动物蛋白酶解研究

动物蛋白酶解研究
动物蛋白酶解研究

动物蛋白酶解研究(I)

北京工商大学宋焕禄

天调食品配料有限公司廖国洪

摘要

本文主要目的是以美拉德(Maillard)反应产物(MRPs)的风味为判断依据,以水解度(DH)为动物蛋白酶解液——Maillard反应底物之一的特征性指标,根据MRPs 的风味确定动物蛋白水解液的最佳DH或DH范围。实验的主要内容包括:

1.以牛肉为酶解底物,对所用的几种蛋白酶进行酶活测定

2.确定各酶的适宜加量和反应时间

3.确定最佳酶组合及其最佳反应条件

4.用最佳反应条件下制得的动物蛋白水解液进行Maillard反应,感官评定产物风味。

关键词动物蛋白水解液水解度(DH)酶解Maillard反应

1.概述

1.1肉味香精研究进展

肉味香精研究及生产中有关肉味形成机理的报道很多。随着肉味香精的需求量日益增加,有关肉味香精的研究也不断深入和扩展。肉味香精中各种香味物质的形成主要是通过Maillard反应产生。参与反应的底物中氨基酸或多肽对风味物质的形成有重要影响。根据已有的研究结果,通常认为,Maillard反应产物中含硫化合物、杂环化合物和羰基化合物对肉味形成有重要影响[1]。这些风味物质的形成机理极其复杂。杂环化合物中以吡咯类、吡嗪类、噻吩类等化合物贡献较大[2]。

对Maillard反应产物的一系列研究表明,它还具有抗氧化、抗诱变等多种性能[3]。

此外,人们还从蛋白质结构及肽键顺序等方面对Maillard反应产物进行分析,以期找到它们与产物风味之间的某种关系[4]。

酶解法是一种新兴的动物蛋白水解液的生产方法。与已有的生产方法相比,酶解法有很多优点,因此对酶法生产动物蛋白水解液的研究很受重视。人们从酶解机理、酶解原料、酶及酶解液等多方面进行了大量深入研究。G.M.O′Meara和P.A.Munro以米氏方程和兰格缪尔等温吸附模型为基础,研究了瘦肉的酶解动力

[5],并对酶解反应的影响因素如pH值、温度、时间、酶/底物比及底物浓度分别

进行研究[6]。研究者还试图从不同途径寻找更有效的酶,研究酶的性质、结构、作用特点、反应条件以及单、多酶水解效果的比较、不同底物水解效果的比较,等等[7]。

人们还注意到,由于水解条件的变化,得到的水解液有时会含有苦味,并影响到后面的Maillard反应产物的风味。研究认为,其原因是某种蛋白质含有疏水性氨基酸,它们常隐藏在蛋白质内部中,一旦水解暴露出来就会显出苦味[8,9]。生产动物蛋白水解液的原料由于价格问题,生产成本一直降不下来。近年来人们一

直在寻找价廉易得的生产原料,已用于生产的有植物蛋白替代品、肉类生产副产物(骨头残肉、动物毛血等),但存在很多问题和欠缺,有待解决。

1. 2 蛋白质水解液的生产方法 1.2.1酸/碱法:

酸/碱水解法较早用于生产,工艺条件比较成熟。该法主要是用浓酸或浓碱在加热条件下降解蛋白质,得到的水解液经过中和后即可用于生产。酸水解法的优点是水解很彻底,目前该产品广泛用做为调味品的原料,缺点是某些氨基酸被破坏,且需控制水解液中的氯丙醇含量[10,11]。碱法水解不被推荐,因为不仅水解液味道很较,且其中氨基酸会发生消旋化。 1.2.2 酶水解法

用蛋白酶在其适宜的作用条件下水解蛋白质,得到的水解液经过灭酶后就可以用于生产。酶解法的优点是作用条件温和,产物安全无毒,而且基础风味纯净。但是酶法生产的水解液水解度不高,这会影响到后来的Maillard 反应产物的风味。酶解法目前应用非常广泛,并且越来越受到重视。

1.2 酶解法

1.酶解机理[8]

一般认为,蛋白质酶解时肽键水解断裂的过程如下:

a.肽键断开

-CHR-CO-NH-CHR ′- + H 2O

E -CHR-COOH + NH 2-CHR ′-

b.质子交换

-CHR-COOH + NH 2-CHR ′- -CHR-COO - + NH 3+-CHR ′-

c.氨基滴定

NH 3+-CHR ′- + OH - NH 2-CHR ′- + H 2O 2.影响因素

蛋白质酶解的影响因素包括温度、pH 值、时间、酶量、底物浓度等。不同的酶对应有不同的最适pH 值、最适温度及反应时间等条件要求。对同一种酶来说,底物不同则反应条件也不尽相同,由此得到的产物也各不相同。 3.常用的蛋白酶类

酶法生产蛋白质水解液常用的几种酶及其特性如下表所示:

注:

1U ——40℃、pH3.0时1min 内水解酪蛋白产生1μg 酪氨酸的酶量。

1AU——25℃下1min内水解变性血红蛋白产生1mmol酪氨酸的酶量。

1LAPU——25℃下1min内水解1mmol的L-leu-对硝基苯胺的酶量。2.实验材料与方法

2.1 实验材料

2.1.1 原料

市售新鲜鸡胸肉,绞碎后冷藏备用。

2.1.2 试剂

磷酸盐(标准物质)缓冲液 pH6.864

硼砂(标准物质)缓冲液 pH9.182 上海市爱建现成试剂厂

邻苯二甲酸氢钾缓冲液 pH4.003

氢氧化钠分析纯北京化工厂

硫酸铜分析纯新乡市第八化工厂

硫酸钾分析纯北京化工厂

硼酸分析纯哈尔滨市化工试剂厂

盐酸化学纯北京化工厂

浓硫酸分析纯北京化工厂

1%酚酞乙醇指示剂(1g酚酞溶于100ml乙醇中)

无水乙醇化学纯北京化工厂

无水碳酸钠分析纯北京化工厂

邻苯二甲酸氢钾分析纯北京化工厂

磷酸氢二钠分析纯北京红星化工厂

磷酸二氢钠分析纯北京红星化工厂

三氯乙酸分析纯

福林试剂实验室自备(1份试剂与1.5份水混合)

