OAB △绕点B 顺时针旋转°90后,可得点C 坐标为(4,1).当4x =时,由243y x x =-+得3y =,可知抛物线L 经过点(4,3),∴将原抛物线沿y 轴向下平移2个单位后过点C .∴平移后的抛物线1L 的表达式为241y x x =-+.②存在.如图,OAB △绕点B 旋转过程中,当点A ',B ,A 三点在同一直线上时满足以点O ,A ,O ',A '为顶点的四边形是平行四边形.AB A B '=Q ,OB O B '=,∴四边形OAO A ''为平行四边形.根据图形的旋转性质,可知3O A OA ''==,1OB O B '==,且°90AOB A O B ''∠=∠=, ∴点A '的坐标为23-(,). 又Q 抛物线1L 的表达式为241y x x =-+,∴抛物线1L 的顶点坐标为23-(,). ∴点A '坐标与抛物线1L 的顶点坐标重合.∴抛物线1L 上存在一点23A '-(,),使得以点O ,A ,O ',A '为顶点的四边形是平行四边形.人教版九年级数学上册期末专项复习02—一元二次方程考点1 巧用一元二次方程的定义及相关概念求值题型1 利用一元二次方程的定义确定字母的取值1.已知231m x -=()是关于x 的一元二次方程,则m 的取值范围是( ) A .3m ≠B .3m ≥C .2m -≥D .23m m -≥且≠2.已知关于x 的方程211210m xm m x +++--=()().(1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程2243680a x a x a -+++-=()()没有常数项,则a 的值为________.2.已知关于x 的一元二次方程221510m x x m -++-=()的常数项为0,求m 的值.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x 的方程20x bx a ++=的一个根是0a a -(≠),则a b -的值为() A .1- B .0 C .1 D .22.已知关于x 的一元二次方程2243160k x x k +++-=()的一个根为0,求k 的值.3.已知实数a 是一元二次方程2201610x x -+=的根,求代数式22120152016a a a +--的值.题型4 利用一元二次方程根的概念解决探究性问题1.已知m ,n 是方程2210x x --=的两个根,是否存在实数a 使22714367m m a n n -+--()()的值等于8?若存在,求出a 的值;若不存在,请说明理由.考点2 一元二次方程的解法归类类型1 限定方法解一元二次方程方法1 形如20x m n n +=()(≥)的一元二次方程用直接开平方法求解1.方程24250x -=的解为()A .25x = B .52x = C .52x =± D .25x =±2.用直接开平方法解下列一元二次方程,其中无解的方程为()A .255x -=B .230x -=C .240x +=D .210x +=()方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解1.用配方法解方程234x x +=,配方后的方程变为()A .227x -=()B .221x +=()C .221x -=()D .222x +=()2.解方程:2420x x +-=.3.已知221016890x x y y -+-+=,求x y的值.方法3 能化成形如0x a x b ++=()()的一元二次方程用因式分解法求解1.一元二次方程22x x x -=-()的根是()A .1-B .0C .1和2D .1-和22.解下列一元二次方程:(1)220x x -=;(2)21690x -=;(3)2441x x =-.方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解1.用公式法解一元二次方程2124x x =-,方程的解应是()A .x =B .xC .xD .x2.用公式法解下列方程.(1)23170x x +-=();(2)24352x x x --=-.类型2 选择合适的方法解一元二次方程1.方程24490x -=的解为() A .27x = B .72x =C .172x =,272x =-D .127x =,227x =- 2.一元二次方程293x x -=-的根是()A .3B .4-C .3和4-D .3和43.方程135x x +-=()()的解是()A .11x =,23x =-B .14x =,22x =-C .11x =-,23x =D .14x =-,22x = 4.解下列方程.(1)23360y y --=;(2)22310x x -+=.类型3 用特殊方法解一元二次方程方法1 构造法1.解方程:2619100x x ++=.2.若m ,n ,p 满足8m n -=,2160mn p ++=,求m n p ++的值.方法2 换元法a .整体换元1.若280a b a b +++-=()(),则a b +的值为()A .4-或2B .3或32- C .2-或4 D .3或2- 2.已知22260x xy y x y -++--=,则x y -的值是()A .2-或3B .2或3-C .1-或6D .1或6-3.解方程:223220x x ---+=()().4.解方程:123448x x x x ----=()()()().b .降次换元1.解方程:432635623560x x x x -+-+=.c .倒数换元1.解方程:2322x x x x --=-.方法3 特殊值法1.解方程:2013201420152016x x --=⨯()().考点3 根的判别式的四种常见应用题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x 的方程2110kx k x +--=(),下列说法正确的是()A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解2.已知方程220x x m --=没有实数根,其中m 是实数,试判断方程2210x mx m m +++=()有无实数根.题型2 利用根的判别式求字母的值或取值范围1.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.2.已知关于x 的一元二次方程2220mx m x -++=(),(1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.题型3 利用根的判别式求代数式的值1.已知关于x 的方程22140x m x +-+=()有两个相等的实数根,求21212m m m--+()的值.2.已知关于x 的一元二次方程2200mx nx m +-=(≠)有两个相等的实数根,求222416mn m n ++-()的值.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根,试判断此三角形的形状.2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程204a c a c x bx -+++=()有两个相等的实数根,试判断此三角形的形状.考点4 一元二次方程与三角形的综合题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程27120x x -+=的解,则第三边的长为()A .3B .4C .3或4D .无法确定 2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3cm 和7cm ,第三边长为cm a ,且整数a 满足210210a a -+=,求三角形的周长.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程217600x x -+=的两个根,则这个直角三角形的斜边长为________.2.已知a ,b ,c 分别是ABC △的三边,当0m >时,关于x 的一元二次方程220c x m b x m ++--=()()有两个相等的实数根,试判断ABC △的形状,并说明理由.3.已知ABC △的三边a ,b ,c 中,1a b =-,1c b =+,又已知关于x 的方程2420120x x b -++=的根恰为b 的值,求ABC △的面积.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是()A .27B .36C .27或36D .182.已知关于x 的一元二次方程220a c x bx a c +++-=()(),其中a ,b ,c 分别为ABC △的三边的长.(1)如果1x =-是方程的根,试判断ABC △的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC △的形状,并说明理由;(3)如果ABC △是等边三角形,试求这个一元二次方程的根.考点5 根与系数的关系的四种应用类型 题型1 利用根与系数的关系求代数式的值1.