概率 2 条件概率与相互独立事件

合集下载

概率与统计中的条件概率与独立事件

概率与统计中的条件概率与独立事件

概率与统计中的条件概率与独立事件概率与统计是数学的一个重要分支,探究了随机事件的规律与规定。

条件概率与独立事件是概率与统计中两个基本概念,它们在实际问题的解决中具有重要的应用价值。

一、条件概率条件概率是指在已知事件A发生的条件下,事件B发生的概率。

用数学符号表示为P(B|A),读作“在A发生的条件下B发生的概率”。

条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示A和B同时发生的概率,而P(A)表示A发生的概率。

条件概率的计算方法可以通过实际问题进行理解。

例如,假设有一批产品,其中20%是次品。

现在从中随机挑出一个产品,如果已知该产品是次品,那么该产品是A事件,次品的概率是B事件,我们想要计算条件概率P(B|A),即在已知产品是次品的条件下,该产品为次品的概率。

根据条件概率的计算公式,我们可以得到:P(B|A) = P(A∩B) / P(A) = (次品的产品数)/ (总产品数)通过计算,我们可以得到具体的条件概率值。

二、独立事件独立事件是指两个事件A和B相互之间没有影响的事件。

即事件A 的发生与否不会影响事件B的发生概率,事件B的发生与否也不会影响事件A的发生概率。

用数学符号表示为P(A) = P(A|B),P(B) =P(B|A)。

对于独立事件来说,它们的联合概率等于各自的概率的乘积。

即:P(A∩B) = P(A) * P(B)例如,假设有一批产品,其中80%是合格品。

现从中随机取一件产品,不放回地取,再取一件产品。

如果两次取出的产品都是合格品,那么第一次取出的产品为事件A,第二次取出的产品为事件B。

我们希望计算P(A∩B),即两次取出的产品都为合格品的概率。

由于两次取出产品的过程是不放回的,所以第一次取出产品是合格品的概率是80%,第二次取出产品是合格品的概率也是80%。

根据独立事件的概念,我们可以得到:P(A∩B) = P(A) * P(B) = 0.8 * 0.8 = 0.64通过计算,我们得到两次取出产品都是合格品的概率为0.64。

概率的条件与独立总结

概率的条件与独立总结

概率的条件与独立总结概率论是数学的一个重要分支,主要研究随机事件的发生规律以及计算其可能性大小。

在概率论中,条件概率与独立事件是两个基本的概念。

本文将从这两个角度出发,对条件概率与独立事件进行总结和讨论。

一、条件概率的概念与计算方法条件概率是指在给定某一条件下,事件发生的概率。

设A、B为两个事件,且P(B)≠0 ,则在事件B发生的条件下,事件A发生的概率记为P(A|B)。

计算条件概率的方法如下:P(A|B) = P(AB) / P(B)其中P(AB)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

二、条件概率的性质条件概率具有一些重要的性质。

首先,当两事件A、B相互独立时,条件概率P(A|B)与事件A的概率P(A)是相等的,即P(A|B) = P(A)。

其次,条件概率满足乘法公式,即 P(AB) = P(A|B) * P(B)。

最后,根据全概率公式,我们可以得到P(A) = P(AB1) + P(AB2) + ... + P(ABn),其中B1、B2、...、Bn为一系列互不相容的事件,并且它们的并集为全集。

三、独立事件的概念与判定方法独立事件是指两个事件相互之间不受对方发生与否的影响。

设A、B为两个事件,如果P(A|B) = P(A),则事件A与事件B相互独立。

同时,根据乘法公式可以得到P(AB) = P(A) * P(B)。

根据这个公式,我们可以判断两个事件是否独立。

四、条件概率与独立事件的关系条件概率与独立事件之间有密切的关系。

如果事件A与事件B是独立的,那么条件概率P(A|B)与事件A的概率P(A)相等。

反过来,如果条件概率P(A|B)与事件A的概率P(A)相等,那么可以推导出事件A与事件B是独立的。

五、实际应用与案例分析概率论中的条件概率与独立事件在实际生活中有广泛的应用。

例如,考虑一个学生复习某门课程的情况。

如果我们已知该学生复习了课本,并且能够独立地完成每个练习题的概率为0.8,那么考试中该学生能够得到好成绩的概率是多少?根据条件概率的定义,我们可以计算出该概率为 P(好成绩|复习) = 0.8 * P(好成绩)。

概率的计算方法条件概率事件独立性的计算方法

概率的计算方法条件概率事件独立性的计算方法

概率的计算方法条件概率事件独立性的计算方法概率的计算方法——条件概率和事件独立性的计算方法概率是数学中的一个重要概念,用于描述事件发生的可能性。

在概率的计算过程中,条件概率和事件独立性是两个重要的概念。

本文将介绍概率中的条件概率和事件独立性的计算方法。

一、条件概率的计算方法条件概率是指在已知某个条件下,事件发生的概率。

表示为P(A|B),读作事件B发生的条件下事件A发生的概率。

计算条件概率的方法:1. 根据条件概率的定义,可以得出P(A|B) = P(AB) / P(B)。

即事件A和事件B同时发生的概率除以事件B发生的概率。

2. 利用频率法进行计算。

通过实验或观察,记录事件A在事件B发生的条件下出现的频次,再除以事件B发生的频次。

举例说明:假设有一个扑克牌的标准牌组,从中随机抽取一张牌。

事件A表示抽到一张红心牌,事件B表示抽到一张大于等于10的牌。

求在事件B发生的条件下,事件A发生的概率。

根据条件概率的计算方法,我们可以得到:P(A|B) = P(AB) / P(B)首先,我们需要计算事件A和事件B同时发生的概率P(AB)。

在扑克牌标准牌组中,红心牌有13张,大于等于10的牌有16张。

其中,大于等于10的红心牌有3张。

因此,P(AB) = 3 / 52。

接下来,计算事件B发生的概率P(B)。

在扑克牌标准牌组中,大于等于10的牌有16张,总共的牌数是52张,所以P(B) = 16 / 52。

将以上结果代入条件概率的计算公式,我们可以得到:P(A|B) = (3 / 52) / (16 / 52) = 3 / 16所以,在事件B发生的条件下,事件A发生的概率为3/16。

二、事件独立性的计算方法事件独立性是指事件A和事件B的发生与否互相独立,即事件A 的发生与否不受事件B的影响。

计算事件独立性的方法:1. 如果P(A|B) = P(A),则事件A和事件B互相独立。

2. 如果P(A|B) ≠ P(A),则事件A和事件B不独立。

高中数学第二章概率2.2条件概率与事件的独立性2.2.1-2.2.2条件概率与事件的独立性课堂导学案

高中数学第二章概率2.2条件概率与事件的独立性2.2.1-2.2.2条件概率与事件的独立性课堂导学案

-2.2.2 条件概率与事件独立性课堂导学三点剖析一、条件概率【例1】一个家庭中有两个小孩,假定生男、生女是等可能,这个家庭有一个是女孩,问这时另一个小孩是男孩概率是多少?解析:一个家庭两个小孩子只有4种可能:{两个都是男孩子},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},由题目假定可知这4个根本领件发生是等可能.根据题意,设根本领件空间为Ω,A=“其中一个是女孩〞,B=“其中一个是男孩〞,那么Ω={〔男,男〕,〔男,女〕,〔女,男〕,〔女,女〕}, A={〔男,女〕,〔女,男〕,〔女,女〕},B={〔男,男〕,〔男,女〕,〔女,男〕},AB={〔男,女〕,〔女,男〕},问题是求在事件A 发生情况下,事件B 发生概率,即求P 〔B|A 〕.由上面分析可知P 〔A 〕=43,P 〔AB 〕=42. 由公式②可得P 〔B|A 〕=, 因此所求条件概率为32. 温馨提示关键是弄清楚P 〔A·B〕及P 〔A 〕.二、事件独立性应用【例2】甲、乙两名篮球运发动分别进展一次投篮,如果两人投中概率都是0.6,计算: 〔1〕两人都投中概率;〔2〕其中恰有一人投中概率;〔3〕至少有一人投中概率.思路分析:甲、乙两人各投篮一次,甲〔或乙〕是否投中,对乙〔或甲〕投中概率是没有影响,也就是说,“甲投篮一次,投中〞与“乙投篮一次,投中〞是相互独立事件.因此,可以求出这两个事件同时发生概率.同理可以分别求出,甲投中与乙未投中,甲未投中与乙投中,甲未投中与乙未投中同时发生概率,从而可以得到所求各个事件概率.解:〔1〕设A=“甲投篮一次,投中〞,B=“乙投篮一次,投中〞,那么AB=“两人各投篮一次,都投中〞.由题意知,事件A 与B 相互独立,根据公式③所求概率为 P 〔AB 〕=P 〔A 〕·P(B)=0.6×0.6=0.36.(2)事件“两人各投篮一次,恰好有一人投中〞包括两种情况:一种是甲投中、乙未投中〔事件A∩B 发生〕,另一种是甲未投中、乙投中〔事件A∩B 发生〕。

事件的相互独立性、条件概率与全概率公式-高考数学复习

事件的相互独立性、条件概率与全概率公式-高考数学复习
“两次取出的球的数字之和是7”,则(

A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事

件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)

概率与统计中的独立事件与条件概率

概率与统计中的独立事件与条件概率

概率与统计中的独立事件与条件概率概率与统计是一门研究事物发生概率和规律的学科,独立事件和条件概率是其中的两个重要概念。

独立事件指的是两个或多个事件之间互不影响,而条件概率则是在已知某个事件发生的前提下,另一个事件发生的概率。

以下将对概率与统计中的独立事件和条件概率进行详细阐述。

一、独立事件独立事件是指两个或多个事件之间没有相互影响的情况。

在概率与统计中,我们用P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。

如果两个事件A和B相互独立,那么事件A和B同时发生的概率就等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) × P(B)。