干酪素化学纯上海化学试剂供应站

L-酪氨酸 BR 公私合营上海生物化学制药厂

甲醛优级纯北京市旭东化工厂

Flavorzyme Novo Nodisk 公司提供

Alcalase Novo Nodisk 公司提供

Protamex Novo Nodisk 公司提供

Neutrase Novo Nodisk 公司提供

中性蛋白酶无锡酶制剂厂

植物蛋白水解液自制

L-半胱氨酸盐酸盐

木糖

氯化钠

2.1.3 设备

电子万用炉 1000W 天津市中环实验电炉有限公司

改良式微量凯氏定氮蒸馏装置

光学读数分析天平 TG328B 上海第二天平仪器厂

架盘药物天平 HC-TP11B? 5 北京医用天平厂

上皿电子天平 JA2003 上海天平仪器厂

精密酸度计 PHS-2C型上海雷磁仪器厂

电热恒温水浴锅 HH-S112型江苏省医疗器械厂

磁力加热搅拌器 HJ-1型江苏省国华仪器厂

分光光度计 721型上海第三分析仪器厂

离心沉淀器 800型上海手术器械厂

阿贝折光仪

高压灭菌锅山东新华医疗器械厂

2.2实验方法

2.2.1 样品蛋白质含量的测定:微量凯氏定氮法

2.2.2 酶活测定:福林法

2.2.3 固形物含量测定:折光法测定。

2.2.4氨态氮测定:甲醛电位滴定法。

2.2.5 水解度(DH)的测定

水解度的定义是水解肽键数占肽键总数的百分比。测定水解度(DH)采用

n-NH2

式中

V-V0氢氧化钠标准溶液滴定耗用量(ml)

C 氢氧化钠标准溶液浓度(mol/L)

W 水解用样品克数(g)

V tot水解液总体积(ml)

V 水解液取用体积(ml)

h tot=(1×Pro%)/110

式中

h tot原料蛋白质中所含肽键总数(mmol/g原料)

Pro% 样品的蛋白质含量

110 氨基酸平均分子量

则有

DH%=(n-n0)×100/h tot

3.研究內容与结果讨论

3.1样品蛋白质的测定:经凯氏定氮法测定,样品的蛋白质含量为20.07% 。

3.2 酶活测定

3.2酶加量及反应时间的确定

3.3.1实验步骤

以参考资料为依据,设定几个加酶量水平,通过测定不同反应时间下的水解度,作水解度对加酶量曲线和水解度对时间曲线,可大致确定合适的加酶量及反应时间。具体作法是:称取50g鸡胸肉,加入50ml蒸馏水,在80℃水浴中加热10min后冷却。调节pH值至各酶的最佳值处,按所设加酶量称加酶后于水浴中进行酶解,到达设定的反应时间后取5ml水解液,加入25ml蒸馏水,用甲醛滴定法测水解度。

3.3.2 结果讨论

1.中性蛋白酶(pH7.5、37℃)

图1 DH-酶量曲线(中性蛋白酶)

图2 DH―时间曲线(中性蛋白酶)

由图1及图2可以看出,中性蛋白酶的加量在200U/g蛋白以后水解液的DH 值上升趋势基本趋于平缓,而反应时间则在3h以后水解液的DH值已趋于平缓。因此中性蛋白酶的适宜加量和反应时间确定为250U/g蛋白、3h。

2.Neutrase (pH6.5, 55℃)

图3 DH—酶量曲线(Neutrase)

图4 DH-时间曲线(Neutrase)

由图3及图4可见,Neutrase的适宜加量比较小,其加量大于150U/g蛋白以上水解度(DH)变化已经很小;反应时间在3h以后DH变化就不明显了。可见Neutrase的适宜加量及反应时间可定为150U/g蛋白、3h。

3. Protamex (pH6.5, 55℃)

图5 DH—酶量曲线(Protamex)

图6 DH—时间曲线(Protamex)

由图5和图6,Protamex加量大于1000U/g 蛋白、反应时间大于6h以后曲线的上升趋势已近平缓,因此可以选定1000U/g蛋白、6h为其适宜加量和反应时间。

4. Alcalase (pH7.5, 55℃)

图7 DH—酶量曲线(Alcalase)

图8 DH—时间曲线(Alcalase)

由图7及图8可以确定Alcalase的适宜加量为1500U/g蛋白,8h。

5. Flavorzyme (pH7.0,50℃)

图9 DH—酶量曲线(Flavorzyme)

图10 DH—时间曲线(Flavorzyme)

由图9及图10,Flavorzyme的DH—酶量曲线基本上都在上升,并没有出现一个理论上的适宜值。从经济角度考虑,取200U/g蛋白的加量。而其反应时间在8h 以后DH变化已不明显。

3.3最佳酶组合的确定

3.4.1实验步骤

称取200g鸡胸肉,加入100g蒸馏水,于80℃水浴中加热10min,调节pH 值至酶的最适pH值处,称加酶后于水浴中进行酶解并间隔搅拌。每隔1h取10ml 水解液,定容至100ml,取10ml进行甲醛滴定测DH值。

1. Alcalase & Flavorzyme(A&F)

2. Protamex&Flavorzyme(P&F)

3. Neutrase&Flavorzyme(N&F)

4. 中性蛋白酶&Flavorzyme(Z&F)

3.4.2 结果分析

由实验数据得到的四个酶组合A&F、P&F、N&F、Z&F的固形物—时间曲线、Aa-N—时间曲线及DH—时间曲线如下:

图11 固形物—时间曲线

图12 Aa-N—时间曲线

图13 DH—时间曲线

由图11、图12和图13可以看出,四种酶的固形物—时间曲线很相似,差别并不大,但是它们的Aa-N—时间曲线、DH—时间曲线差别就很明显:P&F酶组合变化最显著,另外三个酶组合相差不大。因此可以得出这样的结论:P&F酶组合的水解效果是最好的。

动物蛋白酶解研究(II)

北京工商大学宋焕禄

天调食品配料有限公司廖国洪

3.4酶解最佳条件的确定

根据文献资料可以知道,影响酶解的几个重要因素是温度、pH值、酶解时间、加酶量及原料热处理程度。由于热处理程度没有一定的标准可依,根据已有的生产实际作法,采取在80℃水浴中加热10min的方法,既有利于加快酶解速度又可防止在较长时间水解过程中的微生物污染。根据Protamex、Flavorzyme两种酶的特性,在此选用L16(45)正交表进行正交实验以确定P&F酶组合的最佳反应条件。相关的因素水平表如下所示。

5

3.5.1实验步骤

称取20g鸡胸肉,加入5ml蒸馏水,于80℃水浴中加热10min,冷却后在pH 计监测下调节pH值至要求。按要求称加相应的酶后于该酶的最适温度水浴中酶解,到达要求时间后于85℃水浴中维持10min灭酶。将水解液定容至100ml,取10ml 进行甲醛滴定测DH。

3.5.2 结果讨论

1.L16(45)正交实验数据及分析

5

S 因=4(Ⅰj /4—DH )2 +4(Ⅱj /4—DH )2 +4(Ⅲj /4—DH )2+4(Ⅳj /4—DH )2 F 因=因素水平数—1

E 列中没有安排因素,因此计算S E 的偏差平方和中没有由因素水平间的差异所造成的偏差,可见E 列只反映了实验误差的大小。因此有S 误=S E =9.04,f 误=f E =3,V 误=V E =3.01。用V A 、V B 、V C 、V D 与V 误相比较可知,温度、时间、酶量变化所引起的实验结果的变动是很显著的,尤其是时间与酶量,这两个因素关系密切。 由所得数据作出的DH —温度、DH —pH 、DH —时间、DH —酶量曲线如下所示。

