八年级数学下册一次函数综合复习提高题及答案汇编

合集下载

精品 八年级数学下册 一次函数基础复习+综合能力提高题

精品 八年级数学下册 一次函数基础复习+综合能力提高题

一次函数01函数与变量1.变量:在一个变化过程中可以取不同数值的量,函数中用x 表示。

常量:在一个变化过程中只能取同一数值的量,往往用c 来表示。

2.函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

3.定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4.函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式5.函数的图像:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6.函数的表示方法:(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

例1:(1)摄氏温度C 与华氏温度F 之间的对应关系为5(F-32)9C =℃,则其中的变量是 ,常量是(2)在△ABC 中,它的底边是a ,底边上的高是h ,则三角形的面积 ah S 21=,当底边a 的长一定时,在关系式中的常量是 ,变量是(3)写出下列各问题中的关系式,并指出其中的常量与变量。

①甲乙两地相距1000千米,一人骑自行车以15千米/小时的速度从甲地前往乙地,用行驶时间t(小时)表示自行车离乙地的距离S(千米);②直角三角形中一个锐角α与另一个锐角β之间的关系;③一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y (吨);④小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x 之间的关系.例2.某校师生为四川汶川地震灾民捐款,平均每人捐50元.(1)写出捐款总额y (元)与捐款人数x (人)之间的关系式,指出式子中的变量与常量,并指出在这个变化过程中,哪一个量是自变量?哪一个量是因变量?(2)如果该校有师生3000人,那么此次该校师生共为汶川灾区捐款多少元?例3.某公司决定投资新项目,通过考察确定有6个项目可供选择,各项目所需要资金及预计年利润如下表:所需资金(亿元)12 467 8 预计利润(千万元) 0.20.350.55 0.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果预计获得0.9千万元的年利润,投资一个项目需要多少资金?(4)如果该公司可以拿出10亿元进行多少个项目的投资,预计最大利润是多少?例4.下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x 表示时间,y 表示小明离他家的距离.小明家,菜地,玉米地在同一条直线上。

人教版数学八年级下册一次函数综合大题练习参考答案

人教版数学八年级下册一次函数综合大题练习参考答案

20232024学年人教版数学八年级下册一次函数综合大题练习参考答案1、解:(1)将B(﹣1,m)代入一次函数y=x+2,得m=﹣1+2=1∴B(﹣1,1)将B(﹣1,1)代入y=kx,得﹣k=1∴k=﹣1∴y=﹣x(2)令y=x+2=0,得x=﹣2∴C(﹣2,0)∴OC=2设D(x,y)==4则S△OCD∴|y|=4当y=4时,x=4﹣2=2∴D(2,4)当y=﹣4时,x=﹣4﹣2=﹣6∴D(﹣6,﹣4)综上所述,D为(2,4)或(﹣6,﹣4)(3)C(﹣2,0)关于y轴对称C′(2,0)设直线BC′解析式为y=k1x+b(k≠0)将B(﹣1,1)C′(2,0)代入上式,得解得∴y=﹣x对于,y=﹣x当x=0时,y=﹣x=∴P(0,)2、解:(1)当x=0时,y=﹣x+3=3∴B(0,3)令y=﹣x+3=0,得x=6∴A(6,0)(2)联立方程y=x,y=﹣x+3 解得x=2∴C(2,2)=OB•x C=×3×2=3∴S△COB(3)存在.∵点C(2,2)∴OC==2,∠AOC=45°设P(x,0),分三种情况:①如图,过C作CP垂直x轴∵∠AOC=45°∴CP=OP=2∴P(2,0)②当OC=OP=2时点P(2,0)或(﹣2,0)③当PC=OC=2时∵点C(2,2)∴22+(x﹣2)2=(2)2∴x=0或4∴P(4,0)综上,P为(2,0)或(﹣2,0)或(2,0)或(4,0)3、解:(1)∵x+y=8∴y=8﹣x∵点P(x,y)在第一象限∴x>0,y>0如图,AO=6 ,点P(x,y)∴S=×6×y=3y∴S=3(8﹣x)=24﹣3x∵S=﹣3x+24>0∴x<8∴0<x<8(2)当x=5时,S=﹣3×5+24=﹣15+24=9(3)不能若﹣3x+24>24,则x<0∵0<x<8∴△OP A的面积不能大于244、解:(1)将A(3,0)、B(0,4)代入y=kx+b得解得∴y=﹣x+4(2)由折叠性质,得AC=AB=5,BD=CD∴C(8,0)设D(0,m)∴=4﹣m解得m=﹣6∴D(0,﹣6)(2)设点P(0,a)由题意,得CO=6,OD=8,OA=3,BP=|4﹣a| =××6×8=6∴S△OCD∴S=|4﹣a|×3=6△ABP解得:a=8或0∴P(0,8)5、解:(1)令y=﹣2x=4,得x=﹣2∴C(﹣2,4)将(﹣2,4)代入y=x+b,得﹣2+b=4 解得b=6∴y=x+6当x=0时,y=x+6=6∴A(0,6)令y=x+6=0,得x=﹣6∴B(﹣6,0)(2)设P(t,t+6)∵A(0,6),B(﹣6,0),C(﹣2,4)∴OA=6,OB=6,y C=4∴S△OBC=×6×4=12∵S△OAP =S△OBC∴×6×|t|=×12解得t=﹣或∵P在射线CA上运动∴t≥﹣2∴P或(3)﹣4<m<﹣16、解:(1)∵点B的横坐标为3∴∴B(3,4)将点A(0,6)、B(3,4)代入y=kx+b,得解得,b=6∴(2)设Q(t,﹣t+6)∵A(0,6)∴OA=6=×OA×|x Q﹣x B|∴S△OBQ=×6×|t﹣3|=解得t=4.5或1.5,此时点Q(4.5,3)或(1.5,5)(3)P为或或或(0,2)理由如下:设点P(0,t)∵A(0,6)、B(3,4)∴AB2=13,AP2=(t﹣6)2,BP2=(t﹣4)2+9若AP=AB,则(t﹣6)2=13解得t=或若AP=BP,则(t﹣6)2=(t﹣4)2+9解得t=若AB=BP,则(t﹣4)2+9=13解得t=2综上,P为或或或(0,2)7、解:(1)当x=1时,y=3x=3∴C(1,3)当x=0时,得y=﹣x+=∴B(0,)令y=﹣x+=0,得x=3∴A(3,0)(2)存在.理由如下:如图1,过C作CF⊥x,则F(1,0)∴AF=3﹣1=2,CF=3∴AC==当AE=AC=时,OE=3+或﹣3∴E(3+,0)或(3﹣,0)当CA=CE时,则AF=EF=2∴OE=2﹣1=1∴E(﹣1,0)(3)如图,设M(t,﹣t+),则N(t,3t),D(t,0)∴MN=﹣t+﹣3t=2或3t﹣(﹣t+)=2解得t=或∴D(,0)或(,0)8、解:(1)当x=0,=4∴A(0,4)将A(0,4),B(﹣5,0)代入y=kx+b ,得解得∴直线AB的函数表达式为(2)设点P坐标为(t,t+4)令y=﹣x+4y=0得x=3∴C(3,0)又∵A(0,4),B(﹣5,0)∴OA=4,OB=5,BC=8当P在线段BA上时,S=×8×4﹣×8×(t+4)=×5×4△ACP解得t=﹣∴P(﹣,)当P'在线段BA延长线上时,S=×8×(t+4)﹣×8×4=×5×4△ACP解得p=∴P(,)综上,P为(﹣,)或(,)(3)存在Q(﹣2,﹣4),使四边形ABQC为平行四边形,理由如下:设Q(m,n)由中点坐标公式,得解得∴Q(﹣2,﹣4)。

八年级数学下册第十九章一次函数考点精题训练(带答案)

八年级数学下册第十九章一次函数考点精题训练(带答案)