设方程24730x x --=的两根为1x ,2x ,不解方程求下列各式的值. (1)1233x x --()(); (2)211211x xx x +++; (3)12x x -.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程22210x mx m --+=的两根的平方和是294,求m 的值.2.已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)若该方程的一个根为1,求a 的值及该方程的另一根.题型4 巧用根与系数的关系确定字母系数的存在性4.已知1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根,是否存在实数k ,使12123222x x x x --=-()()成立?若存在,求出k 的值;若不存在,请说明理由.考点6:可化为一元二次方程的分式方程的应用 题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?考点7 几种常见的热门考点 题型1 一元二次方程的根1.若一元二次方程220150ax bx --=有一根为1x =-,则a b +=________.2.若关于x 的一元二次方程20ax bx c ++=有一根为1-,且2a =,求20162015a b c+()的值.题型2 一元二次方程的解法1.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()2.一元二次方程2230x x --=的解是() A .11x =-,23x =B .11x =,23x =-C .11x =-,23x =-D .11x =,23x =3.选择适当的方法解下列方程:(1)21210x x x -+-=()();(2)221327x x x -=+-()().题型3 一元二次方程根的判别式1.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是() A .1a <B .1a >C .1a ≤D .1a ≥2.已知关于x 的一元二次方程210x m +-=()有两个实数根,则m 的取值范围是()A .34m -≥ B .0m ≥ C .1m ≥ D .2m ≥3.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中5a =,若关于x 的方程2260x b x b +++-=()() 有两个相等的实数根,求ABC △的周长.题型4 一元二次方程根与系数的关系1.已知α,β是关于x 的一元二次方程22230x m x m +++=()的两个不相等的实数根,且满足111αβ+=-,则m 的值是() A .3B .1C .3或1-D .3-或12.关于x 的方程231210ax a x a -+++=()()有两个不相等的实数根1x ,2x ,且有12121x x x x a +-=-,求a 的值.3.设1x ,2x 是关于x 的一元二次方程222420x ax a a +++-=的两个实数根,当a 为何值时,2212x x +有最小值?最小值是多少?题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?2.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程1cm ()与时间t s ()满足关系:2131022t t t =+(≥),乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?题型6 新定义问题1.若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=都是“偶系二次方程”.判断方程2120x x +-=是否是“偶系二次方程”,并说明理由.期末专项复习—一元二次方程答案解析考点1 题型1 1.【答案】D【解析】由题意,得3020m m -⎧⎨+⎩≠,≥,解得2m -≥且3m ≠.2.【答案】解:(1)当21210m m ⎧+=⎨+⎩,≠时,它是一元二次方程,解得1m =.当1m =时,原方程可化为2210x x --=.(2)当22010m m ⎧-⎨+=⎩≠,或者当120m m ++-()≠且211m +=时,它是一无一次方程.解得1m =-或0m =.故当1m =-或0m =时,它是一元一次方程. 题型2 1.【答案】8【解析】由题意得80240.a a -=⎧⎨-⎩,≠解得8a =.2.【答案】由题意,得21010m m ⎧-=⎨-⎩,≠,解得1m =-.题型3 1.【答案】A【解析】∵关于x 的方程20x bx a ++=的一个根是0a a -(≠),20a ab a ∴-+=.10a a b ∴-+=().0a Q ≠,1.a b ∴-=-2.【答案】解:把0x =代入2243160k x x k +++-=(),得2160k -=,解得14k =,24k =-.40k +Q ≠,4k ∴-≠,4k ∴=.3.【答案】解:∵实数a 是一元二次方程2201610x x -+=的根,2201610a a ∴-+=.221201620161a a a a ∴+=-=-,.22222120162015201520152016120162016a aa a a a a a a a a +∴--=--=--=-=-题型41.【答案】解:由题意可知22210210m m n n --=--=,,22227143677232773747m m a n n m m a n n a a ⎡⎤⎡⎤∴-+--=-+--=+-=-+⎣⎦⎣⎦()()()()()()(),由 478a -+=()得9a =-,故存在满足要求的实数a ,且a 的值等于9-.考点2 类型1 方法1 1.【答案】C 2.【答案】C 方法2 1.【答案】C2.【答案】解:22242042262x x x x x x +-=+=+=+=,,(),1222x x =-=-3.【答案】解:2222221016890102516640580x x y y x x y y x y -+-+=-++-+=-+-=,()(),()(),558.8x x y y ∴==∴=,,方法3 1.【答案】D2.【答案】解:(1)21220200 2.x x x x x x -=-===,(),, (2)21233169043430.44x x x x x -=+-==-=,()(),, (3)2221214414410210.2x x x x x x x =--+=-===,,(),方法4 1.【答案】B2.【答案】解:(1)2231703730x x x x +-=-+=(),,224743313b ac ∴-=--⨯⨯=(),12x x x ∴=∴= (2)2243524430x x x x x --=---=,,224444364b ac x ∴-=--⨯⨯-=∴=()(),1231.22x x ∴==-,类型2 1.【答案】C 2.【答案】C 3.【答案】B4.【答案】解:(1)22221919133360200442422y y y y y y y y --=--=-+-=-=-=±,,,(),,122 1.y y ∴==-,(2)2223231043421122x x b ac x ±-+=-=--⨯⨯=∴=⨯,(),,即1211.2x x ∴==, 类型3 方法11.【答案】解:将原方程两边同乘6,得26196600x x +⨯+=()().解得615x =-或64x =-.1252.23x x ∴=-=-,2.【答案】解:因为8m n -=,所以8m n =+.将8m n =+代入2160mn p ++=中,得28160n n p +++=(),所以228160n n p +++=,即 2240n p ++=().又因为240n +()≥,20p ≥,所以400n p +=⎧⎨=⎩,,解得40.n p =-⎧⎨=⎩,所以84m n =+=,所以4400m n p ++=+-+=() 方法2 a1.【答案】A2.【答案】B3.【答案】223220.x x ---+=()()设2x y -=,原方程化为2320y y -+=, 解得121 2.y y ==,当1y =时,213x x -==,, 当2y =时,22 4.x x -==, 原方程的解为1234x x ==,.4.【答案】解:原方程即[][]142348x x x x ----=()()()(),即22545648x x x x -+-+=()().设255y x x =-+,则原方程变为1148y y -+=()(). 解得1277y y ==-,.当2557x x -+=时,解得12x x ==当2557x x -+=-时,254112230∆=--⨯⨯=-()<,方程无实数根.∴原方程的根为12x x = b1.【答案】解:经验证0x =不是方程的根,原方程两边同除以2x ,得22356635620x x x x -+-+=, 即2211635620x x x x +-++=()(). 设1y x x =+,则22212x y x+=-,原方程可变为26235620y y --+=(). 解得152y =,2103y =. 