图14 温度—DH 曲线

图15 DH —pH 曲线

图16 时间—DH 曲线

图17 DH —酶量比曲线

由所得数据作DH —温度、DH —pH 、DH —时间、DH —酶量曲线(如上所示)。由图可见P&F 酶组合的最佳温度为55℃前后,而DH —pH 曲线有两个峰值,

原因

可能是由于两种酶的最佳pH值相差较大,pH6.0可能适合于Protamex而pH7.0适于Flavorzyme,而pH7.0更有利于在相同条件下达到较高水解度。DH—时间及DH —酶量曲线呈上升趋势,这有两种可能:一是反应时间没有足够长,二是酶量不够。

然而根据参考资料及生产实际看来,本次正交实验所设定的加酶量已远高于生产实际用量(生产实际用量是结合经济考虑而定的)。DH—时间曲线呈上升趋势与参考资料相符,资料上的建议反应时间为6—18h,而出于生产实际的考虑,本次正交实验中时间水平的选定并没有定得很长(最长为11h,生产实际中一般定为8h)。最终确定出的P&F酶组合的最佳反应条件如下表所示:

3.5 Maillard反应

3.5.1 Maillard反应

Maillard反应是由法国著名科学家Louis-Camille Maillard 于1912 年首先发现的,主要原理就是氨基酸、多肽、胺类及蛋白质与还原糖发生反应,引起非酶褐变及产生多种风味物质。

3.5.1.1 反应途径[3]

Maillard反应主要分三个阶段进行:

1.起始阶段。醛糖与氨基化合物进行缩合形成希夫碱,希夫碱经环化和重排

得到Amadori化合物,即1-氨基-1-脱氧-2-酮糖。

2.中间阶段。Amadori化合物经由三条不同途径生成不同化合物。

a. 酸性条件下进行1,2-烯醇化反应,生成羟基甲基-呋喃醛或呋喃醛。

b. 碱性条件下进行2,3-烯醇化反应,产生还原酮类及脱氧还原酮类。

c. 继续进行裂解反应,形成含羰基或双羰基化合物,或与氨基进行Strecker

分解反应,生成Strecker醛类。

3. 最终阶段。中间阶段产物与氨基化合物进行醛基—氨基反应,最终生成类

黑精。类黑精是引起非酶褐变的主要物质。同时还生成一系列的Maillard反应中间体—还原酮类物质及杂环化合物。这类物质能赋予食品特殊的气味。3.5.1.2 影响因素

Maillard反应机理十分复杂,其反应历程、产物组成及其性质等受多种因素影响,包括氨基化合物、还原糖类的种类及性质、反应物比例、反应物浓度、pH值、反应温度、时间、压力等等。

1.温度

影响Maillard反应的诸多因素中,温度的影响很显著。温度升高则反应加快,有利于香味物质的形成。原因是香味物质主要是在较高温度时发生高级Maillard 反应阶段产生。

2.水量

Maillard反应的强度在很大程度上由介质的水合作用决定。含水量过低(如为零)或过高(90%以上)时观察不到褐变。为了达到最大的反应活性,研究表明底物含水量要求在30%~70%较为适宜。

3.pH值

pH值也是一个重要影响因素。pH值升高能加剧反应,偏酸时会抑制反应,偏碱时能使反应加速。

4.氨基化合物及还原糖

来源不同或组成不同的氨基化合物对Maillard反应产物的风味有着巨大的影响。用蛋白质水解液作为Maillard反应的前体物质时,它的组成及性质更为复杂。

参与反应的还原糖中以戊糖为佳,它比用己糖进行反应得到的产物风味更优,因为戊糖更易于与氨基化合物反应,能在较短时间内便可给出肉味。戊糖中又以核糖最好,木糖其次。实际应用中常选用D-木糖或D-葡萄糖,效果较为令人满意。

2.5. 2 实验步骤

称取700g鸡胸肉,加入70ml蒸馏水,于80℃水浴中加热10min,冷却后调节pH值至7.0,称加酶后于55℃水浴中搅拌酶解。隔一定时间取出70g水解液,于85℃水浴中维持10min灭酶,取1.000g加入30ml蒸馏水,甲醛滴定法测DH。

称取不同DH值的水解液60.000g,按给定的配方表加入指定的物质,于

0.14MPa压力下高压蒸煮50min,冷却后取出。感观评定各反应产物的风味。给定

的配方表如下所示:

2.2.1结果讨论

值的水解液

1.最佳酶解条件下制备不同DH

第一组

第二组

第三组

第四组

评分综合表

由此作出评分—DH曲线(如下所示)。由图可见,DH值为27.00% 、31 .91%、36.95%时反应物风味较佳,而水解度较低的1组风味稍淡且夹带有鱼腥味,原因可

能是含有硫化物;6组水解程度较高,但是香味不如3、4、5组反应产物高,原因可能是由于蛋白质肽链水解过于彻底,水解液中氨基酸含量很高而小分子肽类较少,而它们可能正是形成浓郁香味物质的关键反应底物。

图18 评分—DH曲线

4.展望

本次实验的主要任务是利用现有的几种蛋白酶(包括内肽酶和外肽酶),找出最佳酶组合,再用正交实验法找出该酶组合的最佳反应条件,并用在其最反应条件下得到的不同DH值的酶解物进行Maillard反应并感观评定各组反应物的风味。现有的几种蛋白酶中既有内肽酶、复合内肽酶又有外肽酶。它们的作用机理极其复杂,受诸多因素影响,得到的产物多种多样,因此由它们的酶解产物与还原糖反应得到的产物风味也各不相同。

本次实验最主要的目的是能找到最佳的酶组合及其最佳反应条件,使其酶解产物中能富含对Maillard产物风味贡献较大的物质成分。但由于条件及水平所限,实验结果还需完善。另外,本次实验无论是确定最佳酶组合还是最佳酶组合的最佳反应条件,以及后面的Maillard反应,DH值是一个主要的特征性指标。由Maillard反应结果看来,有一点是可以肯定的,那就是水解度过低或过高都会影响反应物的风味,而肯定有一个DH值下的酶解物经Maillard反应后得到的产物风味是最佳的。本实验确定的最佳DH值约为30%,还需进一步的研究和探索。