八年级数学下册第十九章一次函数考点精题训练单选题1、如果一个正比例函数的图象经过不同象限的两点A(3,m)、B(n,﹣2),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0答案:B分析:利用正比例函数的性质,可得出点A,B分别在一、三象限,结合点A,B的坐标,可得出m>0,n<0.解:∵一个正比例函数的图象经过不同象限的两点A(3,m)、B(n,﹣2),∴点A,B分别在一、三象限,∴m>0,n<0.故选:B.小提示:此题考查了正比例函数的性质,牢记“当k>0时,正比例函数y=kx的图象在第一、三象限;当k<0时,正比例函数y=kx的图象在第二、四象限”是解题的关键.2、下列变化过程中,y是x的正比例函数是()A.某村共有105m2耕地,该村人均占有耕地y(单位:m2)随该村人数x(单位:人)的变化而变化B.一天内,温岭市气温y(单位:℃)随时间x(单位:时)的变化而变化C.汽车油箱内的存油y(单位:升)随行驶时间x(单位:时)的变化而变化D.某人一年总收入y(单位:元)随年内平均月收入x(单位:元)的变化而变化答案:D分析:根据正比例函数的定义逐项判断即可.,故y不是x的正比例函数;解:A.由题意得:y=105xB.因为温岭市一天的气温早晚较低,中午较高,故y不是x的正比例函数;C.因为在行驶时间为零时汽车油箱内的存油y不是零,故y不是x的正比例函数;D.由题意得:y=12x,故y是x的正比例函数;故选:D.小提示:本题考查了正比例函数的定义,一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,且k≠0),那么y就叫做x的正比例函数3、已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小答案:C分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选:C.小提示:本题主要考查了一次函数图象与几何变换,正确把握变换规律以及一次函数的图象和性质是解题的关键.4、A,B两地相距120km,甲、乙两人分别从两地出发相向而行,甲先出发,如图,l1,l2分别表示两人离A 地的距离s(km)与时间t(h)之间的关系,则当甲到达A地时,乙距离A地()A.56kmB.60kmC.80kmD.40km答案:B分析:先求出直线l2的解析式,从而求出当t=2.8时,s=36,由此即可求出直线l1的解析式,进而求出甲到达目的地的时间,由此即可得到答案.解:由题意可知,甲,乙的函数图象分别为l1,l2.∵l2经过点(1,0)和(7,120),∴l2:s=20t−20,当t=2.8时,s=36,∴由(0,120),(2.8,36)得l1:s=−30t+120,令−30t+120=0,解得t=4,将t=4代入l2,得s=60.∴当甲到达A地时,乙距离A地60km.故选B.小提示:本题主要考查了从函数图象获取信息,一次函数的应用,正确读懂函数图象是解题的关键.5、某次物理实验中,测得变量V和m的对应数据如下表,则这两个变量之间的关系最接近下列函数中的()A.V=m+1B.V=2m C.V=3m−1D.V=m.答案:A分析:观察这几组数据,找到其中的规律,然后再答案中找出与之相近的关系式.解:有四组数据可找出规律,2.41-1=1.41,接近12;4 .9-1=3.9,接近22;10 .33-1=9.33,接近32;17 .21-1=16.21,接近42;25 .93−1=24.93,接近52;37 .02−1=36.02,接近62;故m与v之间的关系最接近于v=m2+1.故选:A.小提示:本题是开放性题目,需要找出题目中的两未知数的律,然后再答案中找出与之相近的关系式.6、下列函数中,属于正比例函数的是()A.y=x2+2B.y=−2x+1C.y=1x D.y=x5答案:D分析:根据正比例函数的定义逐个判断即可.解:A.不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.小提示:本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.7、图是某人骑自行车出行的图象,从图象中可以得到的信息是()A.从起点到终点共用了50min B.20~30min时速度为0C.前20min速度为4km/ℎD.40min与50min时速度是不相同的答案:B分析:分别根据函数图象的实际意义可依次判断各个选项是否正确.A、从起点到终点共用了60min,故本选项错误;B、20~30min时速度为0,故本选项正确;C、前20min的速度是5km/ℎ,故本选项错误;D、40min与50min时速度是相同的,故本选项错误.故选:B.小提示:本题考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.8、A′是点A(1,2)关于x轴的对称点.若一个正比例函数的图象经过点A′,则该函数的表达式为()A.y=12x B.y=2x C.y=−12x D.y=−2x答案:D分析:先求得A′的坐标,然后设该正比例函数的解析式为y=kx(k≠0),再把点A′的坐标代入求出k的值即可.解:∵A′是点A(1,2)关于x轴的对称点.∴A′(1,−2),设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点A′(1,−2),∴−2=k,解得k=−2,∴这个正比例函数的表达式是y=−2x.故选:D.小提示:本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.9、若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x1答案:B分析:利用一次函数的增减性判定即可.解:由y=−2x+m知,函数值y随x的增大而减小,∵3>-1>-2,A(x1,−1),B(x2,−2),C(x3,3),∴x2>x1>x3.故选:B.小提示:本题考查了一次函数的增减性,解题的关键是通过k=-2<0得知函数值y随x的增大而减小,反之x随y的增大也减小.10、某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y 与x满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系答案:B分析:根据矩形周长找出关于x和y的等量关系即可解答.解:根据题意得:2x+y=40,∴y=−2x+40,∴y与x满足的函数关系是一次函数;故选:B.小提示:本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列式.填空题11、在平面直角坐标系中,已知一次函数y=−2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1___y2.(填“>”“<”“=”)答案:>分析:根据一次函数的性质,当k<0时,y随x的增大而减小.解:∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y 1>y 2.所以答案是:>.小提示:本题考查一次函数的增减性,熟悉性质是关键.12、已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x 的形如y =a c x +b c 的一次函数称为“勾股一次函数”.若点P (−1,√33)在“勾股一次函数”的图象上,且Rt △ABC 的面积是4,则c 的值是__________.答案:2√6 分析:依据题意得到三个关系式:a −b =−√33c,ab =8,a 2+b 2=c 2,运用完全平方公式即可得到c 的值. 解:∵点P (−1,√33)在“勾股一次函数”y =a c x +b c 的图象上, ∴√33=−a c +b c ,即a −b =−√33c , 又∵a ,b ,c 分别是Rt △ABC 的三条边长,∠C =90°,Rt △ABC 的面积是4,∴12ab =4,即ab =8, 又∵a 2+b 2=c 2,∴(a −b )2+2ab =c 2,即∴(−√33c)2+2×8=c 2,解得c =2√6(负值舍去),所以答案是:2√6.小提示:考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.13、在弹性限度内,弹簧挂上物体后会伸长,已知一弹簧的长度y (cm )与所挂物体的质量x (kg )之间的关系如下表:答案:y =12+0.5x分析:由表中的数据可知,x =0时,y =12,并且每增加1千克的重量,长度增加0.5cm ,所以y =0.5x +12. 解:根据上表y 与x 的关系式是:y =12+0.5x .所以答案是:y =12+0.5x小提示:本题考查了函数关系式,需仔细分析表中的数据,进而解决问题;关键是写出解析式.14、如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组{2x +m <−x −2−x −2<0的解集为_____.答案:﹣2<x <2分析:先将点P (n ,﹣4)代入y=﹣x ﹣2,求出n 的值,再找出直线y=2x+m 落在y=﹣x ﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可.∵一次函数y=﹣x ﹣2的图象过点P (n ,﹣4),∴﹣4=﹣n ﹣2,解得n=2,∴P (2,﹣4),又∵y=﹣x ﹣2与x 轴的交点是(﹣2,0),∴关于x 的不等式组{2x +m <−x −2−x −2<0的解集为−2<x <2. 故答案为−2<x <2.小提示:本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n 的值,是解答本题的关键.15、如图,已知直线y =3x +b 与y =ax ﹣2的交点的横坐标为﹣2,则关于x 的方程3x +b =ax ﹣2的解为x =_____.答案:﹣2分析:直线y=3x+b与y=ax-2的交点的横坐标为-2,则x=-2就是关于x的方程3x+b=ax-2的解.解:∵直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,∴当x=﹣2时,3x+b=ax﹣2,∴关于x的方程3x+b=ax﹣2的解为x=﹣2.故答案为﹣2.小提示:本题考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.解答题16、在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km,小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离y km与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(1)填表:①阅览室到超市的距离为___________km;⁄;②小琪从超市返回学生公寓的速度为___________km min③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为___________min.(3)当0≤x≤92时,请直接写出y关于x的函数解析式.答案:(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当0≤x≤12时,y=0.1x;当12<x≤82时,y=1.2;当82<x≤92时,y=0.08x−5.36分析:(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当0≤x≤92时,y关于x的函数解析式.(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x=8时,离学生公寓的距离为8×0.1=0.8;在12≤x≤82时,离学生公寓的距离不变,都是1.2km故当x=50时,距离不变,都是1.2km;在92≤x≤112时,离学生公寓的距离不变,都是2km,所以,当x=112时,离学生公寓的距离为2km故填表为:①阅览室到超市的距离为2-1.2=0.8km;②小琪从超市返回学生公寓的速度为:⁄;2÷(120-112)=0.25km min③分两种情形:当小琪离开学生公寓,与学生公寓的距离为1km 时,他离开学生公寓的时间为:1÷0.1=10min ;当小琪返回与学生公寓的距离为1km 时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min ;所以答案是:①0.8;②0.25;③10或116(3)当0≤x ≤12时,设直线解析式为y =kx ,把(12,1.2)代入得,12k =1.2,解得,k =0.1∴y =0.1x ;当12<x ≤82时,y =1.2;当82<x ≤92时,设直线解析式为y =mx +n ,把(82,1.2),(92,2)代入得,{82m +n =1.292m +n =2解得,{m =0.08n =−5.36∴y =0.08x −5.36,由上可得,当0≤x ≤92时,y 关于x 的函数解析式为{y =0.1x (0≤x ≤12)y =1.2(12<x ≤82)y =0.08x −5.36(82<x ≤92). 小提示:本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.17、如图,点A (1,4)在正比例函数y =mx 的图象上,点B (3,n )在正比例函数y =23x 的图象上.(1)求m,n的值;(2)在x轴找一点P,使得PA+PB的值最小,请求出PA+PB的最小值.答案:(1)m=4,n=2(2)2√10分析:(1)利用待定系数法求解m、n值即可;(2)作点A关于x轴对称的点A′,连接A′B,交x轴于点P,此时PA+PB的值最小,最小值为PA+PB=PA′+PB=A′B.过点A′作A′H∥x轴,过点B作B′H∥y轴,A′H和B′H相交于点H,求出A′B的长即可.x的图象上.(1)解:∵点A(1,4)在正比例函数y=mx的图象上,点B(3,n)在正比例函数y=23∴4=m×1,n=2×33∴m=4,n=2.(2)解:作点A(1,4)关于x轴对称的点A′(1,-4),连接A′B,交x轴于点P,此时PA+PB的值最小,PA+PB=PA′+PB=A′B.过点A′作A′H∥x轴,过点B作B′H∥y轴,A′H和B′H相交于点H,在Rt△A′HB中,∠H=90°,则A′B=√A′H2+BH2=√22+62=2√10,∴PA+PB的最小值为2√10.小提示:本题考查正比例函数图象上点的坐标特征、最短路径问题、坐标与图形变化、勾股定理,熟练掌握最短路径的解题方法是解答的关键.18、某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;王老师吃早餐用了分钟.(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?答案:(1)1000,25,10;(2) 吃完早餐以后速度快.分析:(1)由于步行前往学校,途中在路边一饭店吃早餐,那么行驶路程S(米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后到学校,根据图象可以直接得到结论;(2)根据路程与时间图,坡度越陡,速度越快即可得出结论;(1)由图象可得:学校离他家1000米,从出发到学校,王老师共用了25分钟,王老师吃早餐所用的时间为:20-10=10分钟,所以答案是:1000,25,10;(2) 由图象可知,吃完早餐以后的坡度比吃完早餐前陡,故吃完早餐以后速度快.小提示:本题考查了函数的图象,此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.。

精品 八年级数学下册 一次函数综合能力提高题

精品 八年级数学下册 一次函数综合能力提高题

一次函数一、选择题:1.下列关系中,符合正比例函数关系的是( )A.边长一定,三角形的面积与该边上的高B.质量一定时,体积与密度C.路程一定时,速度与时间D.长方形的面积一定时,它的长与宽2.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例3.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )A .m=-3B .m=1C .m=3D .m>-34.已知正比例函数y=(2m -1)x 的图象上两点A(x 1,y 1)、B(x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是( ) A.m<12 B.m>12C.m<2D.m>0 5.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能6.若一次函数11b x k y +=和22b x k y +=的图像是两条平行直线,那么( )A.2121,b b k k ==B.2121,b b k k ≠=C.2121,b b k k ≠≠D.2121,b b k k =≠7.已知函数 y =2x -1与y =3x +2的图象交于点P ,则点P 在( )A 第一象限B 第二象限C 第三象限D 第四象限8.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )A 、1个B 、2个C 、3个D 、4个二、填空题:9.当a=________时,函数y=(a -3)x +a 2-9是正比例函数.10.正比例函数y=kx ,若自变量取值增加1,函数值相应减小4,则k=______11.关于x 的一次函数35-+=m x y ,若要使其成为正比例函数,则m= 12.函数(2)4y m x m =+++中y 随x 的增大而减小,且图象交y 轴于正半轴,则m 的取值范围是13.若m 是整数,且一次函数2)4(+++=m x m y 的图象不过第二象限,则m=14.将直线y =3x 向下平移2个单位,得到直线___________;将直线y =-x -5向上平移5个单位,得到直线_____________15.若直线b kx y +=平行于直线35+=x y ,且过点(2,-1),则k= ,b=16.如图,一次函数b kx y +=的图象经过A 、B 两点,则△AOC 的面积为三、综合题:17.已知y -5与3x -4成正比例,且当x=1时,y=2,求当y=11时,x 的值.18.如图所示,若正方形ABCD 的边长为2,P 为DC 上一动点,设DP=x ,求△APD 的面积y 与x 的函数关系式,并画出函数的图象.19.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).20.已知4y+3m 与2x -5n 成正比例,证明y 是x 的一次函数.21.已知一次函数的图象经过点(2,5)和(-1,-1)两点.(1)求这个一次函数的解析式;(2)设该一次函数的图象向上平移2个单位后,与x 轴、y 轴的交点分别是点A 、点B ,试求AOB ∆的面积.22.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).23.直线y= -x+m 与直线y=33-x+2相交于y 轴上的点C ,与x 轴分别交于点A 、B 。