例如,假设有一枚公平的硬币,掷硬币的结果有两个可能性,正面和反面,分别记为事件A和事件B。

如果事件A表示掷硬币结果为正面的概率,事件B表示掷硬币结果为反面的概率,那么根据独立事件的定义,我们可以得到P(A∩B) = P(A) × P(B) = 1/2 × 1/2 = 1/4,即事件A和事件B同时发生的概率为1/4。

二、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率用P(A|B)表示,读作“在事件B发生的条件下,事件A发生的概率”。

条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。

举例来说,假设有一批产品,其中10%的产品有缺陷,现在随机抽取一件产品,事件A表示这件产品有缺陷,事件B表示这件产品是某个特定品牌的产品。

如果已知这件产品是该品牌的产品,我们想要知道它有缺陷的概率,即求解P(A|B)。

根据条件概率的定义,我们可以通过计算P(A∩B)/P(B)来得到答案。

假设该品牌的产品有总体占比为20%,即P(B) = 0.2。

又已知有缺陷的产品占总体的10%,即P(A∩B) = 0.1,将这些数据代入条件概率的计算公式,我们可以得到P(A|B) = P(A∩B)/P(B) = 0.1/0.2 = 0.5。

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率概率与统计是数学中的一个重要分支,用于研究随机现象和不确定性问题。

在概率与统计的基础概念中,事件的独立性与条件概率是两个核心概念。

本文将对这两个概念进行详细解释,并探讨它们在实际问题中的应用。

一、事件的独立性在概率与统计中,事件的独立性是指两个或多个事件之间的关联程度。

如果两个事件A和B相互独立,意味着事件A的发生与否不会对事件B的发生概率产生影响,反之亦然。

换句话说,事件A和B的发生概率是相互独立的,它们之间不存在任何关联。

为了判断两个事件A和B是否相互独立,可以通过下列公式进行计算:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。

如果上式成立,则事件A和B相互独立;如果不成立,则事件A和B不相互独立。

事件的独立性在实际问题中具有广泛的应用。

例如,假设有一批产品,每个产品的质量合格的概率为0.9。

如果从该批产品中随机选取两个产品,事件A表示第一个产品质量合格,事件B表示第二个产品质量合格。

根据事件的独立性,我们可以通过计算概率来判断同时选中两个质量合格产品的概率。

二、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率通常用P(B|A)表示,其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。

条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A发生的概率。

通过计算条件概率,我们可以得出在某种条件下发生某个事件的概率。

条件概率在实际问题中非常有用。

例如,假设有一个班级,其中40%的学生会参加音乐比赛,30%的学生参加体育比赛。

如果我们知道某个学生参加了音乐比赛,那么他参加体育比赛的概率是多少?根据条件概率的计算公式,我们可以得出这个概率。

三、事件独立性与条件概率的关系事件的独立性与条件概率密切相关。

事件的相互独立性与条件概率

事件的相互独立性与条件概率

TANJIUHEXINTIXING
探究核心题型
题型一 条件概率
例1 (1)某公司为方便员工停车,租了6个停车位,编号如图所示.公司规
定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A
为“员工小王的车停在编号为奇数的车位上”,事件B为“员工小李的
车停在编号为偶数的车位上”,则P(A|B)等于
思维升华
求相互独立事件同时发生的概率的方法 (1)相互独立事件同时发生的概率等于他们各自发生的概率 之积. (2)当正面计算较复杂或难以入手时,可从其对立事件入手 计算.
跟踪训练2 溺水、触电等与学生安全有关的问题越来越受到社会的关注
和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定
条件下,第二次拿到红球的概率为
√ 3
1
3
2
A.10 B.3 C.8 D.9
设A={甲第一次拿到白球}, B={甲第二次拿到红球}, 则 P(AB)=AA12A21013=115,P(A)=CC11120=15, 所以 P(B|A)=PPAAB=13.
思维升华
求条件概率的常用方法 (1)定义法:P(B|A)=PPAAB . (2)样本点法:P(B|A)=nAB .
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( × ) (2)若事件A,B相互独立,则P(B|A)=P(B).( √ )
(3)抛掷2枚质地均匀的硬币,“第一枚为正面”为事件A,“第2枚为正
面”为事件B,则A,B相互独立.( √ )
第十章
考试要求
1.了解两个事件相互独立的含义. 2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.

概率与统计中的独立事件和条件概率

概率与统计中的独立事件和条件概率

概率与统计中的独立事件和条件概率概率与统计是现代数学的一个重要分支,主要研究事件发生的可能性和规律性。

其中,独立事件和条件概率是概率与统计中的两个基本概念,它们在实际应用中具有重要的意义。

本文将对独立事件和条件概率进行详细介绍和解释。

一、独立事件独立事件指的是两个或多个事件之间相互不影响的情况。

具体来说,若事件A和事件B的发生与对方无关,即事件A的发生概率不受事件B的发生与否的影响,事件B的发生概率也不受事件A的发生与否的影响,那么事件A和事件B就是独立事件。

独立事件的特性有两个重要的方面:互不影响和乘法法则。

互不影响指的是独立事件之间的发生与否不会相互影响。

比如,用点数来表示掷骰子的结果,事件A表示掷得点数为偶数,事件B表示掷得点数为奇数。

显然,事件A的发生与否与事件B的发生与否是互不影响的。

乘法法则是独立事件的核心原则。

根据乘法法则,如果事件A 和事件B是独立事件,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

数学上可以表示为P(A∩B) = P(A) × P(B)。

二、条件概率条件概率是指在某个条件下的事件发生的概率。

具体来说,对于事件A和事件B,当已知事件B发生的条件下,事件A发生的概率即为条件概率。

条件概率的计算需要用到贝叶斯定理。

根据贝叶斯定理,对于事件A和事件B,P(A|B)表示在事件B已经发生的条件下,事件A发生的概率。

具体计算方式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的应用广泛,例如在医学诊断中,根据某些症状判断患者是否患有某种疾病;在信息检索中,根据用户的查询条件给出相关的搜索结果等。

条件概率可以帮助我们更准确地做出判断和预测。

三、独立事件和条件概率的关系独立事件和条件概率之间存在一定的关系。

当事件A和事件B是独立事件时,条件概率P(A|B)等于事件A的概率P(A)。

相互独立事件的条件概率公式

相互独立事件的条件概率公式

相互独立事件的条件概率公式1. 理解相互独立事件说到相互独立事件,咱们先得从“独立”这个词说起。

就像在生活中,我们的朋友和我们自己的选择,如果他们之间没有关系,那就是独立的。

比如,今天你决定去吃火锅,而你的朋友决定去看电影,这两个选择就毫不相干。

相互独立事件就是这么回事,简单明了,没什么复杂的。

它们之间就像水和油,永远不会交融在一起。

那么,条件概率又是什么呢?想象一下,你正打算参加一个聚会,结果突然听说下雨了。

这时候你可能会想:“哎,雨会不会影响我去聚会的决定呢?”这就是条件概率在作祟了,它帮我们判断在某种条件下事情发生的可能性。

对于相互独立的事件来说,如果一个事件发生了,另一个事件的发生与否却不会受到任何影响,就像你吃火锅,跟你朋友去看电影的决定毫无关系。

2. 条件概率公式那么,我们再深入一点,来看看条件概率的公式。

公式是这样写的:P(A|B) = P(A),意思是如果事件B发生了,事件A的概率仍然是P(A)。

听起来有点复杂,不过别担心,让我给你打个比方。

想象一下你在超市,走到零食区,突然看到一袋薯片。

无论你前面是不是遇到了什么事情(比如看到别人买了),你自己想吃这袋薯片的决定依然不受影响,还是那个味儿。

再说说应用,想象你在参加一个抽奖活动,抽到一等奖的概率是0.1,抽到二等奖的概率也是0.1。

如果这两个事件是独立的,那你想知道抽到一等奖的条件下抽到二等奖的概率,其实就是0.1,跟抽到一等奖没有任何关系。

真的是“老夫聊发少年狂”,你得意洋洋,不受任何干扰,继续享受抽奖的乐趣。

2.1 举个例子说到这里,咱们可以用一个更生动的例子来说明。

假设你有一个朋友,名叫小李,他喜欢吃榴莲,而你喜欢吃冰淇淋。

现在有一天,你们决定去一家新开的餐厅,想看看能不能找到一个各取所需的美味。

这时候,你可以把“小李吃榴莲”和“你吃冰淇淋”看成两个独立事件。

无论小李是否满意他的榴莲,你的冰淇淋都不会受到影响,二者之间的关系就像天上掉下来的馅饼,完全不搭界。

条件概率与独立事件

条件概率与独立事件

条件概率与独立事件条件概率和独立事件是概率论中的重要概念,它们在许多实际问题的建模和分析中发挥着重要的作用。

本文将详细介绍条件概率和独立事件,探讨它们的定义、性质和应用。

一、条件概率的定义和性质条件概率是指在一个事件发生的条件下,另一个事件发生的概率。

设A、B为两个事件,且P(B)>0,则事件A在事件B发生的条件下发生的概率记作P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。

针对条件概率,有以下两个重要性质:1. 乘法公式:对于两个事件A、B,有P(A∩B)=P(B)×P(A|B)。

这个公式可以从条件概率的定义中推导出来,对于事件A同时发生且B发生的概率,等于B先发生的概率乘以在B发生的条件下A发生的概率。

2. 全概率公式:对于一组互斥事件B1、B2、...、Bn,它们构成了一个样本空间的划分,即B1∪B2∪...∪Bn=Ω(Ω表示样本空间)。

则对于事件A,有P(A)=P(A|B1)×P(B1)+P(A|B2)×P(B2)+...+P(A|Bn)×P(Bn)。

全概率公式的作用在于利用条件概率进行事件概率的计算。

二、独立事件的定义和性质独立事件是指两个事件发生与否互不影响的事件。

设A、B为两个事件,如果P(A|B)=P(A),则称事件A与事件B相互独立。

同理,如果P(B|A)=P(B),也可以认为事件A与事件B相互独立。

独立事件有以下重要性质:1. 事件的独立性是一个对称的概念,即A与B独立等价于B与A独立。

2. 如果事件A与事件B相互独立,那么事件A与事件B的补集A'与B的补集B'也相互独立。

3. 如果事件A与事件B相互独立,那么事件A与B的并集A∪B的概率等于事件A的概率与事件B的概率之和减去事件A与B的交集的概率,即P(A∪B)=P(A)+P(B)-P(A∩B)。