The study on the enzymatic hydrolysis of animal protein

Song Huanlu

Beijing Technology & Business University

Beijing, 100037

ABSTRACT

蛋白酶能将蛋白质水解成氨基酸吗

蛋白酶能将蛋白质水解成氨基酸吗 生物100(bio1297)——很用心的生物学,有态度的自媒体,关注中、高考和教学、科普的平台。点击标题下蓝字“生物100”免费关注,我们将为您提供有价值的生物学、有意思的生物学。蛋白酶是蛋白水解酶的简称,蛋白酶主要包括胃蛋白酶、胰蛋白酶、糜蛋白酶、弹性蛋白酶等。各种蛋白酶都水解肽键,但它们的专一性各不相同。胃蛋白酶催化具有苯丙氨酸、酪氨酸、色氨酸以及亮氨酸、谷氨酸、谷氨酰胺等肽键的断裂,使大分子的蛋白质变为较小分子的多肽。胰蛋白酶水解碱性氨基酸(赖氨酸、精氨酸)的残基与其他氨基酸的氨基形成的肽键,产物是以碱性氨基酸作为羧基末端的多肽和少量碱性氨基酸。糜蛋白酶水解芳香族氨基酸(苯丙氨酸、酪氨酸、色氨酸等)的残基与其他氨基酸的氨基形成的肽键,产物是以芳香族氨基酸作为羧基末端的多肽和少量芳香族氨基酸。弹性蛋白酶水解缬氨酸、亮氨酸、丝氨酸、丙氨酸等各种脂肪族氨基酸的羧基与其他氨基酸的氨基形成的肽键,产物是以脂肪族氨基酸作为羧基末端的多肽和少量脂肪族氨基酸。经过胃蛋白酶、胰蛋白酶、糜蛋白酶、弹性蛋白酶作用后的蛋白质,已经变成短链的肽和部分游离氨基酸。短肽又经羧肽酶和氨肽酶的作用,分别从肽段的C-端和N-端水解下氨基酸残基。羧肽酶有A、B两种,分

别称为羧肽酶A和羧肽酶B,前者主要水解由各种中性氨基酸为羧基末端构成的肽键,产物是寡肽和中性氨基酸。后者主要水解由赖氨酸、精氨酸等碱性氨基酸为羧基末端构成的肽键,产物是寡肽和碱性氨基酸。氨肽酶则水解氨基末端的肽键。寡肽再通过寡肽酶(氨基肽酶和二肽酶)水解成氨基酸。蛋白质经过上述各种酶的协同作用,最后全部转变为游离的氨基酸。综上所述,蛋白酶是能将蛋白质水解成氨基酸的。所以人教版选修一教材P:6:“蛋白酶能将豆腐中的蛋白质分解成小分子的肽和氨基酸”,以及P:46“碱性蛋白酶能将血渍、奶渍等含有的大分子蛋白质水解成可溶性的氨基酸和小分子的肽”的说法并无错误。

基因工程的现状及发展

基因工程的现状及发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因工程的现状及发展 研究背景: 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 目的意义: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型。 内容摘要: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 成果展示:

蛋白酶

8.蛋白酶(酸性、中性、碱性)的特征与相应的发酵微生物菌。 答:中性蛋白酶生产菌枯草杆菌1.398,S114,172,放线菌166,栖土曲霉3.942; 碱性蛋白酶生产菌地衣芽孢杆菌2709,短小芽孢杆菌289,209; 酸性蛋白酶生产菌黑曲霉3.350,宇佐美曲霉537,肉桂色曲霉No.81,浆油工业用的米曲霉3042。 按酶的最适pH分类: ①酸性蛋白酶,最适pH2.0-5.0。 ②中性蛋白酶,pH7-8。 ③碱性蛋白酶,pH9.5-10.5。 为方便起见,微生物蛋白酶常用此分类法。 酸性蛋白酶主要来源于哺乳动物的消化道, 如胃蛋白酶; 部分微生物是酸性蛋白酶的主要来源, 如:目前的商品酸性蛋白酶制剂主要是由黑曲霉发酵生产 分子特性: 酸性蛋白酶的最适pH在2-5范围, 酶蛋白的等电点在pI3-5, 分子量MW30,000-35,000。 ②催化特性: 酸性蛋白酶的最适温度因来源不同而有差异, 一般霉菌的蛋白酶的最适温度较高, 大部分在50-60℃范围, 而来源于动物胃粘膜的蛋白酶的最适温度较低, 一般在40℃左右, 但酸性蛋白酶的热稳定性都较差, 一般在50℃都很快失活, 此外, 酶的热稳定性还受到基质的pH的影响; 有些酸性蛋白酶不耐低温, 在低温条件下,很快失活。许多酸性蛋白酶分子中含5-10%多糖,对酶的稳定有益。 中性蛋白酶是最早用于酶制剂工业化生产的蛋白酶, 目前的微生物生产的商品酶制剂的菌种主要有: 枯草杆菌、耐热解蛋白芽孢杆菌、灰色链霉菌、寄生曲霉、米曲霉、栖土曲霉。 除上述微生物生产中性蛋白酶外, 来源于植物的木瓜蛋白酶、无花果蛋白酶、菠萝蛋白酶等都属于中性蛋白酶。 ①分子特性: 大部分微生物产生的中性蛋白酶属于金属蛋白酶, 一分子酶蛋白含有一个锌原子, 酶蛋白的分子量在35,000-40,000范围, 等电点pI 8-9, 微生物蛋白酶中, 中性蛋白酶的稳定性最差, 分子之间最容易发生自溶, 即使在低温条件下, 也会发生明显的自溶, 造成分子量明显降低。 ②催化特性: 中性蛋白酶的热稳定性较差, 如枯草杆菌的中性蛋白酶在pH7, 60℃处理15min, 失活90%; 栖土曲霉的中性蛋白酶在pH7, 55℃处理10min, 失活80%以上; 以酪蛋白为底物时, 枯草杆菌蛋白酶的最适pH7-8、热解蛋白芽孢杆菌的中性蛋白酶的最适pH7-9、栖土曲霉的中性蛋白酶pH6.5-7.5; 最适温度受测定时的反应时间有直接关系, 因为酶蛋白的稳定性较差, 所以反应时间的长短影响着反应结果, 一般在10-30min 最适温度为45-50℃。钙离子可以增加酶蛋白的稳定性,并减少自溶。 碱性蛋白酶主要是由微生物产生, 微生物中主要是细菌的部分菌种产生碱性蛋白酶, 目前碱性蛋白酶主要是用于洗涤剂、皮革工业、丝绸脱胶。 几乎所有的细菌碱性蛋白酶都是胞外蛋白酶, 主要包括两类: 其一是在中性条件下生产的碱性蛋白酶, 如枯草杆菌、地衣芽孢杆菌、短小芽孢杆菌等; 其二是嗜碱微生物, 其必须在碱性条件下[pH8-10]才能生产的碱性蛋白酶。 ①酶蛋白特性: 碱性蛋白酶的分子量比中性蛋白酶的分子量小, 一般在20,000-34,000Da, 而且等电点较高, 一般在pH8-9。 ②催化特性: 大部分碱性蛋白酶的最适pH在7-11范围, 当以酪蛋白为底物时, 最适pH为9.5-10.5, 碱性蛋白酶除能够水解肽键外, 还具有水解酯键的能力和转肽能力, 最适温度因菌种不同而有差异, 一般在50 ℃左右, 酶蛋白的热稳定性不高, 50-60℃处理15分钟, 几乎有50%的酶活力丧失, 我国目前生产的几种碱性蛋白酶的热稳定性一般都在60℃以下。 中性蛋白酶——枯草芽胞杆菌、栖土曲霉、灰色链霉菌、放线菌等 碱性蛋白酶——地衣芽孢杆菌、短小芽孢杆菌等 酸性蛋白酶——大都采用曲霉 中性蛋白酶作为一种内切蛋白酶,具有纯天然、安全无毒、水解能力强、作用范围广等。2、中性蛋白酶应用于焙烤,可降低面团湿筋度、改良面团可塑性及理化性质,同时使蛋白质大分子水解成短肽和氨基酸,从而有利于糖类和氨基