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)一.选择题(共15小题)1.下列各图能表示y是x的函数是()A. B.C.D.2.在下列各图象中,y不是x函数的是()A.B.C.D.3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.4.下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x 的函数的是()A.(1)B.(2)C.(3)D.(4)5.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1006.下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.57.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积8.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x 之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣1210.若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)11.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个12.如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+513.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x (kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm14.当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积15.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量二.填空题(共9小题)16.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.17.已知方程x﹣3y=12,用含x的代数式表示y是.18.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是.19.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.20.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.21.小明画了一个边长为2cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.22.如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.23.如图1,在矩形ABCD中,动点P从点B出发,沿BC﹣CD﹣DA运动至点A 停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是.24.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q 以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x 的值或取值范围是.三.解答题(共16小题)25.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分12345…0.360.72 1.08 1.44 1.8…电话费/元(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?26.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D 路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.27.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?28.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发更早?早出发多长时间?(2)甲和乙哪一个更早到达B城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.29.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?30.陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?31.端午节小明来到奥体中心观看中超联赛第14轮重庆力帆主场迎战广州富力的比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他爸爸从家里吃饭骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车吧小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)从图中可知,小明家离奥体中心米,爸爸在出发后分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离?(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.32.如图,△ABC底边BC上的高是6厘米,当三角形的定点C沿底边所在直线向点B运动时,三角形的面积发生了变化.1.在这个变化过程中,自变量是,因变量是.2.如果三角形的底边长为x(厘米),三角形的面积y(厘米2)可以表示为.3.当底边长从12厘米变到3厘米时,三角形的面积从厘米2到厘米2;当点C运动到什么位置时,三角形的面积缩小为原来的一半?33.一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?34.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)汽车在点A的速度是多少?在点C呢?(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.35.圆柱的底面半径是2cm,当圆柱的高h(cm)由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V与高h之间的关系式?(3)当h由5cm变化到10cm时,V是怎样变化的?(4)当h=7cm时,v的值等于多少?36.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.37.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?38.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?39.下表是达州某电器厂2014年上半年每个月的产量:x/月123456y/台100001000012000130001400018000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2014年前半年的平均月产量是多少?40.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是米,a=.(2)当t≤2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O的时间.(注:圆周率π的值取3)初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2015春•唐山期末)下列各图能表示y是x的函数是()A. B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.(2015春•荔城区期末)在下列各图象中,y不是x函数的是()A.B.C.D.【分析】答题时知道函数的意义,然后作答.【解答】解:函数的一个变量不能对应两个函数值,故选C.【点评】本题主要考查函数的概念,基本知识要掌握,不是很难.3.(2016春•天津期末)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.(2015春•宜春期末)下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x的函数的是()A.(1)B.(2)C.(3)D.(4)【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定不是函数的个数.【解答】解:根据对于x的每一个取值,y都有唯一确定的值与之对应,(1)y=x,(2)y=x2,(3)y=x3满足函数的定义,y是x的函数,(4)|y|=x,当x取值时,y不是有唯一的值对应,y不是x的函数,故选:D.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.5.(2015春•高密市期末)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.【解答】解:y=100×0.05x,即y=5x.故选:B.【点评】本题主要考查了根据实际问题列一次函数解析式,正确表示出一分钟滴的水的体积是解题的关键.6.(2014秋•阳谷县期末)下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.5【分析】直接利用函数的定义进而分析得出即可.【解答】解:①y=l,y不是x的函数;②y=x2,y是x的函数;③y2=x,y不是x的函数;④y=|x|,y是x的函数;⑤y=,y是x的函数;⑥y=2x,y是x的函数.故选:C.【点评】此题主要考查了函数的概念,正确把握函数的定义是解题关键.7.(2015春•烟台期末)在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A【点评】本题主要考查的是对函数的定义,关键是根据函数的定义对自变量和因变量的认识和理解.8.(2015春•重庆校级期末)如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x【分析】首先根据单价=总价÷数量,用每盒钢笔的售价除以每盒钢笔的数量,求出每支钢笔的价格是多少;然后根据购买钢笔的总钱数=每支钢笔的价格×购买钢笔的支数,求出购买钢笔的总钱数y(元)与支数x之间的关系式即可.【解答】解:25÷10=所以购买钢笔的总钱数y(元)与支数x之间的关系式为:y=x.故选:D.【点评】此题主要考查了函数关系式的求法,以及单价、数量、总价的关系,要熟练掌握;解答此题的关键是根据单价=总价÷数量,求出每支钢笔的价格是多少.9.(2016春•乐亭县期末)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣12【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣x+12(0<x<24).故选:A.【点评】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.10.(2014秋•章丘市校级期末)若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)【分析】根据底边长+两腰长=周长,建立等量关系,变形即可,再根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.【解答】解:依题意得x+2y=60,即y=(60﹣x)(0<x<30).故选D.【点评】本题考查了函数关系式、等腰三角形三边关系的性质、三角形三边关系定理,得出y与x的函数关系式是解题关键.11.(2013春•涟水县校级期末)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.12.(2015春•泰山区期末)如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+5【分析】观察各选项可知y与x是一次函数关系,设函数关系式为y=kx+b,然后选择两组数据代入,利用待定系数法求一次函数解析式解答即可.【解答】解:根据题意,设函数关系式为y=kx+b,则解得:,则y=2x﹣10.故选:A.【点评】本题考查了函数关系式的求解,根据各选项判断出y与x是一次函数关系是解题的关键,熟练掌握待定系数法求一次函数解析式也很重要.13.(2014春•雅安期末)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.【点评】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.14.(2014春•招远市期末)当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积【分析】根据函数的关系,可得答案.【解答】解;雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,故选:D.【点评】本题考查了常量与变量,函数与自变量的关系是解题关键.15.(2015秋•高密市期末)下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.【解答】解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.二.填空题(共9小题)16.(2016春•石城县期末)汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.17.(2011春•攀枝花期末)已知方程x﹣3y=12,用含x的代数式表示y是y=x ﹣4.【分析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【解答】解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.【点评】考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.18.(2015秋•巴南区校级期末)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是③.【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【解答】解:①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故答案为:③.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.19.(2016春•酒泉期末)某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为y=0.11x﹣0.03.【分析】话费=三分钟以内的基本话费0.3+超过3分钟的时间×0.11,把相关数值代入即可求解.【解答】解:超过3分钟的话费为0.11×(x﹣3),通话时间超过3分钟,。

精品 八年级数学下册 一次函数综合提高题56题

精品 八年级数学下册 一次函数综合提高题56题

(4)小明家 8 月份的电费是 328.5 元,这个月他家用电多少千瓦时?
第 5 页 共 21 页
八年级数学
26.某生物小组观察一植物生长,得到植物高度 y(单位:厘米)与观察时间 x(单位:天)的关系,并 画出如图所示的图象(AC 是线段,直线 CD 平行 x 轴) . (1)该植物从观察时起,多少天以后停止长高? (2)求直线 AC 的解析式,并求该植物最高长多少厘米?
A.3km/h 和 4km/h
9.已知整数 x 满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个 x,m 都取 y1,y2 中的较小值,则 m 的最 大值是( A.1 ) B.2 C.24 D.-9
10.已知关于 x 的不等式 kx-2>0(k≠0)的解集是 x>-3,则直线 y=-kx+2 与 x轴的交点是________ 11.已知一次函数 y1=-2x+a,y2=3x-5a,当 x=3 时,y1>y2,则 a 的取值范围为 12.已知直线 y 2 x 4 ,解下列各题: (1)若 x>0,则 y 的取值范围为 (2)若 y>0,则 x 的取值范围为 (3)若 3 x 4 ,则 y 的取值范围为 (4)若 3 y 4 ,则 x 的取值范围为 ; ; ; ; .
C.1ቤተ መጻሕፍቲ ባይዱ 分钟
5.一家电信公司给顾客提供两种上网收费方式: 方式 A 以每分 0.1 元的价格按上网所用时间计算;方式 B 除收月基费 20 元外.再以每分 0.05 元的价格按上网所用时间计费。若上网所用时问为 x 分.计费为 y 元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论: ①图象甲描述的是方式 A;②图象乙描述的是方式 B;③当上网所用时间为 500 分时,选择方式 B 省钱. 其中,正确结论的个数是( A.3 ) B.2 C.1 D.0

(必考题)初中八年级数学下册第十九章《一次函数》复习题(答案解析)

(必考题)初中八年级数学下册第十九章《一次函数》复习题(答案解析)

一、选择题1.若正比例函数y=(m﹣2)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<22.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,1)C.(0,103)D.(0,2)3.已知A B,两地相距240千米.早上9点甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示,则下列描述不正确的是()A.甲车的速度是60千米/小时B.乙车的速度是90千米/小时C.甲车与乙车在早上10点相遇D.乙车在12:00到达A地4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .5.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2 B .3 C .4 D .56.对于函数31y x =-+,下列结论正确的是( )A .y 随x 的增大而增大B .它的图象经过第一、二、三象限C .它的图象必经过点()0,1D .当1x >时,0y >7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 8.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( ) A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 10.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩11.甲、乙两人从公司去健身房,甲先步行前往,几分钟后乙乘出租车追赶,出租车的速度是甲步行速度的5倍,乙追上甲后,立刻带上甲一同前往,结果甲比预计早到4分钟,他们距公司的路程y (米)与时间x (分)间的函数关系如图所示,则下列结论中正确的个数为( )①甲步行的速度为100米/分;②乙比甲晚出发7分钟;③公司距离健身房1500米;④乙追上甲时距健身房500米.A .1个B .2个C .3个D .4个12.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 13.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( ) A .k≠3 B .k =±3 C .k =3 D .k =﹣3二、填空题16.如图,已知直线l:y =12x ,点A 1(2,0),过点A 1作x 轴的垂线交直线l 于点B 1,以A 1B 1为边,向右侧作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边,向右侧作正方形A 2B 2C 2A 3,延长A 3C 2交直线l 于点B 3;……;按照这个规律进行下去,点B n 的横坐标为______.(结果用含正整数n 的代数式表示)17.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.18.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.19.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.20.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.21.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.22.如图,平面直角坐标系中,点A 在直线333y x =+上,点C 在直线142y x =-+上,点A ,C 都在第一象限内,点B ,D 在x 轴上,若AOB 是等边三角形,BCD △是以BD 为底边的等腰直角三角形,则点D 的坐标为____________.23.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.24.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________. 25.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________. 26.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题27.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A . (1)求直线AC 和OA 的函数解析式;(2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,O 为坐标原点,一次函数y kx b =+与x 轴交于点A ,与y 轴交于点(0,4)B ,与正比例函数3y x =-交于点(1,)C m -.(1)求直线AB 的函数表达式.(2)在y 轴上找点P ,使OCP △为等腰三角形,直接写出所有满足条件的P 点坐标.(3)在直线AB 上找点Q ,使得78COQ APB S S =,求点Q 的坐标.29.如图,已知一次函数43y x m =+的图象与x 轴交于点(6,0)A -,与y 轴交于点B .(1)求m 的值和点B 的坐标;(2)在x 轴上是否存在点C ,使得ABC 的面积为16?若存在,求出点C 的坐标;若不存在,请说明理由.30.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.。