当152x x +=时,解得12x =,212x =;当1103x x +=时,解得33x =,413x =.经检验,均符合题意.∴原方程的解为12x =,212x =,33x =,413x =. c1.【答案】解:设2x y x-=,则原方程化为32y y -=,整理得2230y y --=,∴13y =,21y =-.当3y =时,23x x -=,∴1x =-. 当1y =-时,21x x-=-,∴1x =.经检验,1x =±都是原方程的根, ∴原方程的根为11x =,21x =-. 方法31.【答案】解:方程组2013201620142015x x -=⎧⎨-=⎩,的解一定是原方程的解,解得4029x =.方程组2013201520142016x x -=-⎧⎨-=-⎩,的解也一定是原方程的解,解得2x =-.∵原方程最多有两个实数解, ∴原方程的解为14029x =,22x =-.【解析】解本题也可采用换元法.设2014x t -=,则20131x t -=+,原方程可化为120152016t t +=⨯(),先求出t ,进而求出x . 考点3 题型1 1.【答案】C【解析】当0k =时,方程为一元一次方程,解为1x =;当0k ≠时,因为222141211k k k k k ∆=--⋅-=++=+()()()≥0,所以当1k =时,4∆=,方程有两个不相等的实数解;当1k =-时,0∆=,方程有两个相等的实数解; 当0k ≠时,0∆≥,方程总有两个实数解.故选C . 2.【答案】解:220x x m --=Q 没有实数根,2124440m m ∴∆=--⋅-=+()()<,即1m -<.对于方程2210x mx m m +++=(),2224144m m m m ∆=-⋅+=-()()>,∴方程2210x mx m m +++=()有两个不相等的实数根. 题型21.【答案】解:(1)根据题意得2444242080b ac k k -=--=-()>, 解得25k <.(2)由k 为正整数,可得1k =或2k =.利用求根公式可求出方程的根为1x =- ∵方程的根为整数,∴52k -为完全平方数, ∴k 的值为2.2.【答案】(1)证明:[]22228442m m m m m ∆=-+-=-+=-()(). ∵不论m 为何值,220m -()≥,即0△≥.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程2220mx m x -++=(),得222m m x m +±-=().∴12x m=,21x =. ∵方程的两个根都是正整数,∴2m 是正整数,∴1m =或2m =.又∵方程的两个根不相等,∴2m ≠,∴1m =. 题型31.【答案】解:∵关于x 的方程22140x m x +-+=()两个相等的实数根,∴2214140m ∆=--⨯⨯=(),即214m -=±.∴52m =或32m =-. 当52m =时,25111221216514m m m --==-++(); 当32m =-时,231152********m m m ---==--+-(). 2.【答案】解:由题意可知,22480b ac n m -=+=, ∴28m n =-,∴222222222222222416816168mn mn mn mn mn m n m m n m m n m n n m ====++-+++-++-+(). ∵0m ≠,2228mn n m m∴==-.题型41.【答案】解:∵一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根, ∴[]2240a b b c b a ---⋅-=()()(), ∴40a b a c --=()(), ∴a b =或a c =, ∴此三角形是等腰三角形.2.【答案】解:∵方程204a ca c x bx -+++=()有两个相等的实数根, ∴2222404a cb ac b a c -∆=-+⋅=--=()(), 即222b c a +=,∴此三角形是直角三角形. 考点4 题型1 1.【答案】C2.【答案】解:由已知可得410a <<,则a 可取5,6,7,8,9.(第一步) 当5a =时,代入2210215105210a a -+=-⨯+≠,故5a =不是方程的根. 同理可知6a =,8a =,9a =都不是方程的根,7a =是方程的根.(第二步) ∴ABC △的周长是37717cm ++=(). 题型2 1.【答案】132.【答案】解:ABC △是直角三角形.理由如下:原方程可化为20b c x cm bm +-+-=(), 2222444ma m c b c b m a b c ∆--++-=()()=(). ∵0m >,且原方程有两个相等的实数根,∴2220a b c +-=,即222a b c +=∴ABC △是直角三角形.3.【答案】解:将x b =代入原方程,整理得2419120b b -+=,解得14b =,234b =.当14b =时,3a =,5c =,∵222345+=,即222a b c +=,∴ABC △为直角三角形,且°90C ∠=.∴1134622ABC S ab ==⨯⨯=△; 当234b =时,3104a =-<,不合题意,舍去.因此,ABC △的面积为6. 题型3 1.【答案】B2.【答案】解:(1)ABC △是等腰三角形.理由如下:把1x =-入原方程,得20a c b a c +-+-=,所以a b =,故ABC △是等腰三角形.(2)ABC △是直角三角形.理由如下:方程有两个相等的实数根,则2240b a c a c ∆=-+-=()()(),所以2220b a c -+=,所以222a b c =+,故ABC △是直角三角形.(3)如果ABC △是等边三角形,则a b c ==,所以方程可化为2220ax ax +=,所以210ax x +=(),所以方程的解为10x =,21x =-. 考点5 题型11.【答案】解:根据一元二次方程根与系数的关系,有1274x x +=,1234x x =-. (1)12121237333939344x x x x x x --=-++=--⨯+=()()(). (2)2222122111212121212122112121212112====111111x x x x x x x x x x x x x x x x x x x x x x x x x x x x +++++++-+++++++++++++()()()()()()()27372101444=3732144-⨯-+-++()().(3)222121212127397=4=4=4416x x x x x x x x -+--⨯-∴-==Q()()()(),. 题型21.【答案】解:设方程25230x x +-=的两根为1x ,2x , 则1225x x +=-,1235x x =-. 设所求方程为20y py q ++=,其两根为1y ,2y , 令111y x =-,221y x =-.∴121212*********==3x x p y y x x x x x x +=-+=--=+()(),12121211153q y y x x x x ==--==-()(). ∴所求的方程为225+033y y -=,即23250y y +-=. 题型31.【答案】解:设方程两根为1x ,2x ,由已知得1212=221=.2m x x m x x ⎧+⎪⎪⎨-+⎪⎪⎩,∵222121212292=4x x x x x x +=+-(),即221292224m m -+-⨯=(), ∴28330m m +-=. 解得111m =-,23m =.当111m =-时,方程为2211230x x ++=,21142230∆=-⨯⨯<,方程无实数根,∴11m =-不合题意,舍去;当3m =时,方程为22235034250x x --=∆=--⨯⨯-,()()>,方程有两个不相等的实数根,符合题意. ∴m 的值为3.2.【答案】解:(1)∵224121240a a -⨯⨯-=-()>,解得3a <. ∴a 的取值范围是3a <.(2)设方程的另一根为1x ,由根与系数的关系得111212x x a +=-⎧⎨⋅=-⎩,,解得113.a x =-⎧⎨=-⎩,题型44.【答案】解:不存在.理由如下:∵一元二次方程24410kx kx k -++=有两个实数根,∴0k ≠,且24441160k k k k ∆=--⨯+=-()()≥,∴0k <.∵1x ,2x 是方程24410kx kx k -++=的两个实数根, ∴121x x +=,1214k x x k+=.∴212121212922294k x x x x x x x x k+--=+-=-()()(). 又∵12123222x x x x --=-()(), ∴939425k k k +-=-∴=,. 又∵0k <,∴不存在实数k ,使12123222x x x x --=-()()成立. 考点61.【答案】解:方法一:设第二次采购玩具x 件,则第一次采购玩具10x -()件,由题意得1001500.510x x+=-. 整理得211030000x x -+=, 解得150x =,260x =,经检验150x =,260x =都是原方程的解.