三、条件概率和独立事件的应用条件概率和独立事件在实际问题中有着广泛的应用,例如医学诊断、网络安全、金融风险评估等领域。

高三第一轮复习条件概率与事件的相互独立性

高三第一轮复习条件概率与事件的相互独立性

条件概率与事件的相互独立性【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳 1.条件概率(1)一般地,若有两个事件A 和B ,在已知事件A 发生的条件下考虑事件B 发生的概率,称此概率为A 已发生的条件下B 的 ,记作 .(2)设A ,B 为两个事件,且P(A)>0,则事件A 已发生的条件下,事件B 发生的条件概率是P(B|A)= .(3)条件概率的性质: ①P(B|A)∈ ;②如果B 和C 是两个互斥事件,则P(B ∪C|A)=P(B|A)+P(C|A). 2.事件的相互独立性(1)设A ,B 为两个事件,如果P(AB)= ,则称事件A ,B 独立.(2)设A ,B 为两个事件,A 与B 相互独立,那么A 与B ,A 与B 、A 与B 也都 . (3)两个事件的独立性可以推广到n(n>2)个事件的独立性,且若事件A 1,A 2,…,A n 相互独立,则这n 个事件同时发生的概率P(A 1A 2…A n )= .3.独立重复试验(1)一般地,在 下重复做的n 次试验称为n 次独立重复试验.(2)在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)= . 方法规律总结1.计算条件概率时,可按如下步骤进行:第一步,判断是否为条件概率,若题目中出现“已知”“在……前提下”等字眼,一般为条件概率.题目中若没有出现上述字眼,但已知事件的出现影响所求事件的概率时,也需注意是否为条件概率.第二步,计算概率,这里有两种思路. 思路一:缩小样本空间计算条件概率.如求P(A|B),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P(A|B)=n ABn B 计算.思路二:直接利用条件概率的计算公式计算条件概率,即先分别求出P(AB),P(B),再利用公式P(A|B)=P ABP B 计算.2.相互独立事件的概率计算要注意在应用相互独立事件的概率乘法公式时,要认真审题,注意关键词“至少有一个发生”、“至多有一个发生”、“恰有一个发生”的意义,正确地将其转化为互斥事件进行求解;正面计算较繁或难于入手时,可以从其对立事件入手进行计算.3.在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)=C k n p k(1-p)n -k,k =0,1,2,…,n.在利用该公式时一定要审清公式中的n ,k 各是多少.【指点迷津】【类型一】条件概率【例1】:(2014·新课标卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【解析】:设“某天的空气质量为优良”为事件A ,“后一天空气质量为优良”为事件B ,则P(A)=0.75,P(AB)=0.6, 所以P(B|A)=P AB P A =0.60.75=0.8.答案:A【例2】:甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%.则(1)乙地为雨天时,甲地也为雨天的概率是 ; (2)甲地为雨天时,乙地也为雨天的概率是 .【解析】:设A 表示“甲地为雨天”,B 表示“乙地为雨天”,根据题意P(A)=0.20,P(B)=0.18,P(AB)=0.12.(1)乙地为雨天时,甲地也为雨天的概率是 P(A|B)=P AB P B =0.120.18=23≈0.67.(2)甲地为雨天时,乙地也为雨天的概率是 P(B|A)=P AB P A =0.120.20=0.6.答案: (1) 0.67 (2) 0.6【例3】:如右图△ABC 和△DEF 是同一圆的内接正三角形,且BC ∥EF .将一颗豆子随机地扔到该圆内,用M 表示事件“豆子落在△ABC 内”,N 表示事件“豆子落在△DEF 内”,则P (N |M )=( )A.334π B.32πC.13D.23【解析】:如下图作三条辅助线,根据已知条件得这些小三角形都全等,△ABC 包含9个小三角形,满足事件MN 的有6个小三角形,故P (N |M )=69=23.答案:23.【类型二】相互独立事件的概率【例1】:(2014·安徽卷改编)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲恰好4局赢得比赛的概率;(2)求甲在4局以内(含4局)赢得比赛的概率.【解析】:用A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P(A k )=23,P(B k )=13,k =1,2,3,4,5.(1)用A 表示“甲恰好4局赢得比赛”,则A =A 1B 2A 3A 4.根据事件的相互独立性得P(A)=P(A 1B 2A 3A 4)=P(A 1)P(B 2)P(A 3)P(A 4)=23×13×23×23=881.(2)用B 表示“甲在4局以内(含4局)赢得比赛”,则B =A 1A 2+B 1A 2A 3+A 1B 2A 3A 4.所以P(B)=P(A 1A 2)+P(B 1A 2A 3)+P(A 1B 2A 3A 4)=P(A 1)P(A 2)+P(B 1)P(A 2)P(A 3) +P(A 1)P(B 2)·P(A 3)P(A 4)=23×23+13×23×23+23×13×23×23=5681. 答案:(1) 881. (2) 5681.【例2】:某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图9-61-3(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 【解析】:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件“A 地区用户的满意度等级为非常满意”; C B1表示事件“B 地区用户的满意度等级为不满意”; C B2表示事件“B 地区用户的满意度等级为满意”.则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C =C B1C A1∪C B2C A2, 所以P (C )=P (C B1C A1∪C B2C A2) =P (C B1C A1)+P (C B2C A2) =P (C B1)P (C A1)+P (C B2)P (C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P (C A1)=1620,P (C A2)=420,P (C B1)=1020,P (C B2)=820, 所以P (C )=1020×1620+820×420=0.48. 答案:(1)通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2) 0.48.【类型三】n 次独立重复实验的概率【例1】:一同学投篮每次命中的概率是12,该同学连续投篮5次,每次投篮相互独立.(1)求连续命中4次的概率; (2)求命中4次的概率【解析】:(1)设“连续命中4次”的事件为A ,则A 包含“第1至第4次命中第5次没有命中”和“第1次没有命中但第2至第5次命中”两种情况,所以P(A)=(12)4·(1-12)+(1-12)·(12)4=2×(12)5=(12)4=116.(2)5次独立重复试验,恰好命中4次的概率为P(X =4), 所以P(X =4)=C 45(12)4·(1-12)=5×(12)5=532.答案:(1) 116. (2) 532.【例2】:某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.求顾客抽奖1次能获奖的概率【解析】:记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,21A A 与21A A 互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=21A A +21A A ,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (21A A +21A A )=P (21A A )+P (21A A )=P (A 1)P (2A )+P (1A )P (A 2)=P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2)=25×1-12+1-25×12=12.故所求概率P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.答案:710.【同步训练】【一级目标】基础巩固组一.选择题1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=( )A.18B.14C.25D.12【解析】:P(AB)=1C 25=110,P(A)=1+C 23C 25=410,由条件概率公式得P(B|A)=P (AB )P (A )=110410=14.答案:B.2.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,则取出的两球都是红球的概率为( )A.13B.12C.19D.16【解析】:用A ,B 表示分别表示从甲、乙袋子中随机抽取1个球,抽出的球是红球的事件,则P(A)=46,P(B)=16,因为分别从甲、乙两袋中各随机抽取1个球,取出的两球都是红球所对应事件为AB , 所以P(AB)=P(A)·P(B)=46×16=19.答案:C.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B.12 C.712 D.34【解析】:用间接法考虑.事件A ,B 一个都不发生的概率为P(A -B -)=P(A -)·P(B -)=12×C 15C 16=512,所以所求的概率为1-P(A -B -)=1-512=712.答案:C.4.在6次独立重复试验中,每一次试验中成功的概率为12,则恰好成功3次的概率为( )A.316 B.516 C.716 D.58【解析】:P(X =3)=C 36(12)3(12)3=516.答案:B.5.(2015·新课标卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【解析】:根据独立重复试验公式得,该同学通过测试的概率为C 230.62×0.4+0.63=0.648. 答案:A . 二.填空题6.在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为________.【解析】:设“第一次抽到理科题”为事件A ,“第二次抽到理科题”为事件B ,则“第一次和第二次都抽到理科题”就是事件AB .依题意可得P (A )=A 31·A 41A 52=35,P (AB )=A 32A 52=310,所以P (B |A )=P (AB )P (A )=31035=12. 答案:12.7.已知某高三学生在某次数学考试中,A 和B 两道解答题同时做对的概率为13,在A 题做对的情况下,B 题也做对的概率为59,则A 题做对的概率为________.【解析】:设“做对A 题”为事件E ,“做对B 题”为事件F ,根据题意知P (EF )=13,P (F |E )=P (EF )P (E )=59,则P (E )=35,即A 题做对的概率为35. 答案:35.8.将一个半径适当的小球放入如图K61­1所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入甲袋或乙袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入甲袋中的概率为________.图K61­1【解析】:记“小球落入甲袋中”为事件A ,“小球落入乙袋中”为事件B ,则事件A 的对立事件为B .若小球落入乙袋中,则小球必须一直向左或一直向右落下,故P (B )=()123+()123=14,从而P (A )=1-P (B )=1-14=34. 答案:34.三、解答题9.某旅游景点为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12,2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.求甲、乙两人所付租车费用相同的概率; 【解析】:甲、乙所付费用可以为10元、20元、30元.甲、乙两人所付费用都是10元的概率P 1=13×12=16,甲、乙两人所付费用都是20元的概率P 2=12×13=16,甲、乙两人所付费用都是30元的概率为 P 3=1-13-12×1-12-13=136,故甲、乙两人所付费用相等的概率P =P 1+P 2+P 3=1336.答案:1336. 10.有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假设每只灯正常发光的概率为12.若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元。