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)一.选择题(共9小题)1.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<102.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a3.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠34.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个5.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或109.若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a 与b的大小关系是a b.(填“>”“<”或“=”)13.已知正比例函数y=(1﹣m)x|m﹣2|,且y随x的增大而减小,则m的值是.14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C 为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.三.解答题(共22小题)19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S=S△PAB.△QAB①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线AD 并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为,点C的坐标为.(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图②.设平移的长度为x cm,且满足0≤x≤10,直尺与直角三角形纸板重合部分的面积(即图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.33.如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P=,求此时点P的坐标.作x轴的垂线交x轴于点E,若S△PBE34.在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ 为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x2﹣4=0的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5h与乙相遇,…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)参考答案与试题解析一.选择题(共9小题)1.(2016春•农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.2.(2012秋•镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x 的增大而减小.同时注意直线越陡,则|k|越大.3.(2016春•重庆校级月考)函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2016春•南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5.(2016春•重庆校级月考)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春•浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春•无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m【分析】根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.【解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0;∴|n﹣m|﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.故选D.【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0时,经过第一、二、四象限.8.(2015秋•盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或10【分析】由一次函数的性质,分k>0和k<0时两种情况讨论求解.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得.即kb=10;当k<0时,y随x的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9.(2015秋•西安校级月考)若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春•邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春•南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春•大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a<b.(填“>”“<”或“=”)【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.(2015春•建瓯市校级月考)已知正比例函数y=(1﹣m)x|m﹣2|,且y随x 的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春•天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(2015春•宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是0≤a<.【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16.(2015秋•靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP 的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是2.【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2,于是得到AC=2+2,从而可求得BC的长为2+.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣2)=4.∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.【点评】本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17.(2016春•盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是(a,a).【分析】根据题意得出直线BB1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60°=a,∴B1的坐标为:(a,a),∴点B1,B2,B3,…都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),…A n(a,).∴A2015(a,a).故答案为.【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A 点横纵坐标变化规律是解题关键.18.(2016春•泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春•武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋•兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法即可直接求得l2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C的坐标,然后利用三角形的面积公式即可求解;(3)△ADF和△ADC的面积相等,则F的纵坐标与C的总坐标一定互为相反数,代入l2的解析式即可求解;(4)求得C关于x轴的对称点,然后求得经过这个点和B点的直线解析式,直线与x轴的交点就是E.【解答】解:(1)设l2的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=﹣x+4;(2)在中令y=0,解得:x=﹣2,则D的坐标是(﹣2,0).。

(完整版)初二数学一次函数综合习题提高训练及答案详解

(完整版)初二数学一次函数综合习题提高训练及答案详解

一次函数提高训练一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2 (B)y1=y2(C)y1<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A 的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩g gg g g其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p2+4│q│>0,||k b pk b qk b+=-⎫⎪=-⇒⎬⎪≠⎭ggk·b<0,一次函数y=kx+b中,y随x的增大而减小kkb<⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A.二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P的坐标为(13,3)或(53,-3).提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.10042009三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵S△AOB=6,∴12AO·│yB│=6,∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB ,∴cot ∠ODC=cot ∠OAB ,即OD OA OC OB =,∴OD=463OC OA OB ⨯=g =8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<552 3.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

第十九章 一次函数 单元复习题 (含详解) 人教版八年级数学下册

第十九章 一次函数  单元复习题 (含详解) 人教版八年级数学下册

人教版八年级数学下册第十九章一次函数单元复习题一、选择题1.在圆的面积公式中,变量是( )A .B .S ,rC .D .只有2.下列图象中,不能表示y 是x 的函数的是( )A .B .C .D .3.已知正比例函数,若随的增大而减小,则的取值范围是( )A .B .C .D .4.如图,函数和的图象交于点,则不等式的解集为( )A .B .C .D .5.如图,直线经过点A 和点B ,直线过点A ,则不等式的解集为( )2πS r =πS ,πr ,r()1y k x =-y x k 1k <1k >0k <0k >2y x =4y ax =+()3A m ,24x ax <+32x >32x <3x >3x <1y kx b =+22y x =2x kx b <+A .B .C .D .6.函数x 的取值范围是( )A .x≠0B .x≥且x≠0C .x >D.x≥7.正比例函数y =(k ﹣2)x 的图象经过一、三象限,那么k 的取值范围是( )A .k >0B .k >2C .k <0D .k <28.如图,直线 y =﹣x+2 与 x 轴交于点 A ,与 y 轴交于点 B ,以点 A 为圆心,AB 长为半径画弧,交 x 轴于点 C ,则点 C 的坐标为( )A .(﹣1,0)B .(,0)C .(-2,0)D .(,0)9.在平面直角坐标系中,将函数的图象向下平移2个单位长度,所得函数图象的表达式是( )A .B .C .D .10.如图是甲、乙两家商店销售同一种产品的销售价 (元)关于销售量 (件)的函数图象.给出下列说法,其中说法不正确的是( )A .售2件时,甲、乙两家的售价相同B .买1件时,买乙家的合算C .买3件时,买甲家的合算12-12-21y x =-+y x 2x <-1x <-20x -<<10x -<<y =12-21y x =-+21y x =--23y x =--23y x =-+D .乙家的1件售价约为3元二、填空题11.函数x 的取值范围是 12.已知函数是关于的一次函数,则的值为  .13.已知一次函数的图象经过点,且与直线的图象平行,则一次函数表达式为 .14.市场上一种豆子的单价是2元/千克,豆子总的售价 (元)与所售豆子的重量 (千克)之间的函数关系式为 .(不需要写出自变量取值范围)三、解答题15.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s (千米)与时间t (分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?16.一次函数的自变量x 的取值范围是,相应函数值的取值范围是,求这个函数的解析式.17.已知一次函数y =kx +b 的图象由直线y =﹣2x 平移得到,且过点(﹣2,5).求该一次函数的解析式.18.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x 名学生去旅游,他们应该选择哪家旅行社?四、综合题19.已知矩形 的周长为 , AB 的长为 , 的长为 .(1)写出 关于 的函数解析式( 为自变量);(2)当 时,求 的值.x y x y x y x x y y =||(1)3m y m x =--m y kx b =+()05-,1y x 2=y =y kx b =+42x -≤≤14y ≤≤ABCD 20BC 3x =20.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (﹣2,4),且与正比例函数y=﹣x 的图象交于点B (m ,2).(1)求一次函数y =kx+b 的解析式;(2)若直线AB 与x 轴交于点C ,若连接AO 后,则△OAB 的面积是  .21.综合与探究如图,在平面直角坐标系中,函数的图象分别交轴、轴于两点.点在上,且,作直线.(1)A 点坐标为 ,B 点坐标为 ;(2)求直线的解析式;(3)在直线上找一点,使得,请直接写出点的坐标;(4)在坐标平面内是否存在这样的点,使得以点为顶点的四边形为平行四边形?若存在,请你直接写出点的坐标;若不存在,请说明理由.22.李明驾车以千米小时的速度从甲地匀速开往乙地,行驶到服务区休息了一段时间后以另一速度继续匀速行驶,直至到达乙地.李明与乙地的距离千米与时间小时之间的函数关系图象如图所示.x y AM AM P N )23212y x =+A B 、M OB 12OM MB =::AM P ABP AOB S S =V V N A B M N 、、、100/y()x((1)求的值;(2)求李明从服务区到乙地与之间的函数关系式;(3)求时李明驾车行驶的路程.a y x x 5答案解析部分1.【答案】B【解析】【解答】解:中的变量是、,故答案为:B.【分析】在一个过程中,固定不变的量称为常量,可以取不同数值的量称为变量.2.【答案】B【解析】【解答】解:A 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;B 、不满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故符合题意;C 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;D 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;故答案为:B .【分析】根据函数的定义逐项判断即可。

初中八年级下册数学一次函数经典复习试卷附答案

初中八年级下册数学一次函数经典复习试卷附答案

初中八年级下册数学一次函数经典复习试卷附答案一、单选题(共4题;共8分)1.已知一次函数 y =x +b 的图像经过一、二,三象限,则b 的值可以是( )A. -2B. -1C. 0D. 2【答案】 D2.如图,直线 y =kx +b 与坐标轴相交于 A(−2,0) , B(0,3) 两点,则关于x 的不等式 kx +b >0 的解集是( )A. x >3B. −2<x <3C. x <3D. x >−2【答案】 D3.一次函数 y =3x −1 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】 B4.一次函数y =kx +b , y 随x 的增大而减小且b >0,则它的图象可能是下列图形中的( )A. B. C. D.【答案】 C二、填空题(共5题;共5分)5.已知,函数 y =−2x +6 与 y =3x −4 的图像交于点A ,则点A 的坐标为________.【答案】 (2,2).6.将直线y=2x-5向上平移2个单位,所得直线解析式为________ .【答案】 y=2x-37.直线 y =3x −2 与y 轴交点的坐标是________ .【答案】 (0,-2)8.一次函数 y =3x −1 与 y =2x 图象的交点是 (1,2) ,则方程组 {3x −y =12x =y的解为________. 【答案】 {x =1y =29.如图,直线 l 1:y =x +2 与直线 l 2:y =kx +b 相交于点 P(m,4) ,则方程组 {y =x +2y =kx +b的解是________.【答案】 {x =2y =4三、解答题(共1题;共10分)10.如图,直线 l 1 的解析式为: y =−3x +3 ,且 l 1 与x 轴交于点D ,直线 l 2 经过点A,B ,直线 l 1 , l 2 交于点C.(1)求直线 l 2 的解析表达式;(2)求 ΔADC 的面积.【答案】 (1)设直线 l 2 的解析式为 y =kx +b .把 x =4 , y =0 ; x =3 , y =32 ,代入 y =kx +b 得 {4k +b =03k +b =−32, ∴ {k =32b =−6, ∴直线 l 2 的解析式为 y =32x −6 ;(2)由 {y =−3x +3y =32x −6, 解得 {x =2y =−3∴ C(2,−3) ,∵ AD =3 ,∴ S ΔADC =12×3×|−3|=92 四、综合题(共11题;共140分)11.甲开车从距离B 市100千米的A 市出发去B 市,乙从同一路线上的C 市出发也去往B.市,二人离A 市的距离与行驶时间的函数图像如图所示(y 代表距离,x 代表时间)(1)C 市离A 市的距离是________千米;(2)甲的速度是________千米∕小时,乙的速度是________千米∕小时;(3)________小时,甲追上乙;(4)试分别写出甲、乙离开A 市的距离y (千米)与行驶时间x (时)之间的函数关系式.【答案】 (1)28(2)40;12(3)1(4)解:设甲离开A 市的距离y(千米)与行驶时间x(时)之间的函数关系式为: y 甲 = k 1 x,乙离开A 市的距离y(千米)与行驶时间x(时)之间的函数关系式为: y 乙 = k 2 x+b ,由题意,得40= k 1 ,∴ y 甲 =40x(0≤x≤2.5) .由 {28=b 100=6k 2+b ,解得: {k 2=12b =28, ∴ y 乙 =12x+28(0≤x≤6) .12.一次函数图象经过(3,1),(2,0)两点.(1)求这个一次函数的解析式;(2)求当x =6时,y 的值.【答案】 (1)解:设一次函数解析式为y =kx+b ,把(3,1),(2,0)代入得 {3k +b =12k +b =0 ,解得 {k =1b=−2 , 所以一次函数解析式为y =x ﹣2(2)解:当x =6时,y =x ﹣2=6﹣2=4.13.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元). (1)请分别写出y 1 , y 2与x 之间的函数表达式.(2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?(3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?【答案】 (1)解:当游泳次数为x 时,方式一费用为:y 1=30x+200,方式二的费用为:y 2=40x(2)解:若小亮来此游泳馆的次数为25次,方式一的费用为:30 ×15 +200=650(元)方式二的费用为:40 ×15=600 (元)650 >650 ,故方式二划算.(3)解:当 y 1=1400 时,得x=40(次)当 y 2=1400 时,得x=35(次)故采用方式一更划算.14.如图,在平面直角坐标系xOy 中,一次函数y =k 1x +b 的图象与x 轴交于点A (-3,0),与y 轴交于点B ,且与正比例函数y =kx 的图象交点为C (3,4).(1)求正比例函数与一次函数的关系式;(2)若点D 在第二象限,△DAB 是以AB 为直角边的等腰直角三角形,请求出点D 的坐标; (3)在x 轴上是否存在一点E 使△BCE 周长最小,若存在,求出点E 的坐标(4)在x 轴上求一点P 使△POC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.【答案】 (1)解:∵一次函数y =k 1x +b 过点A (-3,0); C (3,4)∴ {0=−3k +b 4=3k +b 解得: {k =23b =2∴一次函数关系式为y = 23 x +2∵正比例函数y =kx 的图象过点为C (3,4)∴4=-3k 2∴k 2= 43 正比例函数:y = 43 x(2)解:如图所示,作D1M⊥X轴于M点,作D2N⊥Y轴于N,在等腰△AD1B中,A D1=AB ; ∠D1AB=90°∠D1DA=∠AOB=90°∴∠D1AM+∠BAO=90°又∵∠ABO+∠BAO=90°∴∠D1AM =∠BAO在△D1DA与△ OAB中∠D1AM =∠BAO(已证)∠D1MA=∠AOB(已证)A D1=AB (已证)∴△D1MA≌△OAB(AAS)∴D1 M=OA=3;AM=BO=2 ∴OM=5∵D1在第二象限,∴D1(-5,3)同理证:△D2NB≌△BOA(AAS)∴D2(-2,5)(3)解:存在;作C关于X轴对称点C1,连接BC1,交X轴于E,此时△BCE周长最小。