当50x =时,第二次采购时每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去; 当60x =时,第二次采购时每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.方法二:设第一次采购玩具x 件,则第二次采购玩具10x +()件,由题意得1001500.510x x +=+, 整理得29020000x x -+=, 解得140x =,250x =,经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次采购401050+=(件),批发价为150503÷=(元),不合题意,舍去; 第一次采购50件时,第二次采购401060+=(件),批发价为15060 2.5÷=(元),符合题意.因此第二次采购玩具60件. 题型23.【答案】解:设慢车每小时行驶x 千米,则快车每小时行驶12x +()千米,依题意得150150251260x x -=+.解得172x =-(不合题意,舍去),260x =.所以1272x +=.∴快车每小时行驶72千米,慢车每小时行驶60千米. 应用34.【答案】解:(1)设乙工程队单独施工x 天完成此项工程,则甲工程队单独施工30x +()天完成此项工程,由题意得1120130x x +=+(),整理,得2106000x x --=, 解得130x =,220x =-.经检验130x =,220x =-都是分式方程的解,但220x =-不符合题意,应舍去,故30x =,3060x +=. 故甲、乙两工程队单独完成此项工程分别需要60天,30天. (2)203a -()(3)由题意得11 2.520643a a +++-()()≤,解得36a ≥.故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元. 考点7 题型11.【答案】2015【解析】把1x =-代入方程中得到20150a b +-=,即2015a b +=.2.【答案】解:∵2a =,∴40c -≥且40c -≥,即4c =,则2a =-.又∵1-是一元二次方程20ax bx c ++=的根,∴0a b c -+=,∴242b a c =+=-+=.∴原式201622020154-+==⨯().题型2 1.【答案】D 2.【答案】A3.【答案】解:(1)21210x x x -+-=()(),1120x x x --+=()(), 1310x x --=()(),12113x x ==,.(2)221327x x x -=+-()(),22441327x x x x -+=+-, 2680x x -+=,1224x x ==,.题型3 1.【答案】B 2.【答案】B3.【答案】解:∵关于x 的方程2260x b x b +++-=()()有两个相等的实数根,∴22460b b ∆=+--=()(),∴12b =,210b =-(舍去).当a 为腰时,ABC △周长为55212=++. 当b 为腰时,225+<,不能构成三角形. ∴ABC △的周长为12. 题型4 1.【答案】A2.【答案】解:由题意,得1231a x x a ++=,1221a x x a +=(),∴31211a a a a a++-=-(),∴210a -=,即1a =±.又∵方程有两个不相等的实数根,∴[]2314210a a a ∆=-+-⋅+()()>,即210a -()>,∴1a ≠,∴1a =-.3.【答案】解:∵方程有两个实数根,∴2224420a a a ∆=-+-()()≥,∴12a ≤.又∵122x x a +=-,21242x x a a =+-,∴22221212122224x x x x x x a +=+-=--()(). ∵12a ≤,且2220a -()≥,∴当12a =时,2212x x +的值最小. 此时222121122422x x +=--=(),即最小值为12.【解析】本题中考虑0△≥从而确定a 的取值范围这一过程易被忽略. 题型51.【答案】解:设每件商品降价x 元,则售价为每件60x -()元,每星期的销量为30020x +()件. 根据题意,得6040300206080x x --+=()(). 解得11x =,24x =.又要顾客得实惠,故取4x =,即销售单价为56元. 答:应将销售单价定为56元.2.【答案】解:(1)当4t =时,221313144142222t t =+=⨯+⨯=. 答:甲运动4s 后的路程是14cm . (2)设它们运动了s m ,根据题意, 得21342122m m m ++=.解得:13m =,214m =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s .(3)设它们运动了s n 后第二次相遇,根据题意,得213421322n n n ++=⨯(). 解得17n =,218n =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s . 题型61.【答案】解:不是.理由如下:解方程2120x x +-=,得14x =-,23x =.12432 3.5x x +=+=⨯.∵3.5不是整数,∴方程2120x x +-=不是“偶系二次方程”.。
人教版九年级数学上册期末综合复习测试题(含答案)
人教版九年级数学上册期末综合复习测试题(含答案)时间:100分钟 总分:120分一、 选择题(每题3分,共24分)1.已知关于x 的方程()222310---=m m x x +是一元二次方程,则m 的值为( ) A .2m =B .4m =C .2m =±D .2m =-2.如图,将AOB ∆绕点O 按逆时针方向旋转40°后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是 ( )A .25°B .30°C .35°D .40°3.顶点(2,1),且开口方向、形状与函数22y x =的图像相同的抛物线是 ( ) A .221y x =+ B .22(2)1y x =-+ C .22(2)1y x =++D .22(2)1y x =+-4.把方程2630x x +-=化成2)x m n (的形式,则m n += ( ) A .15-B .9C .15D .65.如图,ABC ∆内接于O ,直径8cm AD =,=60B ∠︒,则AC 的长度为 ( )A .5cmB .42C .43D .6cm6.在一个不透明的口袋中有红色、黄色和绿色球共60个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有( ) A .15个B .20个C .21个D .24个7.在同一坐标系中,一次函数y ax k =+与二次函数2y kx a =+的图象可能是 ( )A .B .C .D .8.二次函数2y ax bx c =++的图像如图所示,对称轴是直线1x =.下列结论:①0abc >;②30a c +>;③a c b +<-;④520a b c -+<.其中结论正确的个数为 ( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)9.若n 是方程2210x x --=的一个根,则代数式232n n -+-的值是________. 10.如图,AB 是半圆的直径,C 、D 是半圆上的两点,且20BAC =︒∠,点D 是AC 的中点,则BAD ∠=______.11.点()()1122,,,A x y B x y 在二次函数232y x x =-++的图像上,若122x x <<-,则1y 与2y 的大小关系是1y _______________2y .(用“>”、“<”、“=”填空)12.已知关于x 的一元二次方程2()0(,,a x h k a h k -+=都是常数,且0)a ≠的解为1213x x =-=,,则方程2(1)0(,,a x h k a h k --+=都是常数,且0)a ≠的解为___________.13.如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是______.14.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,则对角线AC 的长为_________.15.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n ++<的解集是__________.16.如图,以(0,3)G 为圆心,半径为6的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF AE ⊥于F ,点E 在G 的运动过程中,线段FG 的长度的最小值为______.三、解答题(每题8分,共72分) 17.解方程: (1)(2)(3)12x x --= (2)23410x x -+=18.已知关于x 的一元二次方程24250x x m --+=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个根都是符号相同的整数,直接写出它的根.19.已知二次函数图像与x 轴两个交点之间的距离是4个单位,且顶点M 为()14-,,求二次函数的解析式.20.