高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立

高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立

2.2.1 条件概率 2.2.2 事件的独立性1.了解条件概率和两个事件相互独立的概念.2.理解条件概率公式和相互独立事件同时发生的概率公式.3.能利用概率公式解决实际问题.1.条件概率(1)定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“P (B |A )”来表示,读作“A 发生的条件下B 发生的概率”.类似地,事件B 发生的条件下事件A 发生的条件概率记为“P (A |B )”,读作“B 发生的条件下A 发生的概率”.(2)事件的交(或积)由事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D =A ∩B (或D =AB ).(3)条件概率计算公式 一般地,条件概率公式为P (B |A )=P (A ∩B )P (A )(P (A )>0),类似地,P (A |B )=P (A ∩B )P (B )(P (B )>0).2.相互独立事件(1)定义:一般地,事件A 是否发生对事件B 发生的概率没有影响,即P (B |A )=P (B ),则称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.若n 个事件A 1,A 2,…,A n ,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称这n 个事件相互独立.(2)相互独立事件的性质一般地,若事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)相互独立事件同时发生的概率①两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A ∩B )=P (A )×P (B ).②如果事件A 1,A 2,…,A n 相互独立,则这n 个事件都发生的概率,等于每个事件发生的概率的积,即P (A 1∩A 2∩…∩A n )=P (A 1)×P (A 2)×…×P (A n )并且上式中任意多个事件A i 换成其对立事件后,等式仍成立.1.判断(对的打“√”,错的打“×”) (1)若事件A 、B 互斥,则P (B |A )=1.( ) (2)必然事件与任何一个事件相互独立.( )(3)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案:(1)× (2)√ (3)√2.已知P (AB )=310,P (A )=35,则P (B |A )为( )A.950 B.12 C.910D.14答案:B3.甲、乙两人各射击一次,他们各自击中目标的概率都是0.6,则他们都击中目标的概率是( )A .0.6B .0.36C .0.16D .0.84答案:B4.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.答案:0.95求条件概率[学生用书P26]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【解】 设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)从5道题中不放回地依次抽取2道题的事件数为A 25=20. 根据分步乘法计数原理,事件A 的总数为A 13×A 14=12. 故P (A )=1220=35.(2)因为事件A ∩B 的总数为A 23=6. 所以P (A ∩B )=620=310.(3)法一:由(1)、(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率为P (B |A )=P (A ∩B )P (A )=31035=12.法二:因为事件A ∩B 的总数为6,事件A 发生的总数为12,所以P (B |A )=612=12.利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.设10件产品中有4件不合格,从中任意取出2件,那么在所取得的产品中发现有一件不合格品,求另一件也是不合格品的概率.解:设事件A 为“在所取得的产品中发现有一件不合格品”,事件B 为“另一件产品也是不合格品”,则P (A )=C 14C 16C 210=4×6×210×9=815,P (A ∩B )=C 24C 210=215.因此P (B |A )=P (A ∩B )P (A )=14.相互独立事件的判断判断下列各对事件是不是相互相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.【解】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, 所以P (A )=36=12,P (B )=26=13,P (AB )=16,所以P (A ∩B )=P (A )·P (B ), 所以事件A 与B 相互独立.判断两事件的独立性的方法(1)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响. (3)当P (A )>0时,可用P (B |A )=P (B )判断.一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.解:(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件, 由等可能性知概率各为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)}, A ∩B ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (A ∩B )=12.由此可知P (A ∩B )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件, A ∩B 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (A ∩B )=38,显然有P (A ∩B )=38=P (A )P (B )成立.从而事件A 与B 是相互独立的.求相互独立事件的概率甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率; (2)2个人都译不出密码的概率; (3)至多1个人译出密码的概率;【解】 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A 与B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2个人都译出密码”的概率为:P (AB )=P (A )·P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A -B -)=P (A -)·P (B -)=[1-P (A )]×[1-P (B )]=(1-13)×(1-14)=12.(3)“至多1个人译出密码”的对立事件为“2个人都译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.在本例条件下,求:(1)恰有1个人译出密码的概率; (2)至少1个人译出密码的概率.解:(1)“恰有1个人译出密码”可以分为两类,即甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A B -∪A -B )=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =13×(1-14)+(1-13)×14=512. (2)“至少1个人译出密码”的对立事件为“2个人都未译出密码”,所以至少1个人译出密码的概率为:1-P (A -B -)=1-P (A -)P (B -)=1-23×34=12.与相互独立事件有关的概率问题求解策略一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么:A ,B 互斥 A ,B 相互独立P (A +B ) P (A )+P (B )1-P (A -)P (B -)P (AB ) 0P (A )P (B ) P (A -B -)1-[P (A )+P (B )]P (A -)P (B -)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.解:记“甲、乙、丙三人100米跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3),(1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110. (2)三人都不合格的概率:P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=35×14×23=110. (3)恰有两人合格的概率:P 2=P (AB C -)+P (A B -C )+P (A -BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.综合第一问、第二问、第三问可知P 1最大. 所以出现恰有1人合格的概率最大.相互独立事件的综合应用在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众要彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率. (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列.【解】 (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.因为事件A 与B 相互独立,所以观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B -)=P (A )·P (B -)=P (A )·[1-P (B )]=23×25=415.(或P (A B -)=C 12·C 34C 23·C 35=415). (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=C 24C 35=35,因为X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=P (A -B -C -)=13×25×25=475,P (X =1)=P (A B - C -)+P (A -B C -)+P (A -B -C )=23×25×25+13×35×25+13×25×35=2075, P (X =2)=P (A B C -)+P (A -BC )+P (A B -C )=23×35×25+13×35×35+23×25×35=3375, P (X =3)=P (ABC )=23×35×35=1875,所以X 的分布列为X 0 1 2 3 P475207533751875概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A -)=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.解:记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3, 则P (A 1)=12,P (A 2)=34,P (A 3)=34,不发生故障的事件为(A 2∪A 3)A 1,P =P [(A 2∪A 3)A 1]=P (A 2∪A 3)·P (A 1) =[1-P (A 2)·P (A 3)]·P (A 1) =(1-14×14)×12=1532.————————————————————————————————————————————————1.求条件概率的方法(1)利用定义,分别求P (A )和P (A ∩B ),得P (B |A )=P (A ∩B )P (A ).(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (A ∩B )n (A ).2.判定两个事件相互独立的方法(1)定义法:如果A 、B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A 、B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响.3.事件A 、B 相互独立,则P (AB )=P (A )P (B ).注意与事件互斥区别.1.求复杂事件的概率时,先判断事件间的关系,是互斥还是独立,特别对“至多”“至少”等问题,可分成互斥事件求概率,也可用对立事件求概率.2.在解题过程中,要明确事件中的“至少有一个发生”、“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义,已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),那么:A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A -B -;A 、B 恰有一个发生的事件为A B -∪A -B ;A 、B 中至多有一个发生的事件为A B -∪A -B ∪A -B -.1.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C.由P (AB )=P (A )P (B |A )可得P (A )=34.2.甲、乙、丙3人投篮,投进的概率分别是13,25,12,现3人各投篮1次,则3人都没有投进的概率为( )A.115 B.215C.15D.110解析:选C.甲、乙、丙3人投篮相互独立,都不进的概率为⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-25⎝ ⎛⎭⎪⎫1-12=15.3.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16.答案:16[A 基础达标]1.设A 与B 是相互独立事件,则下列事件中不相互独立的是( ) A .A 与B -B.A -与B C.A -与B -D .A 与A -解析:选D.A 、B 、C 选项的两事件相互独立,而A 与A -是对立事件,不是相互独立事件. 2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( )A .0.2B .0.33C .0.5D .0.6解析:选A.A =“数学不及格”,B =“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=0.2,所以数学不及格时,该生语文也不及格的概率为0.2.3.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14 B.15 C.16D.17解析:选C.记“甲站在中间”为事件A ,“乙站在末尾”为事件B ,则n (A )=A 66,n (AB )=A 55,P (B |A )=A 55A 66=16.4.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A -)P (B -)=1-23×12=23.根据互斥事件可知C 正确.5.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y (若指针停在边界上则重新转),x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.116B.18C.316D.14解析:选C.满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1.所以所求事件的概率P =P (x =1,y =4)+P (x =2,y =2)+ P (x =4,y =1)=14×14+14×14+14×14=316. 6.已知有两台独立在两地工作的雷达,它们发现飞行目标的概率分别为0.9和0.85,则两台雷达都未发现飞行目标的概率为________.解析:所求概率为(1-0.9)×(1-0.85)=0.015. 答案:0.0157.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 解析:设此队员每次罚球的命中率为p , 则1-p 2=1625,所以p =35.答案:358.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.解析:设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 14C 25=45,P (AB )=C 12C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P (AB )P (A )+P (AC )P (A )=34.答案:349.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 45×56×(1-23)=29, 只有农产品加工和水果种植两个项目成功的概率为 45×(1-56)×23=445, 只有绿色蔬菜种植和水果种植两个项目成功的概率为 (1-45)×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为 (1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990.10.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品. (1)从甲箱中任取2个产品,求这2个产品都是次品的概率.(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解:(1)从甲箱中任取2个产品的事件数为C 28=28,这2个产品都是次品的事件数为C 23=3.所以这2个产品都是次品的概率为328.(2)设事件A 为“从乙箱中取一个正品”,事件B 1为“从甲箱中取出2个产品都是正品”,事件B 2为“从甲箱中取出1个正品1个次品”,事件B 3为“从甲箱中取出2个产品都是次品”,则事件B 1、事件B 2、事件B 3彼此互斥.P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,所以P (A )=P (B 1)P (A |B 1)+P (B 2)·P (A |B 2)+P (B 3)P (A |B 3) =514×69+1528×59+328×49=712. [B 能力提升]11.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于( )A.25B.12C.35D.45解析:选A.因为A ∩B ={2,5},所以n (AB )=2. 又因为n (B )=5,故P (A |B )=n (AB )n (B )=25.12.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )=________.解析:由题意,P (A -)·P (B -)=19,P (A -)·P (B )=P (A )·P (B -).设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧(1-x )(1-y )=19,(1-x )y =x (1-y ). 即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y , 所以x 2-2x +1=19,所以x -1=-13,或x -1=13(舍去),所以x =23.答案:2313.一只口袋内装有2个白球和2个黑球.求:(1)在先摸出1个白球不放回的条件下,再摸出1个白球的概率是多少? (2)在先摸出1个白球后放回的条件下,再摸出1个白球的概率是多少? 解:(1)记A =“先摸出一个白球不放回”,B =“再摸出一个球为白球”, 则AB =“先后两次摸到白球”. 因为P (A )=24=12,P (A ∩B )=A 22A 24=16,所以P (B |A )=P (A ∩B )P (A )=13.(2)记A 1=“先摸出一个白球放回”,B 1=“再摸出一个球为白球”, 则AB 1=“先后两次摸到白球”. 因为P (A 1)=24=12,P (A 1∩B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1∩B 1)P (A 1)=12.14.(选做题)某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.求:(1)恰有一名同学当选的概率; (2)至多有两人当选的概率.解:设甲,乙,丙当选分别为事件A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立, 所以恰有一名同学当选的概率为P (A ∩B -∩C -)+P (A -∩B ∩C -)+P (A -∩B -∩C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C ) =45×25×310+15×35×310+15×25×710 =47250. (2)至多有两人当选的概率为 1-P (A ∩B ∩C )=1-P (A )P (B )P (C )4 5×35×710=83125.=1-。

