高一必修五数学数列全章知识点
(完整版)数学必修五数列知识总结
数列知识总结一.知识网络 :等差数列的正等差数列性质有整数列的观点通项及关前 n 项和数应集等比数列等比数列的用性质二.重点提示:1.数列的定义 :按必定序次摆列的一列数. 数列是定义在正整数集或其有限子集{1,2,3,,n }上的函数当自变量由小到大挨次取值时对应的一列函数值.2.数列的通项公式和前 n 项和:关于随意数列a n , 其通项是 a n和它的前 n 项和S n之间的关系是: a n S1,(n 1)S n (n.Sn 1 2, n N *)3.求数列通项公式的方法:①察看法:找项与项数的关系,而后猜想查验, 即得通项公式 a n ,注意利用前几项得出的通项公式不必定独一 .②利用通项 a n和它的前 n 项和S n之间的关系是:,③公式法:利用等差数列,等比数列的通项公式求解.④其余方法: 迭加,迭乘,待定系数等.4.证明一个数列是等差数列或等比数列, 常用的两种基本方法 : 一是利用定义; 二是....利用等差中项(或等比中项)来进行证明.( 注意:通项的特色与前 n 项和的特色只用于判断)5.等差数列的性质:(1) 数列 a n为等差数列,则a m= a n+(m-n)d,或d a n a m n m(2) 数列 a n为等差数列的充要条件是:其通项公式能够写成a n= an+b (a,b为实....常数).(3) 数列 a n 为等差数列的充要条件2a n an 1 a n 1,推广....2a n a n k a n k( n>k. >0)(4) 数列a n为等差数列:若 m n p q ,则a m a n a p a q.(5)数列 a n为等差数列,去掉前m项,剩下的项组成等差数列.推行:数列 a n为等差数列,则每隔k项取m项的和仍组成等差数列.(6)数列 a n是公差为d的等差数列,则奇(偶)数项组成公差为2 d的等差数列.推行①:数列a n为公差为 d 等差数列: 则在数列中每隔 k 项取一项组成的数列是公差为 (k 1)d 的等差数列.项数成等差数列的项成等差数列.推行②:数列a n是公差为 d 的等差数列 ,则项下标成等差数列的项也成等差数列.(7) 数列a n , b n 项数同样的等差数列 :则ka n , pa n qb n , panq ( p, q 为常数) 仍为等差数列.(8) 数列a n 为等差数列,其前n 项和S n能够写成S n an 2 bn, (a, b 为常数).(9)数列 a n为等差数列:则数列中挨次每连续k项之和组成的数列也是等差数列.(10)数列 a n为等差数列: S奇表示奇数项的和, S偶表示偶数项的和,若项数为2n 项时, 则有S奇-S偶 = nd , S奇 / S偶= a n / a n+ 1 ;若项数为 2n - 1 项时 , 则有奇-S偶= an, 奇/S偶= n/ (n-S S 1), S2 n 1(2n 1)a n .6.等比数列的性质:(1) 数列a n 为等比数列: a n a1q n 1, a m a n q m n , a n 2 an man m.(2) 数列a n 为等比数列: a n 2 an 1 a n 1 ,推行 a n 2 a n m a n m ( n>m >0)(3) 数列a n 为等比数列: m n p k ,则 a m a n a p a k.(4)数列 a n为等比数列,取掉前若干项,节余的项也组成等比数列.推行:数列 a n为等比数列,则每隔k项取m项的和(积)仍组成等比数列.(5) 数列 a n 为等比数列,则奇(偶)数项组成等比数列.推行① :数列 a n 为公比为 q 等比数列: 则在数列中每隔 k 项取一项组成的数列是公比为 q k 1 的等比数列.