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(-10)A ,,(4)B m ,两点,且抛物线经过点(50)C ,(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A .点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.当PE =2ED 时,求P 点坐标;(3)点P 是直线上方的抛物线上的一个动点,求ABP ∆的面积最大时的P 点坐标.21.一个不透明的口袋中有四个完全相同的小球.把它们分别标记为1,2,3,4.(1)随机摸取一个小球的标号是偶数,该事件的概率为______;(2)小雨和小佳玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜.小雨先从口袋中摸出一个小球,不放回,小佳再从口袋中摸出一个小球.用画树状图(或列表)的方法,分别求出小雨和小佳获胜的概率.22.如图,已知女排球场的长度OD 为20米,位于球场中线处的球网AB 的高度2.24米,一队员站在点O 处发球,排球从点O 的正上方2米的C 点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G ,以O 为原点建立如图所示的平面直角坐标系.(1)写出C 点坐标___________;B 点坐标___________.(2)若排球运行的最大高度为3米,求排球飞行的高度p (单位:米)与水平距离x (单位:米)之间的函数关系式(不要求写自变量x 的取值范围);(3)在(2)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.23.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线.(2)若9OC =,4AC =,8AE =,则BC =______,BE =______.24.如图,已知等边ABC ,直线AM BC ⊥,点M 为垂足,点D 是直线AM 上的一个动点,线段CD 绕点D 顺时针方向旋转60°得线段DE ,联结BE 、CE .(1)如图1,当点D 在线段AM 上时,说明BE AB ⊥的理由;(2)如图2,当点D 在线段MA 的延长线上时,设直线BE 与直线AM 交于点F ,求BFM ∠的度数;(3)定义:有一个内角是36︒的等腰三角形称作黄金三角形,联结DB ,当DBE 是黄金三角形吋,直接写出BEC ∠为______度.25.抛物线2y ax 2x c =++与x 轴交于(1,0)A -、B 两点.与y 轴交于点(0,3)C 、点(,3)D m 在抛物线上.(1)求抛物线的解析式.(2)如图1,连接BC 、BD ,点P 在对称轴左侧的抛物线上,若PBC DBC ∠=∠,求点P 的坐标.(3)如图2,过点A 的直线∥m BC ,点Q 是直线BC 上方抛物线上一动点,过点Q 作QE m ⊥,垂足为点E ,连接BE ,CE ,CQ ,QB .当四边形BECQ 的面积最大时,求点Q 的坐标及四边形BDCQ 面积的最大值。
浙江省2024届九年级上学期期末数学试卷(含答案)
浙江省2023-2024学年九年级上学期期末数学复习卷范围:1-4章满分:120分考试时间:120分钟姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.下列四个函数中是二次函数的是()A.B.C.D.2.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其余都相同,则从布袋里任意摸出一个球是红球的概率是()A.B.C.D.3.已知的半径是5,点P在内,则OP的长可能是()A.4 B.5 C.5.5 D.64.若点Р是线段的黄金分割点,,则的长为()A.B.C.D.5.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-26.如图,D、E分别是边上的点,,若,,,则的长是()A.2 B.4 C.6 D.87.如图,四边形内接于⊙O,交的延长线于点E,若平分,,则等于()A.B.6 C.D.8.已知点,,在抛物线上,则,,的大小关系是()A.B.C.D.9.如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A.B.C.D.10.如图,是的外角平分线,与的外接圆交于点D,连接交于点F,且,则下列结论错误的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请将正确答案填写在横线上)11.某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数50 100 300 400 600 1000发芽频数47 96 284 380 571 948估计这批青稞发芽的概率是.(结果保留到0.01)12.如图,四边形的四个顶点均在半圆上,若,则.13.如图,在ΔABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为.14.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转后得到正方形,继续旋转至次得到正方形,则点的坐标是.15.二次函数的部分对应值列表如下:x …0 1 3 5 …y …7 7 …则一元二次方程的解为.16.如图,内接于半径为的半,为直径,点是的中点,连接交于点,平分交于点,且为的中点,则的长为 .三、解答题(本大题共7小题,共66分.第17题6分;第18题8分;第19题8分;第20题10分;第21题10分;第22题12分;第23题12分;解答时应写出文字说明、证明过程或演算步骤)17.已知二次函数的图象经过点.(1)求的值.(2)若点也在这个二次函数的图象上,求的值.18.游戏者用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.让两个转盘分别自由转动一次.(1)求两次数字之和为4的概率;(2)若两次数字之积大于2,则游戏者获胜,请问这个游戏公平吗?请说明理由.19.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)合格频数合格频率(1)估计任抽一件衬衣是合格品的概率(结果精确到);(2)估计出售件衬衣,其中次品..大约有几件.20.如图,抛物线与x轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长;(4)在该抛物线位于第四象限内的部分上是否存在点,使得的面积最大?若存在,求出点的坐标;若不存在,请说明理由.21.如图,的直径垂直弦于点E,F是圆上一点,D是的中点,连接交于点G,连接.(1)求证:;(2)若,求的长.22.基础巩固:(1)如图1,在中,是上一点,过点作的平行线交于点,点是上任意一点,连结交于点,求证:;尝试应用:(2)如图2,在(1)的条件下,连结,,若,、恰好将三等分,求的值;拓展延伸:(3)如图3,在等边中,,连结,点在上,若,求的值.23.如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当是等腰三角形时,求∠BCE的大小.(3)当AE=4,CE=6时,求边BC的长.浙江省2023-2024学年九年级上学期期末数学复习卷一、单选题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.下列四个函数中是二次函数的是()A.B.C.D.答案:C2.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其余都相同,则从布袋里任意摸出一个球是红球的概率是()A.B.C.D.答案:C3.已知的半径是5,点P在内,则OP的长可能是()A.4 B.5 C.5.5 D.6答案:A4.若点Р是线段的黄金分割点,,则的长为()A.B.C.D.答案:A5.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2答案:A6.如图,D、E分别是边上的点,,若,,,则的长是()A.2 B.4 C.6 D.8答案:C7.如图,四边形内接于⊙O,交的延长线于点E,若平分,,则等于()A.B.6 C.D.答案:B8.已知点,,在抛物线上,则,,的大小关系是()A.B.C.D.答案:D9.如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A.B.C.D.答案:C故选:C.10.如图,是的外角平分线,与的外接圆交于点D,连接交于点F,且,则下列结论错误的是()A.B.C.D.答案:B∴第II卷(非选择题)二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请将正确答案填写在横线上)11.某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数50 100 300 400 600 1000发芽频数47 96 284 380 571 948估计这批青稞发芽的概率是.