条件概率及互相独立事件-高考数学知识点

条件概率及互相独立事件-高考数学知识点

条件概率及互相独立事件-高考数学知识点条件概率及互相独立事件一、条件概率
条件概率是一种带有附加条件的概率。

是指若事件A与事件B是相依事件,即事件A的概率随事件B是否发生而变化,同样,事件B的概率与随事件A是否发生而变化,则在事件A已发生的条件下,事件B出现的概率称为事件B的条件概率。

条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。

条件概率表示为P(A|B),读作“在 B 条件下 A 的概率”。

P(A|B)=P(AB)/P(B),P(B|A)=P(AB)/P(A)
二、独立事件
相互独立事件: 事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

三、热定预测
预测高考可能会对独立事件的概率、n次独立事件的概率、n次独立重复试验的概率、二项分布重点考察。

解答题仍会保持中等难度,分值约为10分。

条件概率与互相独立事件在高二的课程中就已经还是涉及。

概率计算中的事件独立与条件概率

概率计算中的事件独立与条件概率

概率计算中的事件独立与条件概率概率计算是数学中重要的分支之一,它研究的是随机事件发生的可能性。

在概率计算中,有两个重要的概念,即事件独立和条件概率。

本文将介绍这两个概念及其在概率计算中的应用。

一、事件独立在概率计算中,事件独立是指两个或多个事件之间的发生并不相互影响的性质。

具体地说,如果事件A和事件B是独立的,那么事件A的发生与否并不会影响事件B的发生概率,反之亦然。

数学上,事件A和事件B的独立性可以通过以下公式表示:P(A∩B) = P(A) × P(B)其中,P(A)表示事件A的发生概率,P(B)表示事件B的发生概率,P(A∩B)表示事件A和事件B同时发生的概率。

事件独立的概念在实际应用中有很大的意义。

例如,在投掷一枚硬币的情境中,事件A表示硬币正面朝上,事件B表示硬币反面朝上。

由于硬币的正反面朝上是相互独立的,所以投掷硬币正反面的概率都是1/2。

二、条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。

数学上,事件A在事件B发生的条件下的概率可以表示为P(A|B),读作“B发生的条件下A的概率”。

条件概率的计算可以通过以下公式求解:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的发生概率。

条件概率的概念在许多实际问题中具有重要意义。

例如,在一副扑克牌中,事件A表示从中抽出一张红色的牌,事件B表示从中抽出一张大王。

已知事件B发生的条件下,事件A发生的概率可以通过计算红色牌中大王的比例得出。

三、事件独立与条件概率的关系事件独立和条件概率之间存在一定的联系。

如果事件A和事件B是独立的,那么条件概率P(A|B)等于事件A的发生概率P(A),反之亦然。

数学上,可以通过以下公式表示独立事件的条件概率:P(A|B) = P(A)这一关系表明,当事件A和事件B相互独立时,事件B的发生并不会对事件A发生的概率产生影响。

概率问题的条件概率与独立性

概率问题的条件概率与独立性

概率问题的条件概率与独立性概率论是数学的一个分支,研究随机事件的发生及其规律性。

在概率论中,条件概率与独立性是两个重要的概念。

本文将详细讨论条件概率与独立性的概念、性质以及应用。

一、条件概率的概念与计算方法条件概率是指在已知某一事件发生的前提下,另一事件发生的概率。

设A、B是两个事件,且P(A)>0,则在事件A发生的条件下,事件B发生的概率记为P(B|A),读作“在A发生的条件下B发生的概率”。

条件概率的计算方法如下:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A)表示事件A发生的概率。

二、条件概率的性质1. 乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A) × P(B|A) = P(B) × P(A|B)。

2. 独立事件的条件概率:对于独立事件A和B,有P(B|A) = P(B),P(A|B) = P(A),即事件A的发生与否不影响事件B的概率,反之亦然。

三、独立性的概念与判定方法独立性是指两个事件之间的发生与否相互独立,即一个事件的发生不受另一个事件的影响。

设A、B是两个事件,如果满足P(A∩B) =P(A) × P(B),则称事件A和事件B是独立事件,简写为A⊥B。

判定事件的独立性可以通过以下方法:1. 乘法法则:若P(A) × P(B) = P(A∩B),则可以推断A与B是独立事件。

2. 条件概率的性质:若P(B|A) = P(B),则A与B是独立事件。

四、条件独立性的概念与判定方法条件独立性是指在已知某一条件的前提下,两个事件之间仍然相互独立。

设A、B、C是三个事件,若满足P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在条件C下是条件独立的,简写为A⊥B|C。

我们可以通过以下方法判断事件的条件独立性:若满足P(A∩B|C) = P(A|C) × P(B|C),则可以推断在条件C下事件A 与事件B是条件独立的。

概率论中的条件概率与事件独立性

概率论中的条件概率与事件独立性

条件概率与事件 独立性的实际案 例分析
天气预报的准确率与事件独立性分析
天气预报准确率与事件独立性的关系 不同天气预报模型对独立性的影响 实际案例分析:某地区连续两天的天气预报准确率 结论:提高天气预报准确率有助于更好地分析事件独立性
股票价格波动与事件独立性分析
股票价格波动与事件独立性的概念 股票价格波动与事件独立性的关系 股票价格波动与事件独立性的实际案例分析 股票价格波动与事件独立性的应用
掌握条件概率与事件独立性的概念和性质,对于理解概率论和统计学的基本原理、进行科学推断 和决策具有重要的意义。
未来研究方向与展望
深入研究条件概率 与事件独立性的关 系
探讨其在不同领域 的应用前景
探索如何更好地解 释和预测事件发生 的可能性
进一步研究条件概 率与事件独立性的 数学理论基础
感谢您的观看
汇报人:XX
条件概率与事件独立性
汇报人:XX
目录
添加目录标题
01
条件概率的定义与计 算
02
事件独立性的定义与 性质
03
条件概率与事件独立 性的关系
04
条件概率与事件独立 性的应用场景
05
条件概率与事件独立 性的实际案例分析
06
添加章节标题
条件概率的定义 与计算
条件概率的定义
条件概率是指在某 一事件B已经发生 的情况下,另一事 件A发生的概率,
在统计推断中,条件概率与事件独立性可用于构建复杂的概率模型,如贝叶斯推断和 马尔科夫链蒙特卡洛方法。
条件概率与事件独立性在统计推断中的应用有助于提高预测精度和决策的科学性。
在决策论中的应用
风险决策:根据条 件概率评估不同方 案的风险和收益