八年级数学一次函数提高题专项练习(含答案)

八年级数学一次函数提高题专项练习(含答案)

八年级数学一次函数提高题专项练习一、单选题1.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .2.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <03.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .4.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A.2k <B.2k >C.0k >D.k 0<5.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .二、填空题6.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_____.三、解答题7.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.8.如图,把矩形OABC 放入平面直角坐标系xO 中,使OA 、OC 分别落在x 、y 轴的正半轴上,其中AB =15,对角线AC 所在直线解析式为y =﹣x +b ,将矩形OABC 沿着BE 折叠,使点A 落在边OC 上的53点D 处.(1)求点B 的坐标;(2)求EA 的长度;(3)点P 是y 轴上一动点,是否存在点P 使得△PBE 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.9.如图,直线l 1的函数解析式为y=﹣2x+4,且l 1与x 轴交于点D ,直线l 2经过点A 、B ,直线l 1、l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ADC 的面积;(3)在直线l 2上是否存在点P ,使得△ADP 面积是△ADC 面积的2倍?如果存在,请求出P 坐标;如果不存在,请说明理由.11.如图,直线1l 的解析式为33y x =-,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l ,2l 相交于点C .()1求点D 的坐标;()2求ADC 的面积.13.如图,直线l:364y x=+交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足BPQ BAO∠=∠.(1)点A坐标是 ,BC= .(2)当点P在什么位置时,APQ CBP∆≅∆,说明理由.(3)当PQB∆为等腰三角形时,求点P的坐标.17.如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).(1)求m的值及一次函数的解析式;(2)求△ACD的面积。

精品 八年级数学下册 一次函数综合能力提高题2

精品 八年级数学下册 一次函数综合能力提高题2

一次函数综合提高练习题例1.如图,△ABC是等腰直角三角形,∠ACB=90°,直角顶点C在x轴上,一锐角顶点B在y 轴上.(1)如图①,若点C的坐标是(x,0),点A的坐标是(-x,-x),设B点的坐标为(0,y),求y与x之间的函数关系式﹙不用写自变量的取值范围﹚;(2)如图②,在(1)的条件下,在坐标轴上是否存在点P,使B、C、P三点所组成的三角形为等腰三角形,若存在,存在几个?并在图中用尺规作图的方法标出来(只保留作图痕迹,不写作法);若不存在请说明理由.(3)如图③,若y轴恰好平分∠ABC,AC与y轴交与点D,过点A作AE⊥y轴于E,求当BD=4.5时AE的长度.例2.如图,在平面直角坐标系中,点P(x ,y)是第一象限直线y=-x+6上的点,点A(5,0),O 是坐标原点,△PAO 的面积为S 。

(1)求S 与x 的函数关系式,并写出x 的取值范围; (2)探究:当P 点运动什么位置时,△PAO 的面积为10.例3.已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值。

课堂练习:1.有一个数值转换器,原来如下:当输入的x 为64时,输出的y 是( ) A.8 B.22 C.32 D.232.满足57-<<x 的整数的个数是( )A.6B.5C.4D.3 3.若22=+m ,则(m+2)2的平方根为( )A.16B.16±C.4±D.2±4.已知224M a b =+,4N ab = (a ,b 为任意有理数)则M 与N 的大小关系是( )A.M>NB.M<NC.M ≥ND.M ≤N 5.将一盛有部分水...的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )6.如图1,长方形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .67.如图,在长方形ABCD 中,AB=4,BC=34,点E 是折线段A-D-C 上的动点(点E 与A 不重合),点P 是点A 关于BE 的对称点,在点E 运动的过程中,能使△PCB 的等腰三角形的点E 的位置共有( )A.2个B.3个C.4个D.5个8.若A(x 1,y 1),B (x 2,y 2)为一次函数y=3x-1的图象上的两个不同的点,且x1x2≠0,设111x y M +=,222x y N +=,那么M 与N 的大小关系是( ) A.M=N B.M<N C.M>N D.无法确定 9.若21mx =+,34m y =+,用x 的代数式表示y ,则y=10.已知x 、y 满足0242422=+-++y x y x ,则22165y x +=11.若518,53x y ==,则25x y-的算术平方根是12.已知:M=2008×2009×2010,N=2007×2009×2011,则M 、N 的大小关系是 13.如果直线y ax b =+经过一、二、三象限,那么ab 0 (“<”“>”或“=”) 14.如图所示,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线DE 交BC 于点D ,垂足为E ,BD=10cm ,求AC 的长15.若等腰三角形的一角为800,则它腰上的高与底边的夹角是16.若y+b 与x+a (a ,b 是常数)成正比例,且当x=3时,y=5;当x=2时,y=2,则y 与x 的函数关系式为17.直线1y x =+与x 轴、y 轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有 个.18.已知:y x +=+310,其中x 是整数,且10<<y ,求y x -的相反数.19.已知13的整数部分是a ,小数部分为b ,试求)13(41a b +的值。

精品 八年级数学下册 一次函数综合能力提高题3

精品 八年级数学下册 一次函数综合能力提高题3

一次函数(一)1.正比例函数的定义:一般地,形如y=kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.2.正比例函数的图像:正比例函数y=kx (k 是常数且k ≠0)的图像是一条经过原点(0,0)的直线,当k>0时,直线y=kx 经过第一,三象限,y 随着x 的增大而增大,当k<0时,直线y=kx 经过第二,四象限,y 随着x 的增大而减少.3.一次函数的定义:如果y=kx+b (k ,b 为常数,且k ≠0),那么y 叫做x 的一次函数.一次函数的标准形式为y=kx+b ,是关于x 的一次二项式,其中一次项系数k 必须是不为零的常数,b 可以为任何常数.当b=0而k ≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b ≠0时,它不是一次函数.4.一次函数的图像:一次函数y=kx+b (k ≠0)的图像是一条直线,通常也称直线y=kx+b ,由于两点确定一条直线,故画一次函数的图像时,只要先描出两点,再连成直线就可以了,为了方便,通常取图像与坐标轴的两个交点(0,b ),(-b k,0)就行了. 5.一次函数的图像与性质 k>0b>0 第一,二,三象限 y 随x 的增大而增大 b<0 第一,三,四象限 k<0 b>0第一,二,四象限 y 随x 的增大而减小b<0 第二,三,四象限 6.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b 沿着y 轴向上(“+”)、下(“-”)平移m (m>0)•个单位得到一次函数y=kx+b ±m ;一次函数y=kx+b 沿着x 轴向左(“+”)、•右(“-”)平移n (n>0)个单位得到一次函数y=k (x ±n )+b ;直线y=kx+b 与x 轴交点为(-b k,0),与y 轴交点为(0,b ),且这两个交点与坐标原点构成的三角形面积为k b S 22= 例1.在直线2121+=x y 且到x 轴或y 轴距离为1的点有( )个。

八年级下册数学《一次函数图象与性质》提升训练题(附解析)

八年级下册数学《一次函数图象与性质》提升训练题(附解析)