推行②:数列 a n 为等比数列 ,则项数成等差数列的项成等比数列.1 a n } , ka n , a n b n , a n k(k 为 (6) 数列 a n , b n 为项数同样的等比数列: 则 { } , {b n a n常数) 等仍为等比数列.(7) 数列 a n 为公比为 q(q ≠±1) 的等比数列:则数列中连续 k 项之和(积) 组成的数列是等比数列.(8) 数列 a n 为等比数列: ( S 奇 表示奇数项的和, S 偶 表示偶数项的和 )若项数为 2n 项时,则有 S 偶 / S 奇 = q;若项数为 2n -1 项时, 则有( S 奇 - a 1 )/ S 偶 =q.(9) 递推公式为 a n 1 pa n q( p 1) 的递推数列 { a n } , 都能够转变为an 1q p a nq 进而结构等比数列.p1 p 17.等差数列与等比数列比较:名称等差数列等比数列定义a n+ 1 ―a n =da n 为等差数an 1q ( q0 )a n 为等比数列a n列通项公 a n = a 1+( n -1) d = a m +( n -a n = a 1q n-1 = a m q n -m 式 m) d前 n 项 S nn a 1 a nna 1q 1 , 2S n a 1 1 q n a 1a n q和公式 1n n1q 1 q 1 .na 1dq2a ,A ,b 成等差数列a ,G ,b ,成等比数列中项Aa b,或 2 A=a +b .Gab ,或 G 2=ab28.等差数列与等比数列的关系:(1) 各项为正的等比数列 a n ,其对数数列{log a a n }( a 0, a 1) 为等差数列.(2) 数列 a n 为等差数列,则数列{ C a n }( C 为正常数) 为等比数列.9.数列乞降的一般方法( 联合于详细的示例解说): ①倒序乞降法:(等差数列的乞降);②错位相减法:(等比数列和差比数列);例 1:乞降: a 2a 2 3a 3 4a 4na n (n N *) .③裂项相消法:(数列中的各项能够拆成几项, 而后进行消项);例 2:乞降:1 1 55 1 (2n 1) 1.1 3 3 7(2n 1)例 3:求数列{1} 的前 n 项和.nn1④通项化归法:(化出通项, 由通项确立乞降方法 );例 4:求数列:1,1 , 1 , ,2 1 , 的前 n 项和 S n .1 2 1 2 3 1 3n⑤分组乞降法:(将一个数列分红几组,每组都能够用乞降公式来求解); 例 5:求数列 2,2 1 ,3 1 ,4 1, , n1 , 的前 n 项之和.2 4 82n 1⑥公式法:( 应用等差或等比数列的乞降公式直接来求解). ⑦.累差迭加法例 6:已知数列 6,9,14,21,30, , 此中相邻两项之差成等差数列,求它的通项.⑨∑乞降记法n用 a k = a 1a 2a 3a n 。
人教版高中数学必修五《数列》基础知识要点总结
①根据数列项数的多少分——有穷数列、无穷数列
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列 的前 项和,用 表示,即
⑤分组求和法:有些数列,通过适当拆项或分组后,可得到几个等差或等比数列,这样就可利用公式法进一步求和了.
⑥已知等差数列 ,求数列 的方法。
(3)累乘法:形如 的递推公式可用 求出通项;
(4)形如 形式可用待定系数法。
4、数列求和的常用方法
①公式求和法:公式法是数列求和的最常用方法之一,可直接利用等差数列、等比数列的求和公式,也可利用常见的求前 项和的公式,如: ;
②错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项的乘积构成,则求此数列的前 项和时一般采用(乘公比 )错位相减法.如若公比是字母,须对 或 进行讨论.