(结果保留到0.01)答案:0.9512.如图,四边形的四个顶点均在半圆上,若,则.答案:130°13.如图,在ΔABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为.答案:14.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转后得到正方形,继续旋转至次得到正方形,则点的坐标是.故答案为.15.二次函数的部分对应值列表如下:x …0 1 3 5 …y …7 7 …则一元二次方程的解为.答案:16.如图,内接于半径为的半,为直径,点是的中点,连接交于点,平分交于点,且为的中点,则的长为 .答案:三、解答题(本大题共7小题,共66分.第17题6分;第18题8分;第19题8分;第20题10分;第21题10分;第22题12分;第23题12分;解答时应写出文字说明、证明过程或演算步骤)17.已知二次函数的图象经过点.(1)求的值.(2)若点也在这个二次函数的图象上,求的值.答案:(1);(2).18.游戏者用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.让两个转盘分别自由转动一次.(1)求两次数字之和为4的概率;(2)若两次数字之积大于2,则游戏者获胜,请问这个游戏公平吗?请说明理由.答案:(1)(2)该游戏公平,理由见解析19.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)合格频数合格频率(1)估计任抽一件衬衣是合格品的概率(结果精确到);(2)估计出售件衬衣,其中次品..大约有几件.答案:(1)估计任抽一件衬衣是合格品的概率为;(2)估计出售件衬衣,其中次品大约有件20.如图,抛物线与x轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长;(4)在该抛物线位于第四象限内的部分上是否存在点,使得的面积最大?若存在,求出点的坐标;若不存在,请说明理由.答案:(1)抛物线的解析式为:;(2)是直角三角形(3),的最小周长为:(4)存在,21.如图,的直径垂直弦于点E,F是圆上一点,D是的中点,连接交于点G,连接.(1)求证:;(2)若,求的长.答案:(1)见解析(2).22.基础巩固:(1)如图1,在中,是上一点,过点作的平行线交于点,点是上任意一点,连结交于点,求证:;尝试应用:(2)如图2,在(1)的条件下,连结,,若,、恰好将三等分,求的值;拓展延伸:(3)如图3,在等边中,,连结,点在上,若,求的值.答案:(1)见解析;(2);(3)(1)根据,可得,从而得到,同理,进而得到,即可;(2)根据,可得,,再由、恰好将三等分,可得到,再由直角三角形的性质可得,从而得到,即可;(3)过作的平行线,分别交、于、.可得也是等边三角形,从再而得到,再证得,可得,由(1)和,得,设,则.可得,,然后根据,可得,即可.详解:(1)证明:∵,∴,∴,同理,∴,∴;(2)∵,∴,,∵、恰好将三等分,∴,∴,∵,∴在中,,∴,根据(1)得,;(3)过作的平行线,分别交、于、.∵是等边三角形,∴,,∵,∴∴也是等边三角形,∴,∴,∴,又∵∴∴∴.∴,即,∴,由(1)和,得,设,则.∴,,∴,∴.∵,∴,∵,∴,∴,即,∴,∴.23.如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当是等腰三角形时,求∠BCE的大小.(3)当AE=4,CE=6时,求边BC的长.答案:(1)见解析;(2)67.5°或72°;(3)(1)根据题意可得,∠BAD=90°,再根据∠BAC=2∠ABE证即可;(2)由题意可知:,根据腰不同进行分类讨论,依据三角形内角和列方程即可;(3)连接AO并延长,交BC于点F,根据AE=4,CE=6,结合相似三角形,表示线段OA、DC、BE,求出半径长,即可求BC.(1)证明:∵BD是⊙O的直径,∴∠BAD=90°,∴90°∵,∴∴∴∴∴(2)由题意可知:,分情况:①那么,∴∴∴②那么∴∴∴③,此时E,A重合,舍去(3)连接AO并延长,交BC于点F,∵OA=OB,∴∠ABE=∠OAB,∵∠BAC=2∠ABE.∴∠BAF=∠CAF,∵AB=AC,∴AF⊥BC,∴∠AFB=90°,∵BD是⊙O的直径∴∴AF//CD∴∴,,,BE=,∵∠AEB=∠DEC,∠ABE=∠DCE,∴~∴∴∵∴∴∴,在直角中,∵∴。
山东省东营市东营实验中学2022-2023学年九年级上学期期末复习数学试卷(五四学制)
山东省东营市东营实验中学2022-2023学年九年级(上)期末复习数学试卷(五四学制)题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1. 一机器零件如图,其主视图为( ) A.B.C.D.2. 已知关于x 的一元二次方程x 2−(2m −1)x +m 2=0有实数根,则m 的取值范围是( )A. m ≤14且m ≠0B. m ≤14C. m <14D. m >143. 肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将累计会有225人感染,若设1人平均感染x 人,依题意可列方程( )A. 1+x =225B. 1+x 2=225C. 1+x +x 2=225D. (1+x)2=2254. 若抛物线M :y =x 2−(3m −3)x −3与抛物线M′:y =x 2+10x +2n +5关于直线x =−1对称,则m ,n 的值为( )A. m =1,n =1B. m =1,n =−1C. m =3,n =4D. m =3,n =−45. 如果将抛物线y =x 2+2向上平移1个单位,那么所得新抛物线的表达式是( ) A. y =(x −1)2+2 B. y =(x +1)2+2 C. y =x 2+1 D. y =x 2+36. 在同一直角坐标系中,正比例函数y =k 1x 的图象与反比例函数y =k2x 的图象没有交点,则下列不等式一定成立的是( )A. k 1+k 2>0B. k 1−k 2≤0C. k 1k 2>0D. k 1k 2<07. 已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是( )A. 18米B. 4.5米C. 9√3米D. 9√5米.8. 如图1是手机放在手机支架上,其侧面示意图如图2所示,AB,CD是长度不变的活动片,一端A固定在OA上,另一端B可在OC上变动位置,若将AB变到AB′的位置,则OC旋转一定角度到达OC′的位置.已知OA=8cm,AB⊥OC,∠BOA=60°,sin∠B′AO=910,则点B′到OA的距离为( )A. 9√310cm B. 18√310cm C. 9√35cm D. 18√35cm9. 根据表中二次函数y=ax2+bx+c(a≠0)的自变量x与函数y的对应值,可判断该二次函数的图象与x轴的交点情况是( )x…−1012…y…−1−74−2−74…A. 只有一个交点B. 有两个交点,且它们均在y轴同侧C. 无交点D. 有两个交点,且它们分别在y轴两侧10. 不透明的袋中装有2个红球和3个黑球,它们除颜色外没有任何其他区别,小红搅匀后从中一次摸出2个球,则摸出的2个球都是红球的概率是( )A. B. C. D.二、填空题(本大题共8小题,共24分)11. 函数y=√2−x中,自变量x的取值范围是______.12. 如图,要把水渠中的水引到某村C处,过点C作渠岸AB的垂线CD,垂足为D,沿CD开挖渠道距离最短,这其中的依据是______.13. 在反比例函数y=kx中,当x=2时,y=3,则当y=12时,x=______.14. 抛物线y=−12x2+3x的开口方向是______.(选填“向上”或“向下”)15. 已知a9=b11=c14,且a+b=40,则c=______.16. 木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=2cm,BC=4cm,则⊙O的半径等于______cm.17. 图1是一款优雅且稳定的抛物线型落地灯.防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为米.18. 如图,边长为√3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么AH的长是______.三、解答题(本大题共7小题,共66分。
人教版九年级数学上册期末基础复习测试题(含答案)