高考数学科学复习创新方案:事件的相互独立性、条件概率与全概率公式

高考数学科学复习创新方案:事件的相互独立性、条件概率与全概率公式

事件的相互独立性、条件概率与全概率公式[课程标准]1.结合有限样本空间,了解两个随机事件独立性的含义.结合古典概型,利用独立性计算概率.2.了解条件概率,能计算简单随机事件的条件概率.3.结合古典概型,了解条件概率与独立性的关系.4.会利用乘法公式和全概率公式计算概率.1.相互独立事件(1)定义:对任意两个事件A与B,如果P(AB)=01P(A)P(B)成立,则称事件A与事件B相互独立,简称独立.(2)性质:如果事件A与B相互独立,那么A与B-,A-与B,A-与B-也都02相互独立.2.条件概率设A,B为两个随机事件,且P(A)>0,称P(B|A)=03P(AB)为在事件AP(A)发生的条件下,事件B发生的条件概率,简称条件概率.3.乘法公式对任意两个事件A与B,若P(A)>0,则P(AB)=04P(A)P(B|A).4.条件概率的性质设P(A)>0,则(1)P(Ω|A)=051;(2)如果B和C是两个互斥事件,则P(B∪C|A)=06P(B|A)+P(C|A);(3)如果B-与B互为对立事件,则P(B-|A)=071-P(B|A).5.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=错误!.1.事件间的关系及表示(1)A,B中至少有一个发生的事件为A∪B.(2)A,B都发生的事件为AB.(3)A,B都不发生的事件为A-B-.(4)A,B恰有一个发生的事件为(A B-)∪(A-B).(5)A,B至多有一个发生的事件为(AB)∪(A-B)∪(A-B-).2.条件概率的计算常采用缩小样本空间法求解.3.乘法公式可以推广为P(A1A2A3)=P(A1)·P(A2|A1)P(A3|A1A2),其中P(A1)>0,P(A1A2)>0.4.贝叶斯公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(A i|B)=P(A i)P(B|A i)P(B)=错误!,i=1,2,…,n.1.(人教A必修第二册习题10.2T2改编)若P(AB)=19,P(A-)=23,P(B)=13,则事件A与B的关系是()A.事件A与B互斥B.事件A与B对立C.事件A与B相互独立D.事件A与B既互斥又相互独立答案C解析∵P (A )=1-P (A -)=1-23=13,∴P (AB )=P (A )P (B )=19≠0,∴事件A 与B 相互独立、事件A 与B 不互斥,故不对立.故选C.2.(2023·舟山模拟)甲、乙去同一家药店购买一种医用外科口罩,已知这家药店出售A ,B ,C 三种医用外科口罩,甲、乙购买A ,B ,C 三种医用口罩的概率分别如下:购买A 种医用外科口罩购买B 种医用外科口罩购买C 种医用外科口罩甲0.20.4乙0.30.3则甲、乙购买的是同一种医用外科口罩的概率为()A .0.44B .0.40C .0.36D .0.32答案D解析由表可知,甲购买A 种医用外科口罩的概率为0.4,乙购买B 种医用外科口罩的概率为0.4,所以甲、乙购买的是同一种医用外科口罩的概率为P =0.4×0.3+0.2×0.4+0.4×0.3=0.32.故选D.3.(人教A 必修第二册10.2例2改编)甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A .0.12B .0.42C .0.46D .0.88答案D解析设“甲被录取”记为事件A ,“乙被录取”记为事件B ,则两人至少有一人被录取的概率P =1-P (A -B -)=1-[1-P (A )][1-P (B )]=1-0.4×0.3=0.88.故选D.4.(多选)某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()A .P (B |A )=13B .P (B |A )=38C .P (A |B )=34D .P (A |B )=35答案BC解析由题意知P (A )=415,P (B )=215,P (AB )=110,∴P (B |A )=P (AB )P (A )=110415=38,P (A |B )=P (AB )P (B )=34.故选BC.5.(人教A 必修第二册习题10.1T 16改编)从1~100共100个正整数中,任取一数,已知取出的这个数不大于50,则此数是2或3的倍数的概率为________.答案3350解析设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 为“取出的数是3的倍数”.则P (C )=12,且所求概率为P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C )=P (AC )P (C )+P (BC )P (C )-P (ABC )P (C )=2+16100-3350.多角度探究突破角度事件独立性的判定例1(2021·新高考Ⅰ卷)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则() A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案B解析设甲、乙、丙、丁事件发生的概率分别为P(A),P(B),P(C),P(D),则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16.对于A,甲、丙同时发生的概率P(AC)=0≠P(A)P(C);对于B,甲、丁同时发生的概率P(AD)=16×6=1 36=P(A)P(D);对于C,乙、丙同时发生的概率P(BC)=16×6=136≠P(B)P(C);对于D,丙、丁同时发生的概率P(CD)=0≠P(C)P(D).若两事件X,Y相互独立,则P(XY)=P(X)P(Y),因此B正确.故选B.角度相互独立事件的概率例2(2023·河北省级联考)甲、乙、丙三人进行网球比赛,约定赛制如下:累计负两场被淘汰;比赛前抽签决定首先比赛的两个人,另一个人当裁判,没有平局;每场比赛结束时,负的一方在下一场当裁判;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获得冠军,比赛结束.已知在每场比赛中,双方获胜的概率都为12,各局比赛的结果相互独立,经抽签,第一场比赛甲当裁判.(1)求前三场比赛结束后,丙被淘汰的概率;(2)求只需四场比赛就决出冠军的概率.解(1)设事件A为“甲胜乙”,则P(A)=12,P(A-)=1-12=12,设事件B为“甲胜丙”,则P(B)=12,P(B-)=1-12=12,设事件C为“乙胜丙”,则P(C)=12,P(C-)=1-12=12,前三场比赛结束后,丙被淘汰可用事件C A-C∪CAB来表示,所以前三场比赛结束后,丙被淘汰的概率为P1=P(C A-C)+P(CAB)=12×12×12+12×12×12=14.(2)若最终的冠军为甲,则只需四场比赛就决出冠军可用事件CABA∪C-BAB 来表示,P(CABA∪C-BAB)=P(CABA)+P(C-BAB)=P(C)P(A)P(B)P(A)+P(C-)P(B)P(A)P(B)=1 2×12×12×12+12×12×12×12=18.若最终的冠军为乙,则只需四场比赛就决出冠军可用事件C A-C A-来表示,P(C A-C A-)=P(C)P(A-)P(C)P(A-)=12×12×12×12=116.若最终的冠军为丙,则只需四场比赛就决出冠军可用事件C-B-C-B-来表示,P(C-B-C-B-)=P(C-)P(B-)P(C-)P(B-)=12×12×12×12=116.所以只需四场比赛就决出冠军的概率为P2=18+116+116=14.1.两个事件相互独立的判断方法(1)定义法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)充要条件法:事件A,B相互独立的充要条件是P(AB)=P(A)P(B).2.求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.1.(2023·益阳期末)在一个质地均匀的正八面体中,八个面分别标有数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字.记事件A=“与地面接触的数字为奇数”,事件B=“与地面接触的数字不大于4”,事件C=“与地面接触的数字为1或5或7或8”.(1)判断事件A,B是否独立并证明;(2)证明事件A,B,C满足P(ABC)=P(A)·P(B)P(C),但不满足A,B,C两两独立.解(1)由已知,得样本空间为Ω={1,2,3,4,5,6,7,8},所以A={1,3,5,7},B={1,2,3,4},C={1,5,7,8},A∩B={1,3},B∩C={1},A∩C={1,5,7},A∩B∩C={1},因为P(A)=12,P(B)=12,P(AB)=14=P(A)P(B),所以事件A,B相互独立.(2)证明:因为P(A)=P(B)=P(C)=12,P(ABC)=18,P(BC)=18,P(AC)=38,所以P(ABC)=P(A)P(B)P(C),但是P(BC)≠P(B)P(C),且P(AC)≠P(A)P(C),所以事件A,B,C满足P(ABC)=P(A)P(B)P(C),但不满足A,B,C两两独立.2.(2024·黄冈模拟)为了普及垃圾分类知识,某校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p,乙同学答对每题的概率都为q(p>q),且在考试中每人各题答题结果互不影响.已知每题甲、乙两人同时答对的概率为12,恰有一人答对的概率为512.(1)求p和q的值;(2)求甲、乙两人共答对3道题的概率.解(1)设事件A:“甲同学答对第一题”,事件B:“乙同学答对第一题”,则P(A)=p,P(B)=q.设事件C:“甲、乙两人均答对第一题”,事件D:“甲、乙两人恰有一人答对第一题”,则C=A∩B,D=(A∩B-)∪(A-∩B).∵甲、乙两人答题互不影响,且每人各题答题结果互不影响,∴A与B相互独立,A∩B-与A-∩B互斥,∴P(C)=P(A∩B)=P(A)P(B)=pq,P(D)=P(A∩B-)+P(A-∩B)=P(A)[1-P(B)]+[1-P(A)]P(B).由题意,得pq=12,p(1-q)+q(1-p)=512,解得p=34,q=23或p=23,q=34.∵p>q,∴p=34,q=23.(2)设事件A i:“甲同学答对了i道题”,事件B i:“乙同学答对了i道题”,i=0,1,2.由题意,得P(A1)=14×34+34×14=38,P(A2)=34×34=916,P(B1)=23×13+13×23=49,P(B2)=23×23=49.设事件E:“甲、乙两人共答对3道题”,则E=(A1∩B2)∪(A2∩B1),∴P(E)=P(A1∩B2)+P(A2∩B1)=38×49+916×49=512,∴甲、乙两人共答对3道题的概率为512.考向二条件概率例3(1)(2023·贵州师大附中模拟)某市卫健委为调查研究某种流行病患者的年龄分布情况,随机调查了大量该病患者,年龄分布如图.已知该市此种流行病的患病率为0.1%,该市年龄位于区间[40,60)的人口占总人口的28%.若从该市居民中任选一人,此人年龄位于区间[40,60),则此人患这种流行病的概率为(以样本数据中患者的年龄位于各区间的频率作为患者年龄位于该区间的概率)()A .0.28B .0.00054C.713500D.2714000答案D解析设“该居民年龄位于区间[40,60)”为事件A ,“该居民患这种流行病”为事件B ,由题意知,P (A )=0.28,P (B )=0.001,P (A |B )=0.54.因为P (A |B )=P (AB )P (B ),所以P (AB )=P (A |B )P (B )=0.54×0.001=0.00054,所以P (B |A )=P (AB )P (A )=0.000540.28=2714000.故选D.(2)在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.答案499解析解法一(应用条件概率公式求解):设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则所求的概率为P (B |A ),因为P (AB )=A 25A 2100=1495,P (A )=C 15C 1100=120,所以P (B |A )=P (AB )P (A )=1495120=499.解法二(缩小样本空间求解):第一次取到不合格品后,也就是在第二次取之前,还有99件产品,其中有4件不合格品,因此第二次取到不合格品的概率为499.(3)在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.解设“摸出第一个球是红球”为事件A ,“摸出第二个球是黄球”为事件B ,“摸出第二个球是黑球”为事件C .则P(A)=110,P(AB)=1×210×9=145,P(AC)=1×310×9=130.所以P(B|A)=P(AB)P(A)=145÷110=29,P(C|A)=P(AC)P(A)=130÷110=13.所以P(B∪C|A)=P(B|A)+P(C|A)=29+13=59.所以所求概率为59.条件概率的三种求法定义法先求P(A)和P(AB),再由P(B|A)=P(AB)P(A)求P(B|A)样本点法借助古典概型概率公式,先求事件A包含的样本点数n(A),再求事件AB所包含的样本点数n(AB),得P(B|A)=n(AB)n(A)缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简1.(2023·全国甲卷)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.1答案A解析报名两个俱乐部的人数为50+60-70=40,记“某人报足球俱乐部”为事件A,“某人报乒乓球俱乐部”为事件B,则P(A)=5070=57,P(AB)=4070=47,所以P(B|A)=P(AB)P(A)=4757=0.8.故选A.2.质监部门对某种建筑构件的抗压能力进行检测,对此建筑构件实施两次击打,若没有受损,则认为该构件通过质检.若第一次击打后该构件没有受损的概率为0.85,当第一次没有受损时第二次在实施击打也没有受损的概率为0.80,则该构件通过质检的概率为()A.0.4B.0.16C.0.68D.0.17答案C解析设A i表示第i次击打后该构件没有受损,i=1,2,则由已知可得P(A1)=0.85,P(A2|A1)=0.80,因此由乘法公式可得P(A1A2)=P(A1)P(A2|A1)=0.85×0.80=0.68,即该构件通过质检的概率为0.68.故选C.3.52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为________;已知第一次抽到的是A,则第二次抽到A的概率为________.答案12211 17解析由题意,设第一次抽到A的事件为B,第二次抽到A的事件为C,则P(B)=452=113,P(BC)=452×351=1221,∴P(C|B)=P(BC)P(B)=1221113=117.例4(2023·韶关模拟)作为一种益智游戏,中国象棋具有悠久的历史,中国象棋的背后,体现的是博大精深的中华文化.为了推广中国象棋,某地举办了一次地区性的中国象棋比赛,小明作为选手参加.除小明以外的其他参赛选手中,50%是一类棋手,25%是二类棋手,其余的是三类棋手.小明与一、二、三类棋手比赛获胜的概率分别是0.3,0.4和0.5.(1)从参赛选手中随机选取一位棋手与小明比赛,求小明获胜的概率;(2)如果小明获胜,求与小明比赛的棋手为一类棋手的概率.解(1)设事件A i=“小明与i(i=1,2,3)类棋手相遇”,根据题意P(A1)=0.5,P(A2)=0.25,P(A3)=0.25,记事件B=“小明获胜”,则有P(B|A1)=0.3,P(B|A2)=0.4,P(B|A3)=0.5,由全概率公式得,小明在比赛中获胜的概率为P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.5×0.3+0.25×0.4+0.25×0.5=0.375,所以小明获胜的概率为0.375.(2)小明获胜时,与小明比赛的棋手为一类棋手的概率为P(A1|B)=P(A1B)P(B)=P(A1)P(B|A1)P(B)=0.5×0.30.375=0.4.“化整为零”求多事件的全概率问题(1)如图,P(B)=错误!(A i)P(B|A i).(2)已知事件B的发生有各种可能的情形A i(i=1,2,…,n),事件B发生的可能性,就是各种可能情形A i发生的可能性与已知在A i发生的条件下事件B发生的可能性的乘积之和.