①
②
③
①
②
③
4、等差(比)数列的通项公式
①
②
③ ,其中 、 是常数
①
②
③
5、性质1
在等差数列 中,若已知 与 ,其中 ,则该数列的公差 。
若等比数列 中,公比是 ,则 。
6、性质2
在等差数列 中,若 且 、 、 、 ,则 。
特别地、在等差数列 中,若 且 、 、 ,则 。
在等比数列 中,若 ( , , , ),则 。
3、求数列通项的常用方法
①观察法:根据数列的前几项归纳出数列的通项公式;
②公式法:利用 求通项公式
高一数学必修5:数列(知识点梳理)
第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
高一数学必修5数列知识点总结
⾼⼀数学必修5数列知识点总结 数列在⾼⼀数学必修5教科书上占据⼀整章的篇幅,有哪些知识点需要学习?下⾯是店铺给⼤家带来的⾼⼀数学必修5数列知识点,希望对你有帮助。
⾼⼀数学必修5等差数列知识点 如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常⽤字母d表⽰。
等差数列的通项公式为: an=a1+(n-1)d (1) 前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的⼀次数函(d≠0)或常数函数(d=0),(n,an)排在⼀条直线上,由(2)式知,Sn是n的⼆次函数(d≠0)或⼀次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:⼀般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。
且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列⼴义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(⾸项+末项)×项数÷2 项数=(末项-⾸项)÷公差+1 ⾸项=2和÷项数-末项 末项=2和÷项数-⾸项 等差数列的应⽤: ⽇常⽣活中,⼈们常常⽤到等差数列如:在给各种产品的尺⼨划分级别 时,当其中的最⼤尺⼨与最⼩尺⼨相差不⼤时,常按等差数列进⾏分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
⾼⼀数学必修5等⽐数列知识点 如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,这个数列就叫做等⽐数列。
高一必修五数学数列全章知识点(完整版)
高一数学数列知识总结知识网络二、知识梳理①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n(;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项: ①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:① q pa a n n +=+1;②nn n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式:⑴ 1322-+=n n S n ; ⑵12+=nn S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a .例4已知数列{}n a 中,nn n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“nn n n f a a )(1+=+求解.例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式. 小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。
人教版高一数学必修5--第二章数列总结
人教版高一数学必修5--第二章数列总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版高一数学必修5第二章数列总结1、数列的基本概念(1)定义:按照一定的次序排列的一列数叫做数列.(2)通项公式:如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式.(3)递推公式:如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式.通项公式与递推公式,是给出一个数列的两种主要方法.2、主要公式(1)通项公式a n 与前n 项和公式S n 间的关系: a n =⎩⎨⎧S 1n =1S n -S n -1n ≥2.(2)等差数列a n =a 1+(n -1)d =a m +(n -m )d .S n =12n (a 1+a n ),S n =na 1+12n (n -1)d . A =a +b2(等差中项). (3)等比数列a n =a 1q n -1,a n =a m ·q n -m .S n =⎩⎨⎧na 1 q =1a 1-a n q 1-q =a 11-qn 1-qq ≠1.G =±ab (等比中项).3.主要性质(1)若m +n =p +q (m 、n 、p 、q ∈N *), 在等差数列{a n }中有:a m +a n =a p +a q ; 在等比数列{a n }中有:a m ·a n =a p ·a q .(2)等差(比)数列依次k 项之和仍然成等差(比).专题一 数列的通项公式的求法1.观察法 根据下面数列的前几项,写出数列的一个通项公式.(1)1,1,57,715,931,…;2.定义法等差数列{a n}是递增数列,前n项和为S n,且a1,a3,a9成等比数列,S5=a25.求数列{a n}的通项公式.3.前n项和法(1)已知数列{a n}的前n项和S n=n2+3n+1,求通项a n;(2)已知数列{a n}的前n项和S n=2n+2,求通项a n.4.累加法已知{a n}中,a1=1,且a n+1-a n=3n(n∈N*),求通项a n.5.累乘法已知数列{a n},a1=13,前n项和S n与a n的关系是S n=n(2n-1)a n,求通项a n.6.辅助数列法已知数列{a n}满足a1=1,a n+1=3a n+2(n∈N*).求数列{a n}的通项公式.7.倒数法已知数列{a n}中,a1=1,a n+1=a na n+1(n∈N*).求通项a n.专题二数列的前n项和的求法1.分组转化求和法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解.求和:S n=112+214+318+…+(n+12n).2.裂项求和法对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有:(1)1n n+k=1k·(1n-1n+k);(2)若{a n}为等差数列,公差为d,则1a n·a n+1=1d(1a n-1a n+1);(3)1n+1+n=n+1-n等.3.错位相减法若数列{a n}为等差数列,数列{b n}是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以等比数列{b n}的公比q,然后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.已知数列{a n}中,a1=3,点(a n,a n+1)在直线y=x+2上.(1)求数列{a n}的通项公式;(2)若b n=a n·3n,求数列{b n}的前n项和T n.4.分段求和法如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.附注:常用结论1)1+2+3+...+n =2) 1+3+5+...+(2n-1) =3)三、等差、等比数列的对比(1)判断数列的常用方法看数列是不是等差数列有以下三种方法:①②2()③(为常数).看数列是不是等比数列有以下四种方法:①②(,)③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.(2)等差数列与等比数列对比小结:等差数列等比数列定义1.1.公式2.2.性质1.,称为与的等差中项2.若(、、、),则3.,,成等差数列4.1.,称为与的等比中项2.若(、、、),则3.,,成等比数列4. ,(3)在等差数列{}中,有关Sn 的最值问题:1),时,有最大值;,时,有最小值;2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。