转基因研究的现状及发展

转基因研究的现状及发展 转基因作物是当今世界各国现代生物技术产业研究的热点,中国的转基因生物技术发展一、我国转基因作物的发展现状迅速,由于科学界对转基因作物对人类及生态环世界上最早的转基因作物诞生于年,是一境利与弊的争论,措政府应制定相应的政策、施对到种含有抗生素药类抗体的烟草。世纪年代,其进行安全管理。本文论述了转基因作物在国际农业生物技术已逐渐成为各国现代生物技术产业研国内的发展现状,分析了转基因作物对人类及生态环境的利与弊以及关于我国转基因作物安全管究的热点。 转基因技术的应用 1.在畜牧兽医中的应用 应用于动物抗病育种转基因技术可以用于动物抗病育种,通过克隆特定基因组中的某些编码片段,对之加以一定形式的修饰以后转入畜禽基因组,如果转基因在宿主基因组能得以表达,那么畜禽对该种病毒的感染应具有一定的抵抗能力,或者应能够减轻该种病毒侵染时对机体带来的危害。(其用于遗传育种,不仅可以加速改良的进程,使选择的效率提高,改良的机会增多,并且不会受到有性繁殖的限制。)例如Clements等将绵羊髓鞘脱落病毒的表壳蛋白基因转入绵羊,获得的转基因动物抗病力明显提高;丘才良把一种寒带比目鱼抗冻基因成功地转移到大西洋鲑中,为提高某些鱼类的抗寒能力做了积极的尝试。 2.在医学领域中的应用 用于生产药用蛋白用转基因动物的乳腺生产重组蛋白(乳腺生物反应器)可能是转基因动物的最大应用,这也是世界范围内转基因研究的热点之一。Swamdom (1992)用β-球蛋白的4个核酸酶I的高敏位点与人的两个基因相连,融合基因产生的转基因猪与鼠的原型相似。目前,把转基因动物当作生物反应器来生产药用蛋白已经受到国际社会的极大关注,不仅各国政府投资,一些私人集团也不惜投入大量资金加以研究和开发。 3.转基因的应用存在的问题及展望 (1)转基因表达水平低,许多转基因的表达强烈地位受着其宿主染色体上整合位点的影响,往往出现异位表达和个体发育不适宜阶段表达,影响转基因表达能力或基因表达的组织特异性,从而使大部分转基因表达水平极低,极少部分基因表达水平过高。 (2)难以控制转基因在宿主基因组中的行为,转基因随机整合于动物的基因组中,可能会引起宿生细胞染色体的插入突变,还会造成插入位点的基因片段丢失,插入位点周围序列的倍增及基因的转移,也可能激活正常状态下处于关闭状态的基因。 (3)不了解哪些基因控制多数生理过程,不了解基因表达的发育控制和组织特异性控制的机制。 (4)制作转基因动物的效率低,这是目前几乎所有从事转基因动物研究的实验室都面临的问题,也是制约着这项技术广泛应用的关键。 (5)对传统伦理是一种挑战,对人类的生存有一定的负面作用等。 当然,我们不能因为这些缺点的存在就否定转基因技术的研究价值。因为它作为一种新兴的生物技术,配合其他相关的生物技术将具有广阔的应用前景。随着这一技术日趋成熟,许多问题有望逐步得到解决。

木瓜蛋白酶最适PH值和温度

木瓜蛋白酶最适PH值和温度 木瓜蛋白酶﹙Papain﹚是由种植的番木瓜未成熟果实中割取乳液经采用生物技术提取、微滤、超滤、冷冻干燥提练而得的纯天然、健康、安全、高效的生物酶制剂。本品是蛋白酶混合物,含木瓜蛋白酶、木瓜凝乳酶、木瓜肽酶。有很强的蛋白水解催化活性及凝乳、溶菌活性,还具备脂解能力及蛋白合成能力,主要是催化蛋白质水解,切割分解点很多,优先分解精氨酸,苯丙氨酸的肽鍵。木瓜蛋白酶是由212个氨基酸组成,分子量为21000,属于含疏基﹙—SH﹚肽链内切酶,由于木瓜蛋白酶具有酶活高,热稳定性好,可广泛应用于食品、医药、日化、饲料、皮革及纺织等行业。 一、酶解原理 在一定温度,PH值及底物浓度下,木瓜蛋白酶能够分解蛋白质生成蛋白胨,多肽及氨基酸等物质。 二、活力定义 紫外光分光度法:在测定条件(37±0.2℃;PH值7.0)每分钟水解酪蛋白释出的三氯乙酸可溶物在275nm波长有吸光度与1微克酪氨酸的吸光度相当时,所需的酶量即为一个活力单位,用u/g表示。 三.木瓜酶最适PH值 木瓜蛋白酶的最适pH值:每个酶都有最适pH,在此pH下催化反应的速率是它的最高值。木瓜蛋白酶可进行催化反应的pH作用范围是3.5~9,最适pH范围是5~7。 四、木瓜酶最适温度 木瓜蛋白酶的最适温度:木瓜蛋白酶最佳温度是50~60℃,最佳的温度必然受作用时间的影响,较短的作用时间必须有较高的最适温度,较长的作用时间必须有较低的最适作用温度,这是木瓜蛋白酶与其他酶类的共同特点。 木瓜蛋白酶的有效作用温度范围是20~80℃。这个温度范围既适合木瓜乳汁生产粗酶的温度,也适合木瓜蛋白酶在一定条件下的活性反应作用。超过80℃时,木瓜蛋白酶活性会下降,当温度升到90℃时木瓜蛋白酶会钝化。

蛋白酶的种类

蛋白酶的论述 摘要:蛋白酶(英语:Protease)是生物体内的一类酵素(酶),它们能够分解蛋白质。分解方法是打断那些将氨基酸连结成多肽链的肽键。抑制蛋白酶活性的小分子化合物被称蛋白酶抑制剂。许多病毒蛋白酶的抑制剂是很有效的抗病毒药。 1.木瓜蛋白酶 1.1木瓜蛋白酶简介 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 1.2木瓜蛋白酶的特点 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含巯基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。木瓜蛋白酶由212个氨基酸残基组成,当用氨基肽酶从N末端水解掉分子中的2/3肽链后,剩下的1/3肽链仍保持99%的活性,说明木瓜蛋白酶的生物活性集中表现在C末端的少数氨基酸残基及其所构成的空间结构区域。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。存在于木瓜胚乳中的蛋白酶。EC3.4.22.2。作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 酪蛋白被木瓜蛋白酶降解生成的酪氨酸在紫外光区 275nm 处有吸收峰。1.3木瓜蛋白酶物理化学性质 本品为乳白色至微黄色粉末,具有木瓜特有的气味,稍具有吸湿性。水解蛋白质能力强,但几乎不能分解蛋白胨,易溶于水,甘油,不溶于一般的有机溶剂,耐热性强。由木瓜制得的商品酶制剂中,含有如下三种酶:(1)木瓜蛋白酶,分