(2023·南平高级中学期中)某学校为了迎接党的二十大召开,增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱中有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了2个题目,求第二题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了2个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.已知第三支部从乙箱中取出的这个题目是选择题,求第二支部从甲箱中取出的是2个选择题的概率.解(1)设事件A i表示“第i次从乙箱中取到填空题”,i=1,2,P(A1)=37,P(A2|A1)=26=13,P(A2|A-1)=36=12.由全概率公式得,第2次抽到填空题的概率为P (A 2)=P (A 1)P (A 2|A 1)+P (A -1)P (A 2|A -1)=37×26+47×36=37.(2)设事件A 为“第三支部从乙箱中取出1个选择题”,事件B 1为“第二支部从甲箱中取出2个题都是选择题”,事件B 2为“第二支部从甲箱中取出1个选择题1个填空题”,事件B 3为“第二支部从甲箱中取出2个题都是填空题”,则B 1,B 2,B 3彼此互斥,且B 1∪B 2∪B 3=Ω,P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A |B 3)=514×69+1528×59+328×49=712.所求概率即是A 发生的条件下B 1发生的概率P (B 1|A )=P (B 1A )P (A )=P (B 1)P (A |B 1)P (A )=514×69712=2049.课时作业一、单项选择题1.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生各项均合格的概率为(假设各项标准互不影响)()A.49B.190C.45D.59答案B解析该生各项均合格的概率为13×16×15=190.2.某机场某时降雨的概率为15,在降雨的情况下飞机准点的概率为110,则某时降雨且飞机准点的概率为()A.1 2B.1 4C.1 25D.1 50答案D解析记事件A=“飞机准点”,事件B=“某时降雨”.根据题意,P(B)=15,在降雨的情况下飞机准点的概率为P(A|B)=110,所以某时降雨且飞机准点的概率为P(AB)=P(B)P(A|B)=15×110=150.故选D.3.(2023·武汉三模)已知P(B)=0.4,P(B|A)=0.8,P(B|A-)=0.3,则P(A)=()A.3 4B.3 8C.1 3D.1 5答案D解析P(B)=P(AB∪A-B)=P(A)P(B|A)+P(A-)P(B|A-),即0.4=0.8P(A)+0.3[1-P(A)],解得P(A)=0.2=15.故选D.4.(2024·南京模拟)现有甲、乙、丙、丁四位同学到夫子庙、总统府、中山陵、南京博物馆4处景点旅游,每人只去一处景点,设事件A为“4个人去的景点各不相同”,事件B为“只有甲去了中山陵”,则P(A|B)=()A.3 128B.27 256C.1 128D.2 9答案D解析甲、乙、丙、丁四位同学到夫子庙、总统府、中山陵、南京博物馆4处景点旅游,共有44=256(种)不同的方案,事件A“4个人去的景点各不相同”的方案有A44=24(种),事件B“只有甲去了中山陵”的方案有33=27(种),事件AB同时发生的方案有A33=6(种),P(AB)=6256=3128,P(B)=27256,所以P(A|B)=P(AB)P(B)=6 27=29.故选D.5.(2023·昆明模拟)已知事件A,B,C满足A,B是互斥事件,且P(A∪B|C)=1 2,P(BC)=112,P(C)=14,则P(A|C)=()A.16B.112C.14D.13答案A解析由题意,得P(B|C)=P(BC)P(C)=13,由A,B是互斥事件知,P(A∪B|C)=P(A|C)+P(B|C),所以P(A|C)=P(A∪B|C)-P(B|C)=12-13=16.故选A.6.(2023·深圳模拟)在A,B,C三个地区爆发了流感,这三个地区分别有6%,5%,4%的人患了流感,假设这三个地区的人口数之比为5∶6∶9,现从这三个地区中任意选取一人,则此人是流感患者的概率为()A.0.032B.0.048C.0.05D.0.15答案B解析设事件D为“此人是流感患者”,事件A1,A2,A3分别表示此人来自A,B,C三个地区,由已知可得P(A1)=55+6+9=0.25,P(A2)=65+6+9=0.3,P(A3)=95+6+9=0.45,P (D |A 1)=0.06,P (D |A 2)=0.05,P (D |A 3)=0.04,由全概率公式,得P (D )=P (A 1)P (D |A 1)+P (A 2)P (D |A 2)+P (A 3)P (D |A 3)=0.25×0.06+0.3×0.05+0.45×0.04=0.048.故选B.7.(2023·锦州二模)如图,用K ,A 1,A 2三类不同的元件连接成一个系统,当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作,已知K ,A 1,A 2正常工作的概率依次是12,23,23,在系统正常工作的前提下,只有K 和A 1正常工作的概率是()A.49B.34C.14D.19答案C解析设事件A 为“系统正常工作”,事件B 为“只有K 和A 1正常工作”,因为并联元件A 1,A 2能正常工作的概率为1=89,所以P (A )=12×89=49,又因为P (AB )=P (B )=12×23×=19,所以P (B |A )=P (AB )P (A )=14.故选C.8.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为()A.89B.7381C.881D.19答案C解析因为该射手每次射击击中目标的概率是23,所以每次射击未击中目标的概率为13,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A -4A -5)+P (A -1A 2A 3A 4A -5)+P (A -1A -2A 3A 4A 5)+13×13+=881.故选C.二、多项选择题9.有一道数学难题,学生甲解出的概率为12,学生乙解出的概率为13,学生丙解出的概率为14.若甲、乙、丙三人独立去解答此题,则()A .恰有一人解出的概率为1124B .没有人能解出的概率为124C .至多一人解出的概率为1724D .至少两人解出的概率为2324答案AC解析对于A ,恰有一人解出的概率为12××13×××14=1124,A 正确;对于B ,没有人能解出的概率为=14,B 错误;对于C ,由A ,B 知,至多一人解出的概率为1124+14=1724,C 正确;对于D ,至少两人解出与至多一人解出是对立事件,所以至少两人解出的概率为1-1724=724,D 错误.故选AC.10.(2024·镇江开学考试)一质地均匀的正四面体四个表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件A 为“第二次向下的数字为奇数”,事件B为“两次向下的数字之积为偶数”,则下列说法正确的是()A.事件A与事件B是对立事件B.P(AB)=14C.P(A|B)=13D.事件A与事件B不相互独立答案BCD解析因为抛掷该正四面体两次的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种,其中事件A有(1,1),(1,3),(2,1),(2,3),(3,1),(3,3),(4,1),(4,3),共8种,事件B有(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4),共12种,事件AB有(2,1),(2,3),(4,1),(4,3),共4种,所以A与B可同时发生,则事件A与事件B不是对立事件,故A错误;P(AB)=416=14,故B正确;P(B)=12 16=34,则P(A|B)=P(AB)P(B)=1434=13,故C正确;因为P(A)=816=12,则P(AB)≠P(A)P(B),所以A,B不相互独立,故D正确.故选BCD.11.(2023·湖北直辖县级单位统考模拟)有3台车床加工同一型号的零件,第1台加工的次品率为5%,第2,3台加工的次品率均为3%,加工出来的零件混放在一起,第1,2,3台车床加工的零件数分别占总数的15%,25%,60%.随机取一个零件,记A=“零件为次品”,B i=“零件为第i台车床加工的”(i=1,2,3),下列结论正确的是()A.P(A)=0.03B.C.P(B1|A)=P(B2|A)D.P(B1|A)+P(B2|A)=P(B3|A)答案BC解析对于A ,因为P (A )=0.05×0.15+0.03×0.25+0.03×0.60=0.033,故A 错误;对于B ,(B i )=0.15+0.25+0.60=1,故B 正确;对于C ,因为P (B 1|A )=P (B 1)P (A |B 1)P (A )=0.15×0.050.033=522,P (B 2|A )=P (B 2)P (A |B 2)P (A )=0.25×0.030.033=522,所以P (B 1|A )=P (B 2|A ),故C 正确;对于D ,由C 项分析可得P (B 1|A )+P (B 2|A )=511,又因为P (B 3|A )=P (B 3)P (A |B 3)P (A )=0.60×0.030.033=611,故D 错误.故选BC.三、填空题12.(2023·合肥一模)接种流感疫苗能有效降低流行感冒的感染率,某学校25的学生接种了流感疫苗,已知在流感高发时期,未接种疫苗的感染率为14,而接种了疫苗的感染率为110.现有一名学生确诊了流感,则该名学生未接种疫苗的概率为________.答案1519解析设事件A =“感染流行感冒”,事件B =“未接种疫苗”,则P (A )=35×14+25×110=19100,P (AB )=35×14=320,故P (B |A )=P (AB )P (A )=1519.13.(2023·东莞三模)在孟德尔豌豆试验中,子二代的基因型为DD ,Dd ,dd ,其中D 为显性基因,d 为隐性基因,且这三种基因型的比为1∶2∶1,如果在子二代中任意选取两株豌豆进行杂交实验,那么子三代中基因型为dd 的概率是________.答案14解析由题意,子二代作杂交试验的基因配型有6种可能,分别设为A i (i =1,2,3,4,5,6),设事件B 为“子三代的基因型为dd ”,则事件A 1A 2A 3A 4A 5A 6配型DD ×DD DD ×Dd Dd ×Dd Dd ×dd DD ×dd dd ×dd P (A i )11614141418116P (B |A i )14121由全概率公式得P (B )=∑6i =1P (A i )P (B |A i )=14×14+14×12+116×1=14.14.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输.若在主场输一场,则概率为2×0.6×0.4×0.5×0.5×0.6;若在客场输一场,则概率为2×0.6×0.6×0.5×0.5×0.6.∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×0.6×(0.6+0.4)=0.18.四、解答题15.(2023·聊城期末)某学校在元宵节前夕举行“灯谜竞猜”活动,活动分一、二两关,分别竞猜5道、20道灯谜.现有甲、乙两位选手独立参加竞猜,在第一关中,甲、乙都猜对了4道,在第二关中,甲、乙分别猜对12道、15道.假设猜对每道灯谜都是等可能的.(1)从第一关的5道灯谜中任选2道,求甲都猜对的概率;(2)从第二关的20道灯谜中任选一道,求甲、乙两人恰有一个人猜对的概率.解(1)设事件A =“任选2道灯谜,甲都猜对”,用1,2,3,4,5表示第一关的5道灯谜,其中1,2,3,4表示甲猜对的4道,则样本空间为Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},A ={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},所以n (Ω)=10,n (A )=6,根据古典概型的计算公式,得P (A )=n (A )n (Ω)=35.(2)设事件B =“任选一道灯谜,甲猜对”,事件C =“任选一道灯谜,乙猜对”,事件D =“任选一道灯谜,甲、乙两人恰有一个人猜对”,根据题意可得,P (B )=1220,P (B -)=820,P (C )=1520,P (C -)=520.因为D =B -C ∪B C -,且B -C ,B C -互斥,又甲、乙两位选手独立参加竞猜,所以B ,C 相互独立,从而B -,C ,B ,C -也相互独立.所以P (D )=P (B -C ∪B C -)=P (B -C )+P (B C -)=P (B -)P (C )+P (B )P (C -)=820×1520+1220×520=920.即甲、乙两人恰有一个人猜对的概率为920.16.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响.(1)求甲、乙两球都落入盒子的概率;(2)求甲、乙两球至少有一个落入盒子的概率.解(1)因为两球是否落入盒子互不影响,所以甲、乙两球都落入盒子的概率为12×13=16.(2)=13,所以甲、乙两球至少有一个落入盒子的概率为1-13=23.17.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.解(1)记事件S:甲连胜四场,则P(S)=116.(2)记事件A为甲输,事件B为乙输,事件C为丙输,则四局内结束比赛的概率为P′=P(ABAB)+P(ACAC)+P(BCBC)+P(BABA)==14,所以需要进行第五场比赛的概率为P=1-P′=34.(3)记事件M为甲最终获胜,记事件N为丙最终获胜.则甲最终获胜的样本点包括BCBC,ABCBC,ACBCB,BABCC,BACBC,BCACB,BCABC,BCBAC,所以甲最终获胜的概率为P(M)+=932.由对称性可知,乙最终获胜的概率和甲最终获胜的概率相等,所以丙最终获胜的概率为P(N)=1-2×932=7 16.18.已知某电器市场由甲、乙、丙三家企业占有,其中甲厂产品的市场占有率为40%,乙厂产品的市场占有率为36%,丙厂产品的市场占有率为24%,甲、乙、丙三厂产品的合格率分别为45,23,34.(1)现从三家企业的产品中各取一件抽检,求这三件产品中恰有两件合格的概率;(2)现从市场中随机购买一台电器,求买到的是合格品的概率.解(1)记甲、乙、丙三家企业的一件产品,产品合格分别为事件B1,B2,B3,则三个事件相互独立,恰有两件产品合格为事件D,则D=B1B2B-3+B1B-2B3+B-1B2B3,P(D)=P(B1B2B-3)+P(B1B-2B3)+P(B-1B2B3)=45×23×14+45×13×34+15×23×34=1330.故从三家企业的产品中各取一件抽检,则这三件产品中恰有两件合格的概率是1330.(2)记事件B为购买的电器合格,记随机买一件产品,买到的产品为甲、乙、丙三个品牌分别为事件A1,A2,A3,P(A1)=25,P(A2)=925,P(A3)=625,P(B|A1)=45,P(B|A2)=23,P(B|A3)=34,P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=25×45+925×23+625×34=3750.故从市场中随机购买一台电器,买到的是合格品的概率为3750.19.(2023·南京、盐城一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型:有完全相同的甲、乙两个袋子,袋子里有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球,乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率;②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.解设试验一次,“取到甲袋”为事件A1,“取到乙袋”为事件A2,“试验结果为红球”为事件B1,“试验结果为白球”为事件B2.(1)P(B1)=P(A1)P(B1|A1)+P(A2)P(B1|A2)=12×910+12×210=1120.所以首次试验结束的概率为1120.(2)①因为B1,B2是对立事件,P(B2)=1-P(B1)=920所以P(A1|B2)=P(A1B2)P(B2)=P(B2|A1)P(A1)P(B2)=110×12920=19,所以选到的袋子为甲袋的概率为19.②由①,得P(A2|B2)=1-P(A1|B2)=1-19=8 9,所以方案一取到红球的概率为P1=P(A1|B2)P(B1|A1)+P(A2|B2)P(B1|A2)=19×910+89×210=518,方案二取到红球的概率为P2=P(A2|B2)P(B1|A1)+P(A1|B2)P(B1|A2)=89×9 10+1 9×210=3745,因为3745>518,所以方案二取到红球的概率更大.即选择方案二,第二次试验结束的概率更大.。