人教版高一年级数学必修五数列知识点
【一】1.數列的函數理解:①數列是一種特殊的函數。
其特殊性主要表現在其定義域和值域上。
數列可以看作一個定義域為正整數集N*或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。
②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。
圖像法;c.解析法。
其中解析法包括以通項公式給出數列和以遞推公式給出數列。
③函數不一定有解析式,同樣數列也並非都有通項公式。
2.通項公式:數列的第N項an與項的序數n之間的關係可以用一個公式an=f(n)來表示,這個公式就叫做這個數列的通項公式(注:通項公式不)。
數列通項公式的特點:(1)有些數列的通項公式可以有不同形式,即不。
(2)有些數列沒有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。
3.遞推公式:如果數列{an}的第n項與它前一項或幾項的關係可以用一個式子來表示,那麼這個公式叫做這個數列的遞推公式。
數列遞推公式特點:(1)有些數列的遞推公式可以有不同形式,即不。
(2)有些數列沒有遞推公式。
有遞推公式不一定有通項公式。
注:數列中的項必須是數,它可以是實數,也可以是複數。
【二】1.等差數列通項公式an=a1+(n-1)dn=1時a1=S1n≥2時an=Sn-Sn-1an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b2.等差中項由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。
這時,A叫做a與b的等差中項(arithmeticmean)。
有關系:A=(a+b)÷23.前n項和倒序相加法推導前n項和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an) ∴Sn=n(a1+an)÷2等差數列的前n項和等於首末兩項的和與項數乘積的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差數列性質一、任意兩項am,an的關係為:an=am+(n-m)d它可以看作等差數列廣義的通項公式。
北师大版高中数学必修5第一章数列知识点及方法总结
数列知识点知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图像表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图像是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
(6 )数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥注意:此公式较重要!!!等差数列知识点1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
高一数学必修五数列知识点
高一数学必修五数列知识点数列是以正整数集(或它的有限子集)为定义域的函数,是高一学生学习的重点,有哪些知识点要学习呢?下面是店铺给大家带来的高一数学必修五数列知识点,希望对你有帮助。
高一数学必修五数列知识点1.数列的函数理解:①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。
数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:(1)有些数列的递推公式可以有不同形式,即不唯一。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
高一数学必修五数列练习1、 ABC的三边a,b,c既成等比数列又成等差数列,则三角形的形状是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2、在等比数列{an}中,a6+a5=a7-a5=48,则S10等于( )A.1023B.1024C.511D.5123、三个数成等比数列,其积为1728,其和为38,则此三数为( )A.3,12,48B.4,16,27C.8,12,18D.4,12,364、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于( )A.0︒B.15︒C.30︒D.60︒5、等差数列{an}中,a1,a2,a4恰好成等比数列,则a1的值是( ) a4A.1B.2C.3D.46、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是( )A.29%B.30%C.31%D.32%7、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。
高中数学必修五公式大全
高中数学必修五公式第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n •-+=11或()d m n a a m n •-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+ (2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-•=或q a a mn m n -•=3.求和公式: )(1q ,1==na S n)(1q 11)1(11≠--=--=qq a a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。
高中数学必修五公式方法总结
高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。
高中数学必修5数列复习提纲
《数列》复习1.数列的通项求数列通项公式的常用方法:(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、数字、字母与项数n 在变化过程中的联系,初步归纳公式。
(2)公式法:等差数列与等比数列。