19.4 一次函数图象与性质一、单选题1.已知在一次函数y =﹣3x +2的图象上有三个点A (﹣3,y 1),B (3,y 2),C (﹣4,y 3),则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 12.若函数y =2mx −(m 2−4)的图象经过原点,且y 随x 的增大而减小( )A .m =2B .m =−2C .m =±2D .以上答案都不对 3.直线31y x =-+经过第( )象限A .一、二、三B .一、二、四C .一、三、四D .二、三、四4.将直线l :23y x =+,先向下平移3个单位,再向右平移4个单位得直线1l ,则平移后得到直线1l 的解析式为( )A .24y x =+B .24y x =-C .28y x =-D .28y x =+5.定义:(, )A x y 为平面直角坐标系内的点,若满足x y =,则把点A 叫做“平衡点”,例如:(1,1)M ,(2,2)N --都是平衡点.当24x -时,直线2y x m =+上有“平衡点”,则m 的取值范围是( ) A .04m B .42m - C .24m - D .20m -≤6.如下右图是一次函数y =kx+b 的图象,当y <2时,x 的取值范围是( )A .x <1B .x >1C .x <3D .x >37.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),若如图中的折线表示y 与x 之间的函数关系,则下列结论错误的是( )A .甲、乙两地相距1000千米B .点B 的实际意义是两车出发后3小时相遇C .普通列车从乙地到达甲地时间是9小时D .动车的速度是250千米/小时8.要画出一次函数y kx b =+的图象,列表如下,下列结论正确的是( )x … 1- 0 1 2 … y… 5 2 1- 4-… A .y 随x 的增大而增大B .方程2kx b +=的解是4x =-C .一次函数y kx b =+的图象经过二、三、四象限D .一次函数y kx b =+的图象与y 轴的交点是()0,29.如右上图,一次函数y=kx+b 的图象经过点(-3,0),则( ).A .b<0B .方程kx+b=0的解是x=-3C .k<0D .y 随x 的减小而增大 10.已知函数6y kx =-和2y x a =-+,且0k >,6a <-,则这两个一次函数图象的交点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.以二元一次方程21x y +=-的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .12.一次函数y mx n =+与正比例函数y mnx =(m ,n 为常数、且0mn ≠)在同一平面直角坐标系中的图可能是( )A .B .C .D .13.在平面直角坐标系中,点A (2,m )在直线y =﹣2x +1上,点A 关于y 轴的对称点B 恰好落在直线y =kx +2上,则k 的值为( )A .2B .2.5C .﹣2D .﹣314.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2 B .0 C .-1 D .-215.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .2y =+C .y=4x-12D .3y =-16.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .17.若一次函数2y kx k =+-(k 是常数,0k ≠)的图象经过点P ,且函数y 的值随自变量x 的增大而减小,则点P 的坐标可以是( )A .(3,2)B .(3,3)C .(1,3)-D .(1,1)-18.已知点()12,y -,()20,y ,()34,y 是直线5y x b =-+上的三个点,则1y ,2y ,3y 的大小关系是( ). A .123y y y >> B .123y y y << C .132y y y >> D .132y y y <<19.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .20.一次函数y =﹣bx ﹣k 的图象如下,则y =﹣kx ﹣b 的图象大致位置是( )A .B .C .D .21.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限22.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定23.一次函数y=kx +b 中,x 与γ的部分对应值如下表所示,则下列说法正确的是( )A .x 的值每增加1,y 的值增加 3,所以k=3B .x=2是方程 kx +b=0的解C .函数图象不经过第四象限D .当x>1时,y<-1 24.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到25.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .726.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .无法比较27.如图,平面直角坐标系中,一次函数3=-y x x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A.6 B .6 C 3 D .428.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,则直线AC 的函数解析式为( )A .y =3B .yC .y =﹣3D .y 29.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)30.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .31.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,1)C .(0,103)D .(0,2)32.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( ) A . B .C . D .33.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D . 34.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .535.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( )A .B .C .D .36.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .37.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( ) A . B . C . D . 38.如图,在平面直角坐标系中,一次函数4y x =+的图象与x 轴交于点A ,与y 轴交于点B ,点P 在线段AB 上,PC x ⊥轴于点C ,则PCO △周长的最小值为( ).A .22B .422+C .4D .442+39.如图所示,直线y=x+4与两坐标轴分别交于A 、B 两点,点C 是OB 的中点,D 、E 分别是直线AB 、y 轴上的动点,则CDE △周长的最小值是( )A .37B .310C .27D .21040.如图点P 按A B C M →→→的顺序在边长为1的正方形边上运动,M是CD 边上的中点.设点P 经过的路程x 为自变量,APM △的面积为y ,则函数y 的大致图象是( ).A .B .C .D . 41.如图,矩形ABOC 的边BO 、CO 分别在x 轴、y 轴上,点A 的坐标是6,4,点D 、E 分别为AC 、OC 的中点,点P 为OB 上一动点,当PD PE +最小时,点P 的坐标为( )A .()1,0-B .()2,0-C .()3,0-D .()4,0-42.如图,在平面直角坐标系中,点1A ,2A ,3A 在直线15y x b =+上,点1B ,2B ,3B 在x 轴上,11OA B ∆,122B A B ∆,233B A B ∆都是等腰直角三角形,若已知点()11,1A ,则点3A 的纵坐标是( )A .32B .23C .49D .9443.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B AB ∆,是以1A ,2A ,3A ,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭44.我们把三个数的中位数记作Z {a ,b ,c }.例如Z {1,3,2}=2.函数y =|2x +b |的图象为C 1,函数y =Z {x +1,-x +1,3}的图象为C 2.图象C 1在图象C 2的下方点的横坐标x 满足-3<x <1,则b 的取值范围为( ) A .0<b <3B .b >3或b <0C .0≤b ≤3D .1<b <3二、填空题45.如图,在平面直角坐标系中,点A 的坐标为(2,7),点B 的坐标为(5,0),点C是y 轴上一个动点,且点A ,B ,C 三点不在同一条直线上,当ABC 的周长最小时,点C 的坐标是_______.46.一次函数32y x =-+的图象经过_______象限.47.天降大雨,龙湾水库的蓄水量随时间的增加而直线上升,若该水库的蓄水量V (万米3)与降雨的时间t (天)的关系如图所示,则V 与t 的函数关系式是___________.48.已知点P (a ,b )在直线y =﹣x ﹣9上,且7ab -=3,则代数式a 2+b 2﹣ab 的值为__. 49.已知l 1:y =﹣2x +6将l 1向左平移3个单位长度得到的直线解析式为_____.50.若函数y =(a ﹣2)x +b ﹣3的图象如图所示,化简:|b ﹣a |﹣|3﹣b |﹣|2﹣a |=_____.51.如图,正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按其所示放置,点A 1,A 2,A 2,…和C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2020的横坐标是______.52.若y =(m -2)x |m-2|﹣5是关于x 的一次函数,且y 随x 增大而减小,则常数m 的值为______. 53.如图,直线y =33x 上有点A 1,A 2,A 3,…A n +1,且OA 1=1,A 1A 2=2,A 2A 3=4,A n A n +1=2n ,分别过点A 1,A 2,A 3,…A n +1作直线y =3x 的垂线,交y 轴于点B 1,B 2,B 3,…B n +1,依次连接A 1B 2,A 2B 3,A 3B 4,…A n B n +1,得到△A 1B 1B 2,△A 2B 2B 3,△A 3B 3B 4,…,△A n B n B n +1,则△A 4B 4B 5的面积为_____.54.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11AB 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3(4,0)A 作x 轴的垂线,交直线2y x =于点3B ⋅⋅⋅按此规律作下去, 则点4A 的坐标为_______;点2021B 的坐标为_______ .55.如图,在平面直角坐标系中,点M (﹣1,3)、N (a ,3),若直线y =﹣2x与线段MN 有公共点,则a 的值可以为_____.(写出一个即可)56.在平面直角坐标系中,对于两点A 、B ,给出如下定义:以线段AB 为直角边的等腰直角三角形称为点A 、B 的“对称三角形”.一次函数y =﹣12x +4的图象与x 轴、y 轴分别交于点A 和点B ,在第一象限内,点A ,B 的“对称三角形”的另一个顶点坐标为_____.57.如图,直线2y x a =-,3y x b =-(a ,b 是整数)分别交x 轴于点A ,B .若线段AB 上只有三个点的横坐标是整数(分别为4,5,6),则有序数对(,)a b 一共有__________对.58.已知某直线经过点(0,1)A ,且与两坐标轴围成的三角形的面积为2,则该直线的函数表达式是_________. 59.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.三、解答题60.一次函数(24)(3)y m x n =++-,求:(1)m ,n 是什么数时,y 随x 增大而增大?(2)m ,n 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)若1,2m n =-=时,求一次函数与两坐标轴所围成的三角形的面积.61.小融同学根据学习函数的经验,对函数|1|y m x x n =-++的图象与性质进行了探究.下表是小融探究过程中的部分信息:x … 3- 2- 1- 01 2 3 ... y (2)1 0 1- 2- a 4 …请按要求完成下列各小题:(1)该函数的解析式为 ,a 的值为 ;(2)在如右图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象;(3)结合函数的图象,解决下列问题:①写出该函数的一条性质: ;②如图,在同一坐标系中是一次函数1y x =-的图象,根据图象回答,当|1|1m x x n x -++<-时,自变量x 的取值范围为 .62.如图,一次函数y =(m ﹣3)x ﹣m +1图象分别与x 轴正半轴、y 轴负半轴相交于点A 、B . (1)求m 的取值范围;(2)若该一次函数的图象向上平移4个单位长度后可得某正比例函数的图象,试求这个正比例函数的解析式.63.如图,一次函数y =x +3的图象分别与x 轴和y 轴交于C ,A 两点,且与正比例函数y =kx 的图象交于点B (﹣1,m ).(1)求m 的值;(2)求正比例函数的表达式;(3)点D 是一次函数图象上的一点,且△OCD 的面积是4,求点D 的坐标.64.甲、乙两地相距500千米,汽车从甲地以每小时80千米的速度开往乙地(1)写出汽车离乙地的距离s (千米)与开出时间t (时)之间的函数关系式,并指出是不是一次函数? (2)汽车从甲地开出多久,距离乙地100千米?65.已知一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B . (1)求A 、B 两点的坐标;(2)过B 点作直线BP 与x 轴交于点P ,且使ABP △的面积为2,求点P 的坐标.66.如图,在平面直角坐标系中,直线l 与y 轴交于点A ,与x 轴交于点B .(1)直接写出A 、B 两点的坐标;(2)求直线l 的函数解析式;(3)在x 轴上是否存在点C ,使△ABC 的面积为10?若存在,求出点C 的坐标,若不存在,请说明理由.67.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图.(1)画出△ABC 关于x 轴对称的图形△1A 1B 1C (点A 、B 、C 分别对应1A 、1B 、1C ); (2)写出1A 、1B 、1C 坐标:1A ,1B ,1C ;(3)求△1A 1B 1C 的面积;(4)请在y 轴上找出一点P ,满足线段AP +1B P 的值最小,并写出P 点坐标.68.如图,已知A (﹣2,4),B (4,2),C (2,﹣1).(1)作△ABC 关于x 轴的对称图形△A 1B 1C 1,写出点C 关于x 轴的对称点C 1的坐标;(2)P 为x 轴上一点,请在图中画出使△P AB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).69.已知a ,b 为实数,且2(1)a b +-与24a b -+的值互为相反数,(1)求a 、b 的值;(2)若一次函数y kx m =+的图象经过点()a b ,与点()b a ,,求这个一次函数的关系式.70.有这样一个问题:探究函数|1|y x =+的图象与性质.小明根据学习一次函数的经验,对函数|1|y x =+的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图是x 与y 的几组对应值.x … 5- 4-3- 2- 1- 0 1 2 3 ... y (4)3 2 m 0 1 2 34 … m 的值为________;(2)在如图的坐标系xOy 中,描出表中各对对应值为坐标的点,并画出该函数的图象;(3)小明根据画出的函数图象,得出了如下几条结论:①函数有最小值为0;②当1x >-时,y 随x 的增大而增大;③图象关于过点(1,0)-且垂直于x 轴的直线对称.小明得出的结论中正确的是___________.(只填序号)71.在平面直角坐标系中,设一次函数1y kx b =+,2y bx k =+(k ,b 是实数,且0bk ≠)(1)若函数1y 的图象过点(4,3)b ,求函数1y 与x 轴的交点坐标;(2)若函数1y 的图象经过点(,0)m ,求证:函数2y 的图象经过点1,0m ⎛⎫ ⎪⎝⎭; (3)若函数1y 的图象不经过第一象限,且过点(2,3)-,当k b <时,求k 的取值范围.72.如图1,直线AB :y=43x +4分别与x 轴、y 轴交于A 、B 两点,过点B 的直线交x 轴负半轴于点C ,将△BOC 沿BC 折叠,使点O 落在BA 上的点M 处.