人教版九年级数学上册期末基础复习测试题(含答案)时间:100分钟 总分:120分一、选择题(每题3分,共24分)1.下列图形中,是轴对称图形而不是中心对称图形的有 ( )A .B .C .D .2.下列一元二次方程中,没有实数解的是 ( ) A .220x x -= B .()()130x x --= C .220x -=D .210x x ++=3.下列事件中,属于必然事件的是 ( ) A .明天下雨B .篮球队员在罚球线投篮一次,未投中C .掷一枚硬币,正面朝上D .任意画一个三角形,其内角和是180°4.若⊙A 半径为5,圆心A 的坐标是()12,,点P 的坐标是()52,,那么点P 与A 的位置关系为( ) A .点P 在⊙A 内B .点P 在⊙A 上C .点P 在⊙A 外D .无法确定5.如果抛物线2+=+y ax bx c 经过点()2,3--和()5,3-,那么抛物线的对称轴为 ( ) A .3x =B .3x =-C .32x =D .32x =-6.如图,C 、D 是O 上直径AB 两侧的点,若20ABC ∠=︒,则D ∠等于 ( )A .60︒B .65︒C .70︒D .75︒7.将两块斜边长度相等的等腰直角三角形板如图①摆放,如果把图①中的BCN△绕点C 逆时针旋转90︒得ACF △,连接MF ,如图②.下列结论错误的是 ( )A .ABC CED △≌△B .BCN ACF △≌△C .AMC BCN △≌△D .MFC MNC △≌△ 8.如图,在平面直角坐标系中,点A 在抛物线222y x x -=+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值 ( )A .0.5B .1C .1.5D .2二、填空题(每题3分,共24分)9.若关于x 的一元二次方程()2100mx nx m --=≠的一个解是1x =,则m n -的值是______.10.已知平面直角坐标系中,15A a B b (,)、(,)关于原点对称,则a b +=_____.11.如果二次函数()2224y a x x a =+++-的图像经过原点,那么=a ______.12.一个不透明的袋中装有若干个红球和10个白球, 摇匀后每次随机从袋中摸出一个球, 记下颜色后放回袋中, 通过大量重复摸球试验后发现,摸到白球的频率是0.4,则袋中红球约为_________个.13.如图,正方形ABCD 四个顶点都在⊙O 上,点P 是在弧BC 上的一点(P 点与C 点不重合),则CPD ∠的度数是_____.14.已知2222a b a b++-=,则22()(1)20+的值为___________.a b15.抛物线2=++上部分点的横坐标与纵坐标的对应值如表:y ax bx cx …4-2-0 2 4 …y …m n m 1 0 …由表可知,抛物线与x轴的一个交点的坐标是(4,0),则抛物线与x轴的另一个交点的坐标是_____.16.如图,在平面直角坐标系中,正方形ABCD的边BC与x轴重合,顶点A、D 在抛物线2=-+上.若抛物线的顶点到x轴的距离比BC长4,则c的值为4y x c_____.三、解答题(每题8分,共72分)17.解方程(1)()2(30-=+;3)x x x+(2)2250x x+-=.18.如图,网格中每个小正方形的边长都是单位1.(1)画出将ABC 绕点O 顺时针方向旋转90︒后得到的A B C '''; (2)请直接写出A ',B ',C '三点的坐标.19.已知抛物线2y x bx c =-+经过(1,0)A -、(3,0)B 两点. (1)求抛物线的解析式和顶点坐标; (2)点P 为抛物线上一点、若10PABS =,求出此时点P 的坐标.20.5张背面相同的卡片,正面分别写有不同1,2,3,4,7中的一个正整数.现将卡片背面朝上.(1)求从中任意抽出一张,正面的数是偶数的概率.(2)连续摸出4张卡片(不放回),已知前2张正面的数分别为1,7.求摸出的4张卡片的数的总和为奇数的概率(要求画树状图或列表).21.直播购物已经逐渐走进了人们的生活,某电商直播销售一款水杯,每个水杯的成本为30元,当每个水杯的售价为40元时,平均每月售出600个,通过市场调查发现,若售价每上涨1元,其月销售量就减少10个.为了尽快减少库存,当某月月销售利润恰好为10000元时,求每个水杯的售价.22.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度(m)y 与水平距离(m)x 之间的关系式是252(0)4y x x x =-++>.(1)喷头A 离地面O 的高度是多少? (2)水流喷出的最大高度是多少?(3)若不计其他因素,水池的半径OB 至少为多少,才能使喷出的水流不落在池外?23.如图,在Rt △ABC 中,∠C =90°,BC =8,AC =6,动点P 从点A 开始,沿边AC 向点C 以每秒1个单位长度的速度运动,动点D 从点A 开始,沿边AB 向点B 以每秒 53个单位长度的速度运动,且恰好能始终保持连接两动点的直线PD ⊥AC ,动点Q 从点C 开始,沿边CB 向点B 以每秒2个单位长度的速度运动,连接PQ .点P ,D ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t 秒(t ≥0).(1)当t =3时,求PD 的长?(2)当t 为何值时,四边形BQPD 的面积为△ABC 面积的一半?(3)是否存在t 的值,使四边形PDBQ 为平行四边形?若存在,求出t 的值;若不存在,说明理由.24.如图,ABC ∆中,AC BC =,D 为AB 上一点,⊙O 经过点A ,C ,D ,交BC 于点E ,过点D 作DF BC ∥,交O 于点F .求证: (1)AB ∥CF (2)AF EF =.25.如图1,直线22y x =-+交x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线212y x bx c =-++与x 轴的另一交点为B .(1)请直接写出该抛物线的函数解析式;(2)点D 是第二象限抛物线上一点,设D 点横坐标为m . ①如图2,连接BD ,CD ,BC ,求BDC 面积的最大值;②如图3,连接OD ,将线段OD 绕O 点顺时针旋转90︒,得到线段OE ,过点E 作EF x ∥轴交直线AC 于F .求线段EF 的最大值及此时点D 的坐标。
精品 九年级数学上册 期末复习题 圆 垂径定理与圆心角圆周角复习题
0
0 0 15.如图,已知 O 的半径为 R,C,D 是直径 AB 同侧圆周上的两点, 的度数为 36 ,动 AC 的度数为 96 , BD
点 P 在 AB 上,求 PC+PD 的最小.
第 6 页 共 8 页
九年级数学上册 期末复习题
数学期末复习题 测试题 01 满分:100 分
1.下列命题中,正确的是(
0
13.如图,A、B、C、D 四点都在⊙O 上,AD 是⊙O 的直径,且 AD=8cm,若∠ABC=∠CAD,求弦 AC 的长.
第 5 页 共 8 页
九年级数学上册 期末复习题
14.如图,在 Rt△ABC 中,∠ACB=90 ,AC=5,CB=12,AD 是△ABC 的角平分线,过 A、C、D 三点的圆与斜边 AB 交于点 E,连接 DE. (1)求证:AC=AE; (2)求△ACD 外接圆的半径.
①弦是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个半圆是等弧;④直径是圆中最长的弦. 6.如图,已知⊙O 的半径是 6cm,弦 CB= 6 3 cm,OD⊥BC,垂足为 D,则∠COB=
第 6 题图
第 7 题图
第 8 题图 cm.
7.如图,直线 l 与⊙O 有两个公共点 A, B, O 到直线 l 的距离为 5cm, AB=24cm, 则⊙O 的半径是 8.如图,⊙O 的半径是 5cm,P 是⊙O 外一点,PO=8cm,∠P=30º,则 AB= 9.如图,AB 是⊙O 的直径,且 AD∥OC,若弧 AD 的度数为 80 .求 CD 的度数.
时间:25 分钟
)
姓名:
得分:
①顶点在圆周上的角是圆周角; ②圆周角的度数等于圆心角度数的一半;③90 的圆周角所对的弦是直径; ④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等 A.①②③ B.③④⑤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学期末复习(一)一元二次方程1、一元二次方程的定义及一般形式只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一般形式:ax 2+bx +c =0(a ≠0,a 、b 、c 为常数)2、解一元二次方程的基本思路是降低次数,转化为两个一元一次方程。