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。?在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。?随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。? 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。?目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

动物转基因技术及其应用

动物转基因技术及其应用 摘自(作者:幸宇云任军江西农业大学来源:《百名专家谈转基因》) 转基因是指利用现代分子生物学技术,将某些生物的基因导入到其他物种中,由于导入基 因的表达,引起这些物种性状发生可遗传的变化。转基因动物就是利用转基因技术获得的、具 有正常表达和可稳定遗传外源基因的动物。自1982年第一只转基因动物——一只因导入大鼠 生长激素基因而使生长速度倍增的转基因鼠诞生以来,各种转基因动物,如鱼、兔、猪、牛、 羊等先后问世,1997年,举世轰动的“多莉”克隆羊的诞生使转基因克隆动物成为现实,转 基因动物研究得到了进一步发展。 生产转基因动物的方法有很多,如:显微注射法、精子载体法、逆转录病毒载体法、胚胎 干细胞介导法、体细胞克隆介导法、人工染色体介导的基因转移法等,这些方法各有其优缺点,在转基因动物生产中有着不同程度的应用。 显微注射法是动物转基因技术中最早使用的方法。1982年,美国人Gordon就是利用这种 方法获得了名噪一时的转基因鼠。其基本原理是在显微镜下直接将目的基因注射到受精卵细胞 的原核内,在目的基因与胚胎基因组融合后进行体外培养,最后移植给受体母畜“借腹怀胎”。这种方法的优点是:可靠性高,重复性好,目的基因的整合效率相对较高,导入基因片段的大 小和类型不受限制,转基因在世代之间可以稳定遗传。该方法也有其缺点,主要体现在导入基 因整合的随机性和不可见性,这样会导致基因表达不稳定及可能出现不希望的插入突变。该方 法成功的范例很多,如:美国科学家Hammer等在1985年获得一批转基因兔、绵羊和猪;荷兰 科学家KrimPenfort等于1991年获得了转基因牛;1985年,我国朱作言院士等成功获得了世 界上首例转基因鱼;由中国农业大学李宁院士领导的课题组于2008年获得了一头导入人CD20 抗体基因的转基因奶牛——贝贝。 有的学者另辟蹊径,创立了精子载体转基因法。该方法是将精子与目的DNA进行预培养后,使精子具有携带目的基因进入卵子的能力,精子与卵子结合后,该基因被整合到受精卵的DNA 中。同显微注射法相比,该方法有几个明显的优点:无需显微注射操作,不会对胚胎造成损伤,整合率高,成本很低,不需要对动物进行胚胎移植手术处理等。但该方法成功率不高、效果不 稳定,有待科研人员进一步探索和改进。与显微注射法相比,该方法成功的例子不多。1989 年意大利Lavitrano等首次报道利用精子载体法获得转基因鼠;1996年意大利Sperandio科 研小组报道了采用该方法生产转基因牛和猪。 谈到病毒,人们往往面容失色,殊不知病毒在科学上有很多妙用。逆转录病毒是一种RNA 病毒,在转基因技术中有着独特的应用。人们将目的基因结合到逆转录病毒上,通过病毒感染 可将目的基因插入到宿主基因组中去。该方法具有可同时感染大量胚胎、不需要昂贵的显微注 射设备等优点,但也存在插入外源DNA大小有限、外源基因易发生重排和丢失、逆转录病毒的 序列可能干扰转基因表达等缺点。应用该方法,美国人Salter等(1987)生产出转基因鸡; 德国学者Hofmann等获得绿色荧光蛋白转基因猪(2003),随后又生产出转基因牛(2005); 来自冷泉港实验室的Michael获得能够发荧光的山羊(2006)。 胚胎干细胞是生命体中保留的未成熟细胞,具有再分化形成其他细胞和组织器官的潜力, 被称为“万能细胞”。利用胚胎干细胞生产转基因动物的原理是将外源基因导入分离好的胚胎 干细胞,然后将转基因的胚胎干细胞注射于受体动物胚胎后,参与宿主的胚胎融合形成嵌合体,从而得到转基因动物。这一方法的优点是可以对胚胎干细胞进行特定选择。缺点是目前只有小 鼠干细胞系比较成熟,而家畜干细胞系还未完全建立,有不少问题尚待解决。 体细胞克隆介导的转基因是动物转基因技术中的“高级版本”。说到体细胞克隆,很多人都会想到一位“动物明星”——多莉羊,它是于1997年由英国Wilmut等获得的杰作。转基因 克隆技术是转基因技术和动物克隆技术的有机结合,其基本原理是将目的基因导入动物体细胞

蛋白酶的种类

蛋白酶的种类 1.木瓜蛋白酶 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。

2.胃蛋白酶 胃蛋白酶(英文名称:Pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶原由胃底主细胞分泌,在pH1.5~5.0条件下,被活化成胃蛋白酶,将蛋白质分解为胨,而且一部分被分解为酪氨酸、苯丙氨酸等氨基酸。可分解蛋白质中苯丙氨酸或酪氨酸与其他氨基酸形成的肽键,产物为蛋白胨及少量的多肽和氨基酸,该酶的最适pH为2左右。 3.中性蛋白酶 中性蛋白酶是由枯草芽孢杆菌经发酵提取而得的,属于一种内切酶,可用于各种蛋白质水解处理。在一定温度、PH值下,本品能将大分子蛋白质水解为氨基酸等产物。可广泛应用于动植物蛋白的水解,制取生产高级调味品和食品营养强化剂的HAP和HVP,此外还可用于皮革脱毛、软化、羊毛丝绸脱胶等加工。 利用中性蛋白酶的酶促反应,可把动植物的大分子蛋白质水解成小分子肽或氨基酸,以利于蛋白质的有效吸收和利用,其水解液AN%高,水解度高,风味佳,已广泛用于生产高级调味品和食品营养强化剂,各种动物来源性抽提物生产功能性骨、肉提取物(骨素)、水产提取物、蛋白胨、肽等及研究开发一些高附加值的功能食品。