(1)求A 、B 两点的坐标;(2)求线段BC 的长;(3)点P 为x 轴上的动点,当∠PBA=45°时,求点P 的坐标.73.如图,直线l 1:y =x +1与直线l 2:y =mx +n 交于点P (1,b ),直线l 2与x 轴交于点A (4,0). (1)求b 的值;(2)解关于x ,y 的方程组1y x y mx n=+⎧⎨=+⎩,并直接写出它的解; (3)判断直线l 3:y =nx +m 是否也经过点P ?请说明理由.74.如图1,已知函数132y x =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q .①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.75.如图,正方形ABCO 的边长为4,OA 在x 轴上,OC 在y 轴上,且//BC OA ,//AB OC ,点D 为AB 的中点,点E 在x 轴上,直线CD 交x 轴于点F .(1)如图1,若1AE =,①求证:90CDE ∠=︒;②点P 是直线DE 上的一个动点,求作点P 使得PA PF +的值最小,并直接写出PA PF +的最小值; (2)如图2,E 在x 轴上运动,当ECD 为等腰三角形时,求点E 的坐标.76.如图,在△ABC 中,AB =AC =10,BC =12,AD ∥BC ,CD ⊥AD ,BD 和AC 相交于点P .求△BPC 的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P 的坐标,从而可求得△BPC 的面积.请你按照小明的思路解决这道思考题.77.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为m和n,且满足m2+n2=2mn.(1)判断△AOB的形状.(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=13,MN=6,求BN的长.(3)如图③,E为线段AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO.试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.=+与x轴交于A(-3,0)、与y轴交于B点,78.如图,已知直线:l y kx b且经过(1,8),在y轴上有一点C(0,3),动点D从点A以每秒1个单位的速度沿x轴向右移动,设动点D的移动时间为t秒.(1)求k、b的值;(2)当t为何值时△COD≌△AOB,并求此时点D的坐标;(3)求△COD的面积S与动点D的移动时间t之间的函数关系式.19.4 一次函数图象与性质解析答案一、单选题1.已知在一次函数y=﹣3x+2的图象上有三个点A(﹣3,y1),B(3,y2),C(﹣4,y3),则下列各式中正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【答案】B【剖析】根据一次函数图象的增减性来比较A、B、C三点的纵坐标的大小.【剖析】解:∵一次函数y=﹣3x+2中的﹣3<0,∴该函数的y随x的增大而减小.又∵3>﹣3>﹣4,∴y2<y1<y3.故选:B.【考点说明】本题考查了一次函数图象上点坐标特征.解答该题的关键是熟练掌握一次函数的增减性.2.若函数y=2mx−(m2−4)的图象经过原点,且y随x的增大而减小()A.m=2 B.m=−2C.m=±2 D.以上答案都不对【答案】B【分析】根据函数过原点,求出m的值,利用一次函数的性质得m<0,即可得到答案.【剖析】解:∵若函数y=2mx−(m2−4)的图象经过原点,则函数经过得一个点的坐标为(0,0),则0=−(m2-4),∴m=±2,∵y随x的增大而减少,则2m<0,即m<0.∴m=-2.故选:B.【考点说明】本题主要考查对一次函数的性质,一次函数图象上点的坐标特征等知识点的理解和掌握,能熟练地运用一次函数的性质进行推理求解待定参数是解此题的关键.3.直线31y x =-+经过第( )象限A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】B【分析】由y =-3x +1可知直线与y 轴交于(0,1)点,且y 随x 的增大而减小,可判断直线所经过的象限.【剖析】解:直线y =-3x +1与y 轴交于(0,1)点,且k =-3<0,y 随x 的增大而减小,∴直线y =-3x +1的图象经过第一、二、四象限.故选B .【考点说明】本题考查了一次函数的性质.关键是根据图象与y 轴的交点位置,函数的增减性判断图象经过的象限. 4.将直线l :23y x =+,先向下平移3个单位,再向右平移4个单位得直线1l ,则平移后得到直线1l 的解析式为( )A .24y x =+B .24y x =-C .28y x =-D .28y x =+ 【答案】C【分析】根据一次函数平移k 、b 变化规律,在自变量或常数项上加减即可.【剖析】解:23y x =+,先向下平移3个单位,再向右平移4个单位得直线为: 2(4)33y x =-+-,即28y x =-;故选:C .【考点说明】本题考查了一次函数图象的平移变换,解题关键是明确函数图像平移的规律:上加下减常数项,左加右减自变量.5.定义:(, )A x y 为平面直角坐标系内的点,若满足x y =,则把点A 叫做“平衡点”,例如:(1,1)M ,(2,2)N --都是平衡点.当24x -时,直线2y x m =+上有“平衡点”,则m 的取值范围是( )A .04mB .42m -C .24m -D .20m -≤【答案】B【分析】 根据x =y ,24x -可得出关于m 的不等式,求出m 的取值范围即可.【剖析】解:∵x =y ,∴x =2x +m ,即x =−m .∵24x -,∴−2≤−m ≤4,∴−4≤m ≤2.故选:B .【考点说明】本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m 的不等式是解答此题的关键. 6.如图是一次函数y =kx+b 的图象,当y <2时,x 的取值范围是( )A .x <1B .x >1C .x <3D .x >3【答案】C【分析】 从图象上得到函数的增减性及当y =2时,对应的点的横坐标,即能求得当y <2时,x 的取值范围.【剖析】解:一次函数y =kx+b 经过点(3,2),且函数值y 随x 的增大而增大,∴当y <2时,x 的取值范围是x <3.故选:C .【考点说明】本题主要考查了一次函数的性质,正确利用函数图象分析是解题关键.7.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),若如图中的折线表示y与x之间的函数关系,则下列结论错误的是()A.甲、乙两地相距1000千米B.点B的实际意义是两车出发后3小时相遇C.普通列车从乙地到达甲地时间是9小时D.动车的速度是250千米/小时【答案】C【分析】根据函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【剖析】解:由图象可得,甲、乙两地相距1000千米,故选项A正确;点B的实际意义是两车出发后3小时相遇,故选项B正确;普通列车从乙地到达甲地时间是12小时,故选项C错误;普通列出的速度为1000÷12=2503(千米/小时),动车的速度为:1000÷3﹣2503=250(千米/小时),故选项D正确;故选:C.【考点说明】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.8.要画出一次函数y kx b=+的图象,列表如下,下列结论正确的是()A .y 随x 的增大而增大B .方程2kx b +=的解是4x =-C .一次函数y kx b =+的图象经过二、三、四象限D .一次函数y kx b =+的图象与y 轴的交点是()0,2【答案】D【分析】根据待定系数法求得解析式,然后根据一次函数的特点进行选择即可.【剖析】解:由题意得,当x =1时,y =-1,当x =0时,y =2,则12k b b +-⎧⎨⎩==,解得:32k b -⎧⎨⎩==, 函数解析式为:y =-3x +2,A 、∵k =-3<0,∴y 随x 的增大而减小,故错误;B 、当-3x +2=2时,x =0,∴方程kx +b =2的解是x =0,故错误;C 、∵k =-3<0,b =2>0,∴一次函数y =kx +b 的图象经过第一、二、四象限,故错误;D 、令x =0,则y =2,∴一次函数y =kx +b 的图象与y 轴交于点为(0,2),故正确;故选:D .【考点说明】本题主要考查对一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式等知识点的理解和掌握,能求出一次函数的解析式是解此题的关键.9.如图,一次函数y=kx+b 的图象经过点(-3,0),则( ).A .b<0B .方程kx+b=0的解是x=-3C .k<0D .y 随x 的减小而增大【答案】B【分析】 根据一次函数y=kx+b 的图象与坐标轴的交点、所经过的象限、增减性逐项进行判断,即可求解.【剖析】一次函数y=kx+b 的图象与y 轴交于正半轴,则b >0,故A 错误;一次函数y=kx+b 的图象经过点(-3,0),则方程kx+b=0 的解是x=-3,故B 正确;一次函数y=kx+b 的图象经过第一、二、三象限,则k >0,故C 错误;一次函数y=kx+b 中k >0,则y 随x 的增大而增大,故D 错误;故答案为:B .【考点说明】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.10.已知函数6y kx =-和2y x a =-+,且0k >,6a <-,则这两个一次函数图象的交点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】由函数解析式,得y 62kx y x a =-⎧⎨=-+⎩,求得交点的坐标,根据0k >,6a <-,判断交点的坐标特点,确定位置.【剖析】∵y 62kx y x a =-⎧⎨=-+⎩, ∴6x 2122a k ak y k +⎧=⎪⎪+⎨-⎪=⎪+⎩,∵0k >,6a <-,∴k +2>0,a +6<0,a <0,ak <0,ak -12<0, ∴612022a ak k k +-++<0,<, ∴交点位于第三象限,故选C .【考点说明】本题考查了一次函数的交点坐标的求法,点的坐标与象限的关系,熟练运用二元一次方程组的思想确定交点是解题的关键.11.以二元一次方程21x y +=-的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .【答案】D【分析】根据二元一次方程与一次函数的关系,先将方程21x y +=-化为21y x =--,再利用一次函数图象与性质判断出图象经过的象限,即可得出结论.【剖析】解:方程21x y +=-可化为21y x =--,∵2k =-,1b =-,∴一次函数21y x =--的图象经过第二、三、四象限,故以二元一次方程21x y +=-的解为坐标的点组成的图象画在坐标系中可能是选项D .故选:D .【考点说明】此题考查了二元一次方程与一次函数的关系,掌握二元一次方程与一次函数的关系是解题的关键. 12.一次函数y mx n =+与正比例函数y mnx =(m ,n 为常数、且0mn ≠)在同一平面直角坐标系中的图可能是( )A.B.C. D.【答案】C【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【剖析】解:①当mn>0,m,n同号,m,n同正时y=mx+n过第一,二,三象限,同负时过二,三,四象限,y =mnx过原点,一、三象限;②当mn<0时,m,n异号,则y=mx+n过一,三,四象限或一,二,四象限,y=mnx过原点,二、四象限.故选:C.【考点说明】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.13.在平面直角坐标系中,点A(2,m)在直线y=﹣2x+1上,点A关于y轴的对称点B恰好落在直线y =kx+2上,则k的值为()A.2 B.2.5 C.﹣2 D.﹣3【答案】B【分析】由点A的坐标以及点A在直线y=﹣2x+1上,可得出关于m的一元一次方程,解方程可求出m值,即得出点A的坐标,再根据对称的性质找出点B的坐标,由点B的坐标利用待定系数法即可求出k值.【剖析】解:∵点A在直线y=﹣2x+1上,∴m=﹣2×2+1=﹣3,∴点A 的坐标为(2,﹣3).又∵点A 、B 关于y 轴对称,∴点B 的坐标为(﹣2,﹣3),∵点B (﹣2,﹣3)在直线y =kx +2上,∴﹣3=﹣2k +2,解得:k =2.5.故选:B .【考点说明】本题考查了一次函数图象上点的坐标特征以及关于x 、y 轴对称的点的坐标,解题的关键是求出点B 的坐标.14.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2B .0C .-1D .-2 【答案】A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【剖析】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【考点说明】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.15.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .2y =+C .y=4x-12D .3y =-【答案】D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【剖析】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x ≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x ≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (,0),且x= -1≤x ≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x ≤2的解,∴与x 轴的交点不在线段AB 上,∵3y -交x 轴于点A 0),且-1≤x ≤2的解, ∴与x 轴的交点在线段AB 上,故选D .【考点说明】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.16.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .【答案】D逐一分析各个选项的k 、b 的符号,结合已知条件即可做出判断【剖析】解:A 、由图可知k >0,b >0,且当x=-1时,-k+b <0, k >b ,则|k|=k ,|b|=b ,可得|k|>|b|与题意||||k b <不符;B 、由图可知k >0,b <0,且当x=1时,k+b >0, k >-b ,则|k|=k ,|b|=-b ,可得|k|>|b|与题意||||k b <不符;C 、由图可知当x=-1时,-k+b=0, k=b ,则 |k|=|b|与题意||||k b <不符;D 、由图可知k <0,b >0,且当x=1时,k+b >0, -k <b ,则|k|=-k ,|b|=b ,可得|k|<|b|与题意||||k b <相符; 故选:D【考点说明】此题考查了一次函数图象与k 和b 符号的关系,关键是掌握当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.17.若一次函数2y kx k =+-(k 是常数,0k ≠)的图象经过点P ,且函数y 的值随自变量x 的增大而减小,则点P 的坐标可以是( )A .(3,2)B .(3,3)C .(1,3)-D .(1,1)- 【答案】C【分析】先根据增减性判断k 的取值范围,再分别把各个点代入,将解得的k 与取值范围对照即可.【剖析】解:∵一次函数2y kx k =+-(k 是常数,0k ≠)的图象,函数y 的值随自变量x 的增大而减小, ∴0k <,当一次函数2y kx k =+-经过(3,2)时,232k k =+-,解得k=0,与k 的取值范围不符,故A 选项不符合题意;当一次函数2y kx k =+-经过(3,3)时,332k k =+-,解得12k =,与k 的取值范围不符,故B 选项不符合题意;当一次函数2y kx k =+-经过(-1,3)时,32k k =-+-,解得12k =-,与k 的取值范围符合,故C 选项符合题意;当一次函数2y kx k =+-经过(1,1)-时,12k k =-+-,解得12k =,与k 的取值范围不符,故D 选项不故选:C .【考点说明】本题考查一次函数的性质.对于一次函数,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.18.已知点()12,y -,()20,y ,()34,y 是直线5y x b =-+上的三个点,则1y ,2y ,3y 的大小关系是( ). A .123y y y >>B .123y y y <<C .132y y y >>D .132y y y <<【答案】A【分析】结合题意,根据一次函数图像的性质分析,即可得到答案.【剖析】∵直线5y x b =-+上,y 随着x 的增加而减小,且204-<<∴123y y y >>故选:A .【考点说明】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.19.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .。