条件概率和事件的相互独立

条件概率和事件的相互独立
(3)法1 P( B | A) P( AB) 10 1 . 3 2法2 P( A) 5
n( AB) 6 7 1 P( B | A) n( A) 12 2
想一想
你能归纳出求解条件概率的一般步骤吗?
求解条件概率的一般步骤: (1)用字母表示有关事件
(2)求P(AB),P(A)或n(AB),n(A)
P ( AB) n( AB) ( 3 )利用条件概率公式求 P B A P ( A) n( A)
8
1. 掷两颗均匀骰子,问: ⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少? ⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
11 12 13 14 15 16 33 34 35 36 43 44 45 46 53 54 55 56 63 64 65 66
一般地,设A,B为两个事件,且 P ( A) 0 ,称
P ( AB ) 为事件A发生的条件下,事件B P B A P ( A) 发生的条件概率.
P(B|A)读作A发生的条件下B发生的概率,
n( AB) P B A n( A) P ( AB) P ( A)
B
A∩B
A
P(B|A)相当于把A当做新的样本空间来计算AB发生的概率。
1 P( A B C ) 1 0.5 0.55 0.6 0.835
0.8 P ( D)
所以,合三个臭皮匠之力把握就大过诸葛亮.
23
练习 1:
一个元件能正常工作的概率r称为该元件的可靠性。 由多个元件组成的系统能正常工作的概率称为系统的可 靠性。今设所用元件的可靠性都为r(0<r<1),且各元件能 否正常工作是互相独立的。试求各系统的可靠性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率 2 条件概率与相互独立事件
基础梳理
1.条件概率及其性质
(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=
P (AB )
P (A )
. 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )
n (A )
. (2)条件概率具有的性质: ①0≤P (B |A )≤1;
② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件
(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ).
(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立.
基础训练
1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12
2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ).
A .0.960
B .0.864
C .0.720
D .0.576
3.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ).
A.12
B.14
C.16
D.18
4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ). A.18 B.14 C.25 D.12
5.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率是
A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

6.为了分流地铁高峰的压力,市发改委通过听众会,决定实施低峰优惠票价制度.不超过错误!未找到引用源。

公里的地铁票价如下表:
现有甲、乙两位乘客,他们乘坐的里程都不超过错误!未找到引用源。

公里.已知甲、乙乘车不超过错误!未找到引用源。

公里的概率分别为错误!未找到引用源。

,错误!未找到引用源。

,甲、乙乘车超过错误!未找到引用源。

公里且不超过错误!未找到引用源。

公里的概率分别为错误!未找到引用源。

,错误!未找到引用源。

.求甲、乙两人所付乘车费用不相同的概率;
提升训练
1.如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)=________;(2)P(B|A)=________.
2.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.
3.设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;
(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率
3.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)
4.如图,A 地到火车站共有两条路径1L 和2L ,现随机抽取100位从A 地到达火车站的人进行调查,调查结果
如下:
(1)试估计40分钟内不能..
赶到火车站的概率; (2 )分别求通过路径1L 和2L 所用时间落在上表中各时间段内的频率;
(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.
5.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不
超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、1
2
;两小时以上且不超过三小时还车的概率分别为
12、1
4
;两人租车时间都不会超过四小时. (Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.。

相关文档
最新文档