蛋白酶活性的测定

实验四蛋白酶活力的测定 一、实验目的 1、了解蛋白酶活力测定的原理; 2、掌握蛋白酶活力测定的方法。 二、实验原理 蛋白酶在一定条件下不仅能够水解蛋白质中的肽键,也能够水解酰胺键和酯键,因此可用蛋白质或人工合成的酰胺及酯类化合物作为底物来测定蛋白酶的活力。 本实验选用酪蛋白为底物,测定微生物蛋白酶水解肽键的活力。酪蛋白经蛋白酶作用后,降解成相对分子质量较小的肽和氨基酸,在反应混合物中加入三氯醋酸溶液,相对分子质量较大的蛋白质和肽就沉淀下来,相对分子质量较小的肽和氨基酸仍留在溶液中,溶解于三氯醋酸溶液中的肽的数量正比于酶的数量和反应时间。在280nm波长下测定溶液吸光度的增加,就可计算酶的活力。 三、实验试剂 ①微生物蛋白酶萃取液(ml):称取酶制剂,加100ml蒸馏水搅拌30min,在4℃下离心分离后,将上层清夜置于冰箱中保存,使用前稀释一定倍数; ②L磷酸盐缓冲液(); ③1%酪蛋白溶液:取酪蛋白,加100ml L磷酸盐缓冲液(),加热并搅拌使它完全分散,然后置于冰箱中保存; ④5%三氯醋酸(TCA)溶液。 四、实验步骤 1、将5%TCA溶液和1%酪蛋白溶液在37℃下保温。 2、取四支15ml具塞试管,分别标上记号A1、A0、B1和B0。在A1和A0试管中各吸入酶液,在B1和B0试管中各吸入酶液,分别用L磷酸盐缓冲液定容至。在

A0和B0试管中各吸入%三氯醋酸溶液,上述四支试管都置于37℃水浴中保温。 3、在各试管中吸入 1%酪蛋白溶液,在37℃下保温10min(准确计时)后,再向A1和B1试管中吸入%三氯醋酸溶液。 4、将试管从水浴中取出,在室温下放置1h,用少量上清液润湿滤纸后过滤,保留滤出液。 5、在280nm波长下,分别以A0和B0滤液为空白,测定A1和B1滤液的吸光度。 五、计算 1、在规定的实验条件下,以每分钟增加吸光度定义为一个酶单位。 2、每克酶制剂中酶活力的计算: ?A ×1000 / (t ×w) 酶活力单位/克酶制剂 式中,?A——样品与空白吸光度差值(即A1和B1的吸光值);t ——酶作用时间(本实验为10min);w——反应中酶的用量,g 六、说明 1、微生物蛋白酶粗提取液在较宽广的PH范围表现出活力,但是在接近中性条件下最有最高活力。 2、微生物蛋白酶在45℃以下可保持较长时间的稳定性。 七、思考题 1、蛋白酶有哪几类 2、影响酶活力的因素有哪些 3、使用紫外分光光度计时应注意哪些问题 六、数据记录与处理 A1 = B1 = 酶含量为 ml 酶活力1 = ?A × 1000 / (t × w) = ×1000/10/=×105酶活力单位/克酶制剂

大豆蛋白酶解的研究

收稿日期:2005-11-17 修回日期:2005-12-22 作者简介:李大明,男,1982年出生,在读硕士,从事植物蛋白酶解及天然级热反应肉味香精的研究。 大豆蛋白酶解的研究 李大明,宋焕禄,祖道海 北京工商大学化学与环境工程学院 (北京 100037) 摘 要:用几种常用蛋白酶对大豆蛋白进行酶解,利用均匀设计安排试验,确定各种酶的最佳 酶解条件,并以水解度(DH )为考察标准,选出水解度最大的酶,确定其最佳加酶量和酶解时间。 关键词:大豆蛋白;水解植物蛋白(HVP );水解度(DH );酶解;均匀设计中图分类号:TS201.1 文献标识码:B 文章编号:1672-5026(2006)02-0020-04 Study on enzymatic hydrolysis of soybean protein Li Daming ,Song Huanlu ,Zu Daohai College of Chem ical and Envi ronmental Engi neeri ng ,Beiji ng Technology and B usi ness U niversity (Beiji ng 100037) Abstract :The enzymatic hydrolysis of soybean protein by several normal enzymes is studied.The best condition for enzymatic hydrolysis by experiments uniform designed is confirmed.Making hydrol 2ysis degree (DH )as the standard ,the best adding amounts and hydrolysis time of enzymes whose DH are largest are got. K ey w ords :soybean protein ;hydrolyzed vegetable protein (HVP );hydrolysis degree (DH );en 2zymatic hydrolysis ;uniform designs 大豆蛋白的营养价值很高,含有丰富的优质蛋白质,可以提供充足的人体所需的八种必需的氨基酸以及多种维生素和矿物质等[1]。水解植物蛋白(HVP )是一种营养型食品添加剂,以其柔和丰满的鲜美口感广泛用于肉产品加工、方便面、膨化食品以及调味品中[2]。特别是在Maillard 反应制备肉味香精的研究中,HVP 作为一种前体物质和丰富的氨基酸源得到广泛的应用。Cadwallader 等人以酶解大豆蛋白为前体物质通过Maillard 反应制备肉味香精,并通过GC -MS 和GCO 检测分析出大量特征香味物质[3]。因此HVP 在绿色食品添加剂的生产中将得到广泛的应用。 目前工业上主要采用酸水解法生产HVP 。但酸水解反应条件激烈,会破坏氨基酸,此外,酸水解 法会产生1,3-二氯-2-丙醇(1,3-DCP )和3-氯-1,2-丙二醇(3-MCPD )具有致癌性[4]。酶法水解具有条件温和、副反应少、水解程度容易控制,特别是在营养成分的保留上,具有不可比拟的优点。随着酶工业的发展,酶解方法将替代酸法,成为水解大豆蛋白最有效的方法之一。 1 材料与方法 111 材料 11111 试验原料与主要试剂。豆粕,购于北京和田 宽酿造厂;甲醛溶液,优级纯,北京市旭东化工厂;L -酪氨酸,BR ,上海政翔化学试剂研究所;福林酚试剂,Sigma F -9252,北京欣经科生物技术有限公司;干酪素,BR ,北京双旋微生物培养基制品厂;复合风味酶(Flavozyme )、复合内切酶(Protamex )和碱性内切酶(Alcalase ),Novo Nodisk 公司;其他化学试剂均为分析纯;试验用水为蒸馏水。 2Vol.13,2006,No.2 粮食与食品工业 Cereal and Food Indust ry 食品科技