八年级下册数学一次函数提高习题(有难度)

八年级下册数学一次函数提高习题(有难度)

八年级下册数学一次函数提高习题(有难度)1、已知一次函数y=(m+4)x+m+2的图象不过第二象限,则m为多少?2、若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b为多少?3、在同一直角坐标系内,直线y=2x+1和直线y=kx-3的交点为(2,5),则k为多少?4、当m满足什么条件时,一次函数y=mx-2的图象过点(3,-4)?5、函数y=(2x/3)与直线y=2x/3-5都经过点(-2,5),且与y 轴交于负半轴,求x的取值范围。

6、一个长120m,宽100m的矩形场地要扩建成一个正方形场地,设长增加xm,宽增加ym,则y与x的函数关系是什么?自变量的取值范围是多少?且y是x的函数。

7、如图1是函数y=-|x+5|的图象,求:(1)自变量x的取值范围;(2)当x取-5时,y的最小值为多少;(3)在(1)中x的取值范围内,y随x的增大而?8、已知函数y=(k-1)x+k2-1,当k=0时,它是一次函数,当k=2时,它是正比例函数.9、已知一次函数y=kx+b的图象经过点(-2,5),且它与y 轴的交点和直线y=-x+3与y轴的交点关于x轴对称,求这个一次函数的解析式。

10、一次函数y=kx+b的图象过点(m,1)和(1,m)两点,且m>1,则k为多少?b的取值范围是什么?11、一次函数y=kx+b-1的图象如图2,则3b与2k的大小关系是什么?当b=1时,y=kx+b-1是正比例函数。

12、当b为多少时,直线y=2x+b与直线y=3x-4的交点在x轴上。

13、已知直线y=4x-2与直线y=3m-x的交点在第三象限内,求m的取值范围。

14、要使y=(m-2)x^(n-1)+n是关于x的一次函数,n,m应满足什么条件?选择题:1、图3中,表示一次函数y=mx+n与正比例函数y=mx(m、n是常数,且m≠0,n<0)的图象的是()。

A。

A。

B。

B。

C。

C。

D。

D2、直线y=kx+b经过一、二、四象限,则直线y=bx-k的图象只能是图4中的()。

八年级数学一次函数提高题(含答案)

八年级数学一次函数提高题(含答案)

一次函数一、选择题:1.直线y =3x +b 与坐标轴围成的三角形面积为6,求与y 轴的交点坐标 ( )A 、(0,2)B 、(0,-2) (0,2)C 、(0,6)D 、(0,6)、(0,-6)2.已知一次函数y =kx +b ,当x =0时,y <0;,当y =0时,x >0,那么下列结论正确的是( ) A 、k >0,b >0 B 、k >0,b <0 C 、k <0,b >0 D 、k <0,b <03.某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b<a ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )。

4.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )个。

(A )1个 (B )2个 (C )3个 (D )4个5.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A 、k<31B 、31 < k <1 C 、k>1 D 、k>1或k<31 6.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p,0),交y 轴于(0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )A. 0B.1C.2D.无数7.当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是( )A 、04<<-aB 、20<<aC 、24<<-a 且0≠aD 、24<<-a8.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整数时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个二、填空题:1.某市市内电话费y (元)与通话时间t (分钟)之间的函数关系图象如图所示,则通话7分钟需付电话费 元。

八年级数学下《一次函数》综合提高题及答案

八年级数学下《一次函数》综合提高题及答案

八年级数学下《一次函数》综合提高题及答案1.某蓄水池横断面示意图如下,分为深水区和浅水区。

如果以固定的水流量(单位时间注水的体积)向蓄水池中注水,水深h与时间t之间的关系大致如下图所示:[插入示意图]2.一次函数y=-2x+1的图象不经过第二象限。

3.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系为a>b。

4.下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是[插入图像]。

5.已知一次函数y=kx+b中y随x的增大而减小,且kb<0,则直线y=kx+b的图象经过第一三四象限。

6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则向上平移6个单位。

7.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有6个。

8.当直线y=x+2上的点在直线y=3x-2上相应点的上方时,则x<2.9.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是x>(1-b)/k。

10.A、B两点在一次函数图象上的位置如图,两点的坐标分别为A(x+a,y+b),B(x,y),则结论a<0成立。

11.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为x≥3.12.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的整数解为x≤-5.13.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是m>1.22.已知函数 $y=(m-5)x^{m-4}-4m-4+m-2$,若它是一次函数,则 $m=5$;$y$ 随 $x$ 的增大而增大。

23.已知一次函数 $y=(k+3)x+2k-10$,$y$ 随 $x$ 的增大而增大,且图像不经过第二象限,则 $k>-3$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年八年级数学下册一次函数综合复习题时间注水的体积)注水,下面图中能大致表示水的深度h和时间t之间关系的图象是( )2.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( )A . a >bB . a=bC . a <bD . 以上都不对4.下图中表示一次函数y=mx+n 与正比例函数y=mnx(m ,n 是常数)图像的是( ).5.已知一次函数y=kx +b 中y 随x 的增大而减小,且kb <0,则直线y=kx+b 的图象经过( )A.第一二三象限B.第一三四象限C.第一二四象限D.第二三四象限6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则下列说法正确的是( )A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位7.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个8.当直线y=x+2•上的点在直线y=3x-2上相应点的上方时,则( )A. x <0B.x <2C.x >0D.x >29.如图,一次函数y=kx +b 的图象与y 轴交于点(0,1),则关于x 的不等式kx +b >1的解集是( )A .x >0B .x <0C .x >1D .x <110.A ,B 两点在一次函数图象上的位置如图,两点的坐标分别为A(x +a ,y +b),B(x ,y),下列结论正确的是( )A.a >0B.a <0C.B=0D.ab <011.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A.23≥xB.x ≤3C.23≤x D.x ≥312.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n >0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣313.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<414.在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k 的值不可能是()A.5B.-5C.-2D.315.如图,在平面直角坐标系中,直线y=23x-23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.4 316.某仓库调拨一批物资,调进物资共用8小时.掉进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(小时)之间的函数关系如图所示,则这批物资从开始调进到全部调出所需要的时间是( )A.8.4小时B.8.6小时C.8.8小时D.9小时17.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,若∠a=750,则b 的值为( )A.3B.5C.335D.55318.如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B 停止.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A.1.2cmB.1.5cmC.1.8cmD.2cm19.如图,已知直线x,过点A (0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A.(0,64)B.(0,128)C.(0,256)D.(0,512)20.如图,在平面直角坐标系中,直线l:y=33x+1交x 轴于点A,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 5B 6A 6的周长是( )A .243B .483C .963D .192321.函数1+=x x y 中的自变量x 的取值范围是 22.已知函数2)5(442-+-=--m x m y m m 若它是一次函数,则m= ;y 随x 的增大而 .23.已知一次函数y=(k+3)x+2k-10,y 随x 的增大而增大,且图象不经过第二象限,则k 的取值范围为 .24.已知A(x 1,y 1),B(x 2,y 2)是一次函数y=kx+3(k<0)图象上的两个不同的点,若t=(x 1-x 2)(y 1-y 2), 则t 0.25.已知直线y=kx -6与两坐标轴所围成的三角形面积等于12,则直线的表达式为26.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 .27.如图,点A 的坐标为(-2,0),点B 在直线y =x -4上运动,当线段AB 最短时,点B 的坐标是___________。

28.直线y=kx+b (k >0)与y=mx+n (m <0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b ﹣n 等于 .29.如图,经过点B (-2,0)的直线y kx b =+与直线y 4x 2=+相交于点A (-1,-2),则不等式4x 2<kx b<0++的解集为 .30.一次函数y=kx+b ,当1≤x ≤4时,3≤y ≤6,则b 的值是 .31.过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是 .32.已知两个一次函数31+=x y ,122+-=x y .若无论x 取何值,y 总取y 1,y 2中的最小值,则y 的最大值为 .33.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 m ,先到终点的人原地休息.已知甲先出发2 s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是34.已知直线212)1(++++-=n x n n y (n 为正整数)与坐标轴围成的三角形的面积为S n , 则S 1+S 2+S 3+…+S 2016=____________.35.已知y-2与2x+3成正比例,当x=1时,y=12,求y 与x 的函数关系式.36.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x 的取值范围.37.某花农要将规格相同的800件水仙花运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的3倍,各地的运费如下表所示:(1)设运往A 地的水仙花x (件),总运费为y (元),试写出y 与x 的函数关系式;(2)若总运费不超过12000元,最多可运往A 地的水仙花多少件?38.某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?39.已知小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y (米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB 所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.40.小明用的练习本可在甲、乙两个商店内买到.已知两个商店的标价都是每个练习本1元.甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)分别写出甲乙两个商店中,收款y(元)与购买本数x(本)之间的函数关系式,并写出它们的取值范围;(2)小明如何选择合适的商店去购买练习本?请根据所学的知识给他建议.41.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?42.1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m 处出发,以0.5 m/min的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(1(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(3)当30≤x≤50时,两个气球所在的位置的海拔最多相差多少米?43.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇.44.某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。

相关文档
最新文档