(3)利用n S 与n a 的关系求n a :11,(1),(2)n nn S n a S S n -=⎧=⎨-≥⎩(4)构造新数列法;(5)逐项作差求和法;(6)逐项作商求积法 2.等差数列{}n a 中:(1)等差数列公差的取值与等差数列的单调性; (2)1(1)n a a n d =+-()m a n m d =+-;(3){}n ka 也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5)1211221213,,m m m m m m m a a a a a a a a a +++++++++++++ 仍成等差数列. (6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d dS n a n =+-, 2121n n S a n -=-,()(21)n n nn A af n f n B b =⇒=-.(7)若m n p q +=+,则m n p q a a a a +=+;若2p qm +=,则2p q m a a a += ,()0p q p q a q a p p q a +==≠⇒=,,()()p q p q S q S p p q S p q +==≠⇒=-+;m n m n S S S mnd +=++.(8)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和; (9)等差中项:若,,a A b 成等差数列,则2a bA +=叫做,a b 的等差中项。
(10)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。
3.等比数列{}n a 中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学数列知识总结知识网络二、知识梳理①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m s 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项: ①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 1122332211a a a a a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a . 例4已知数列{}n a 中,n n n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“n n n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“n n n n f a a )(1+=+求解.例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式. 小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。
4、数列{}n a 中,)(231++∈+=N n a a n n ,且810=a ,则=4a 。
5、设{}n a 是首项为1的正项数列,且)(0)1(1221+++∈=+-+N n a a na a n n n n n ,则数列{}n a 的通项=n a . 6、数列{}n a 中,)(22,111++∈+==N n a a a a nnn ,则{}n a 的通项=n a .7、设数列{}n a 的前n 项和为n S ,已知)(3,11++∈+==N n S a a a n n n ,设n n n S b 3-=,求数列{}n b 的通项公式.第二节数列求和的常用方法一 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。
利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n213)]1(21[+==∑=n n k S nk n巩固练习:设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二.裂项相消法:适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。
例2 求数列)1(n 1+n 的前n 项和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)111)1(1+-=+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n巩固练习:1.在数列 的前n 项和为sn ,则=s992.数列的通项公式是11++=n n a n ,若前n 项和为10,则项数为3.求数列 ,)1(6,,436,326,216+⨯⨯⨯n n 前n 项和三.错位相减法:可以求形如的数列的和,其中为等差数列,为等比数列.例1:求和:.例2:数列1,3x ,5x 2,…,(2n-1)x n-1前n 项的和.小结:错位相减法类型题均为:nna b 等差数列等比数列连续相加。
四.常用结论 1): 1+2+3+...+n =2)1(+n n 2) 1+3+5+...+(2n-1) =2n3)2333)1(2121⎥⎦⎤⎢⎣⎡+=+++n n n4) )12)(1(613212222++=++++n n n n 5)111)1(1+-=+n n n n)211(21)2(1+-=+n n n n111)1(1+-=+n n n n单元练习一、选择题:1.数列1,3,6,10,……的一个通项公式是( )A .n 2-n+1B .2)1(-n n C .n(n -1) D .2)1(+n n 2.已知数列的通项公式为a n =n(n -1),则下述结论正确的是 ( )A .420是这个数列的第20项B .420是这个数列的第21项C .420是这个数列的第22项D .420不是这个数列中的项 3.在数列{a n }中,已知a 1=1,a 2=5, a n+2=a n+1-a n ,则a 2000= ( ) A .4 B .5 C .-4 D .-54.设数列{a n }的首项为1,对所有的n ≥2,此数列的前n 项之积为n 2,则这个数列的第3项与第5项的和是 ( )A .925B .2521 C .1661 D .2752564、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( )A.128B.80C.64D.565记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7 6设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A .2B .4C .215 D .217 7若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )(A )12 (B )13 (C )14 (D )15 8知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( ) (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21)9常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为( ) A .51 B .5 C .2 D .2110等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27 二、填空题11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________12.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________。