基本方法:因式分解法,直接开平方法,配方法和公式法 一元二次方程ax 2+bx +c =0(a ≠0)的求根公式:x b b ac ab ac =-±--≥224240() 3、由b 2-4ac 的符号判断一元二次方程ax 2+bx +c =0(a ≠0)的根的情况: 当b 2-4ac>0时,方程有两个不相等的实数根 当b 2-4ac =0时,方程有两个相等的实数根 当b 2-4ac<0时,方程没有实数根 4、利用一元二次方程解决实际问题 5、课标要求:┌───┬───────────┬────────────┐ │ │ │ 知识与技能目标 │ │ 考点 │ 课标要求 ├──┬──┬──┬───┤ │ │ │了解│理解│掌握│灵活应用 ├───┼───────────┼──┼──┼──┼───┤ │ │了解一元二次方程的定义│ ∨ │ │ │ │ │ │及双重性 │ │ │ │ │ │ 一 ├───────────┼──┼──┼──┼───┤ │ 元 │掌握一元二次方程的四种│ │ │ │ │ │ 二 │解法,并能灵活运用 │ │ │ ∨ │ ∨ │ │ 次 ├───────────┼──┼──┼──┼───┤ │ 方 │掌握一元二次方程根的判│ │ ∨ │ ∨ │ ∨ │ │ 程 │别式,并能运用它解相应 │ │ │ │ │ │ │问题 │ │ │ │ │ │ ├───────────┼──┼──┼──┼───┤ │ │掌握一元二次方程根与系│ │ │ │ │ │ │数的关系,会用它们解决 │ │ ∨ │ ∨ │ ∨ │ │ │有关问题 │ │ │ │ │ │ ├───────────┼──┼──┼──┼───┤ │ │会解一元二次方程应用题│ │ │ ∨ │ │ └───┴───────────┴──┴──┴──┴───┘【典型例题】例1. 当为何值时,方程为一元二次方程m ()?m x mx m m -++=--310024 变式练习:判断方程x 2―mx (2x ―m +1)=x 是不是一元二次方程,如果是,指出它的二次项系数,一次项系数及常数项各是什么?例2. 用适当的方法解下列方程xx x x x x x x x x 22)1)(1(4063213052222)1(3122=-+=+--=---=-)()()()(例3. 已知关于x 的方程(k -1)x 2+(2k -3)x +k +1=0有两个不相等的实数根x 1,x 2,求满足条件的k 的取值范围。
变式练习:013)13(2322=-++-k x k x k 取何值时,方程 (1)有一根为0(2)有两个互为相反数的实数根例4. 上海市政府为改善居民的住房条件,每年都新建一批住房,人均住房面积逐年增加该开发区1997年至1999年每年年底人口总数与人均住房面积的统计结果分别如图甲、乙m 2/人97 98 99 (年) 97 98 99 (年) 甲 乙根据上面两图提供的信息解答下面问题:(1)该区1998年和1999年两年中,哪一年比上一年增加的住房面积多?多增加多少万m 2? (2)由于经济发展需要预计到2001年底,该区人口总数将比1999年底增加2万,为使到2001年底该区人均住房面积达11m 2/人,试求2000年和2001年这两年该区住房总面积的年平均增长率应达百分之几。
变式练习:某商场从厂家以每件21元的价格购进一批商品,该商场可以自行定价,若每件售价a 元,则可卖出(350-10a )件,但物价部门规定每件商品的加价不超过进价20%,商场计划要赚400元,需要卖出多少件商品?每件商品应售价多少元?九年级数学期末复习(二)命题与证明1、定义与命题:几何定义反映概念的本质属性,在一些推理中既可当性质用,也可当判定用……命题是判断一件事件的句子,由条件和结论两部分组成。
一般地,一个命题可以写成“如果……那么……”的形式。
命题可分为真命题和假命题。
2、公理与定理公理是人们在长期的实践中总结出来的公认的正确的命题,是不需要证明的,可以作为判定其他命题真假的依据。
定理是经过推理论证是正确的命题,也可作为判定其他命题真假的依据。
3、互逆命题,互逆定理任何一个命题都有逆命题,只须将条件与结论对调即可,但有的定理没有逆定理。
举例说明。
4、证明一个命题的步骤和方法:a. 弄清命题的意思,并画出图形。
b. 结合图形和题意写出已知,求证。
c. 分析证题思路,写出证明过程。
【典型例题】1、已知:矩形ABCD中,AB=2,BC=4,经过对角线AC中点O的直线垂直于AC,分别交BC于E、交AD于F。
求EF的长及四边形AECF的面积。
2、如图,E、F为平行四边形ABCD对角线AC延长线上的点,且AE=CF,连结BF、BE、DF、DE。
求证:BEDF是平行四边形。
FE DC BA练习: 一. 选择题1. 下列语句中,不是命题的是( )A. 两点之间线段最短B. 对顶角相等C. 不是对顶角不相等D. 连结A 、B 两点 2. 下列定理存在逆定理的有( )(1)等腰梯形的两条对角线相等 (2)矩形的对角线相等 (3)正方形的四个角都是直角 (4)如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形 A. 1个 B. 2个 C. 3个 D. 4个 3. 下列4个命题中, 其中真命题的个数是( )(1)两个数的差一定是正数 (2)两个整数的和一定是整数(3)同类项的系数都相同 (4)若两个角的和为180°,则这两个角互为邻补角 A. 1个 B. 2个 C. 3个 D. 4个 二. 填空题1. “两负数之和为负数”的条件是___________,结论是___________。
2. 将命题“平行四边形的对角线互相平分”改写成“如果……,那……”的形式______________。
3. 如图,△ABC 中,BE 平分∠ABC ,CE 平分∠ACB ,∠A =70° 则∠BEC =____________三. 证明题1. 如图,点E 在矩形ABCD 的边BC 上,且DE =AD ,AF ⊥DE ,垂足为F ,求证:AF =DC 。
A DF B C2、已知:如图正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF(1)求证:ΔBCE ≌ΔDCF(2)若∠FDC =30°,求∠BEF 的度数。
B C A DEB C F九年级数学期末复习(三)图形的相似1. 线段的比、比例线段(1)在同一单位下,两条线段长度的比叫做这两条线段的比。
(2)在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段。
四条线段、、、成比例,记作:。
a b c d a b cd = 2. 黄金分割如图,点C 把线段AB 分成两条线段AC 、BC 。
如果AC 2=AB ·BC ,那么称线段AB 被点C 黄金分割。
黄金分割比:ACAB=-≈5120618. 3. 比例的基本性质();12a b c d ad bc a b bc b ac =⇔==⇔=(),则,2a b c d a b b c d d a b b c dd =+=+-=-()若30a b c d e f m n b d f n ===++++≠ () 则a c e m b d f n ab++++++++= 4. 相似三角形的性质(1)相似三角形的对应边成比例,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
5. 相似三角形的判定方法:(1)平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(2)判定定理1:两角对应相等的两个三角形相似。
(3)判定定理2:两边对应成比例且夹角相等的两个三角形相似。
(4)判定定理3:三边对应成比例的两个三角形相似。
(5)直角三角形相似的判定方法 6. 相似多边形的判定与性质:(1)定义:多边形相似的判定方法(2)性质:相似多边形的周长比等于相似比,面积比等于相似比的平方。
7. 位似变换 【典型例题】 例1. 填空1213.若,则m n n mn -== 23472182.若::=::,且,则x y z x y z x y z -+=+-=A C B例2. 如图AB=9,AC=6,点M在AB上,且AM=3,点N在AC上,连结MN,若要使△AMN与原三角形相似,则AN应为多长。
例3. 如图△ABC的三个顶点坐标分别为A(2,2),B(3,1),C(1,0),试将△ABC放大,使放大后的△DEF与△ABC对应边之比为2:1,并指出其对应边AB与DE有何位置关系?并说明理由。
例4.如图,梯形ABCD中,AB//DC,∠B=90°,E为BC上一点,且AE⊥ED,若BC=12,DC=7,BE:EC=1:2,求AB的长。
DAB E C九年级数学期末复习(四)锐角三角函数一、教学目的:1、通过复习,掌握锐角三角函数的概念;2、通过复习和练习,熟练掌握解直角三角形的方法和应用;3、通过同学们的练习和相互合作,培养学生的团结合作精神和解决问题的能力。
二、重点与难点: 1、解直角三角形;2、解直角三角形的应用。
三、教学过程:(一)复习内容:1、如图ABC Rt ∆中,090=∠C ,有:c a B A ==cos sin c b A B ==cos sin baB A ==tan 1tan 2、记住特殊角的三角函数值。
3、记住下面几个公式: 1cos sin 22=+αα ()αα-=090cos sin ()αα-=090tan 1tan αααcos sin tan =4、解直角三角形及其应用。
(二)练习:1、解直角三角形,必须具备的条件是( )A 、两个锐角B 、一个锐角C 、一角一边D 、以上答案均错 2、ABC Rt ∆中,090=∠C ,050=∠A ,3=AB ,则AC 的长为( )A 、050cos 3B 、050sin 3C 、050cos 3D 、050sin 33、ABC Rt ∆中,090=∠C ,如果32sin =A ,那么B tan 等于( ) A 、53B 、35C 、53 D 、254、()2sin cos αα-(00<α<045)等于( )A 、0B 、αcos -αsinC 、αsin -αcosD 、以上都不对 5、在ABC Rt ∆中,53cos =A ,12=a ,则斜边AB 上的中线长为__________。