蛋白酶

一、蛋白酶将蛋白质变成了氨基酸还是多肽还是都有? 1、都有,主要是多肽,有少量氨基酸。 不同的蛋白酶所催化的肽键不同,即是不同的蛋白酶能使不同的肽键(不同的氨基酸形成的)断裂。有可能某蛋白酶(或多种蛋白酶)水解蛋白质时正好有单个的氨基酸生成。因此,蛋白质在蛋白酶的催化下水解的产物不能理解为只有多肽,而应该表述为主要产物是多肽,同时也有少量游离氨基酸生成。 2、如果是外切酶就是从两端切的酶就会产生氨基酸,如果是内切酶如常见的胃蛋白酶、胰蛋白酶就会从中间切,产生多肽。那个多取决于是内切酶还是外切酶 3、如果是蛋白酶的话,水解蛋白质的结果一定是多肽啦~~ 水解成多肽后,经肽酶进一步水解成氨基酸~ 4、从事实出发,我认为都有,这不仅与酶有关,和蛋白质本身也有关,一些蛋白质本来结构就相对简单。从高中考察的范围而言,我建议最好认为是多肽链,尤其在考试时,若不是“彻底水解”的提法,说变成氨基酸一般会错,因为命题指向通常是多肽链。 二、蛋白质在胃蛋白酶和胰蛋白酶的作用下变成氨基酸的反应属 于什么类型? 属于蛋白质的酶促降解,蛋白质先在蛋白酶的作用下分解成肽链,再在肽酶的作用下分解成氨基酸 三、胃蛋白酶、胰糜蛋白酶水解蛋白质获得的都是芳香族氨基 酸? 糜蛋白酶水解苯丙氨酸、酪氨酸、色氨酸等疏水残基的羧基形成的肽键。 糜蛋白酶水解疏水残基之间的肽键。 如果只用一种酶消化,得到的是各种长度不等的肽段,以及少量游离氨基酸。这些游离氨基酸中,有芳香族的,也有其它氨基酸。可能芳香族的稍多一些。 糜蛋白酶水解芳香族氨基酸的羧基形成的肽键,并不是直接将芳香族氨基酸切下来。 四、碱性蛋白酶可以催化蛋白质及其多肽的水解吗? 碱性蛋白酶(胰蛋白酶)可以催化蛋白质及其多肽的水解,胃蛋白酶(酸性条件下有催化作用)将蛋白质分解为多肽。 五、胰蛋白酶在催化蛋白质水解的时候为什么要先将肽链羰基极

转基因动物及其在医学中的应用

转基因动物及其在医学中的应用 转基因动物是指通过加减特定的DNA片段而改变了基因构成和性状 的动物,也可以认为是指体内基因组中稳定地整合有外源基因的动物。该项技术始于80年代初,很快便成为研究动物基因表达特性及其功能的重要手段,在基因表达的调控机制等方面的基础理论研究、家畜家禽的遗传性状改造、培育能为人类提供器官移植材料的家畜、培育人类疾病的模型动物、作为生物反应器主产工业和医学所需要的珍贵生物活性蛋白等方面被广泛应用。本文主要对其在人类医学方面的应用现状及前景作以论述。 1转基因动物的制备技术 用以培育转基因动物的技术叫做转基因技术或基因转移。其总体过程是:首先从某种动物分离目的基因或人工构建该目的基因,把该目的基因在体外进行重组和扩增,然后再把加工好的目的基因设法导入另一个同种或异种动物受精卵的原核内(或细胞质内),使其稳定地整合到受体细胞的基因组中,最后使该受精卵发育成携带外源目的基因的个体,即产生了转基因动物。目前常用的转基因技术主要有: 1)原核内显微注射法是将在体外构建的目的基因,在显微操作仪下用极细的微吸管注射到处于原核时期的受精卵的原核中,让这种外源基因通过某种方式整合到受体细胞的基因组中去,以实现转基因的目的。 2)转染技术主要以RNA病毒或DNA病毒为载体,在体外将目的基因或连同启动子等序列一同重组到病毒的核酸载体上。再让该病毒感染受精卵或胚胎于细胞,利用载体病毒具有主动整合到受体细胞基因组中去的特性,让其连同所携带的目的基因等也一同整合到受体细胞的基因组上去。 90年代后又出现了两种较新的方法,即基因剔除和基因楔入技术。 3)细胞载体技术主要使用胚胎干细胞(ES)作为操作对象。胚胎干细胞是从哺乳动物早期胚胎的内细胞团中分离得到的一种二倍体细胞,可在体外培养并保持全能分化的潜能,一旦回复到适当的环境条件下即可形成胚系集落。可以用转基因技术将外源目的基因转移到胚胎干细胞中,通过同源重组或转换的方法使外源基因整合到胚胎干细胞的基因组中。而且,还可以根据由于外源基因的插入所产生的基因表达方面的改变,来对胚胎干细胞进行预筛选,从而大大提高转基因的成功率。被转基因后的胚胎干细胞经鉴定后可被移植到正常发育的囊胚中,再将囊胚导入假孕的代理母亲子宫内发育而产生出嵌合体动物,然后与正常的雄性动物交配即可获得生殖系携带外源基因的纯合转基因动物。 目前还有用快速分裂的哺乳动物乳腺肌上皮细胞或小鼠精子作为细胞载体。 2转基因动物在医学中的应用

大豆蛋白酶解产物功能特性的研究进展#(优选.)

大豆蛋白酶解产物功能特性的研究进展 摘要:总结了大豆蛋白酶解产物功能特性,主要阐述了大豆蛋白酶解产物的生物活性肽功能特性、轻度酶解产物功能特性以及苦味肽,并作出了展望。 关键词:大豆蛋白酶解产物生物活性肽轻度酶解苦味肽功能特性 由于大豆蛋白的高营养价值和低成本使它在食品工业 上的应用日益广泛,在过去十年里,大豆蛋白开始应用到咖啡增白剂、乳品饮料、蛋黄酱和可食用膜等产品当中。然而,大豆蛋白本身的溶解性,热稳定性,乳化性和起泡性限制了它在某些食品中的应用。通过蛋白酶水解来改善大豆蛋白的功能特性是目前比较可行的方法之一,以下将对酶解所产生的不同分子量的产物特性进行具体阐述。 1 生物活性肽功能特性 大豆活性肽的分子量范围大多在500~2000之间,大部分可以直接被人体吸收。在较宽的pH范围内有很好的溶解性,持水能力比原蛋白有很大提高。其生物活性主要有以下几个方面。 1.1 降血脂和胆固醇 国外专家研究指出,增加膳食中大豆活性肽含量,可以

降低血清胆固醇浓度。在小鼠喂饲试验中,添加大豆活性肽有利于降低极低密度脂蛋白合成,从而促进肝脏载脂蛋白的合成,防止脂肪在肝脏的积累,促进脂肪的运输和代谢。 1.2 抗氧化活性 大豆活性肽的抗氧化活性明显高于大豆蛋白本身。酶解是提高大豆蛋白抗氧化性的有效方法之一,大豆活性肽的抗氧化性是多肽氨基酸序列的一种本质特性。不同的酶,其水解专一性不同,导致水解产物的抗氧化性也不同。大豆活性肽对小鼠体内脂肪过氧化抑制作用强于酪蛋白活性肽,在对红血球抗氧化防御能力的提高方面与酪蛋白活性肽相当,可增强红血球对自由基的攻击抵抗作用。 1.3 低过敏原性 很多食物中由于过敏原的存在,会导致一些特异性过敏反应,如一些皮肤病、呼吸道疾病甚至过敏性休克就是由于这个原因所引起。大豆蛋白中也存在着过敏原,但已有研究表明,蛋白降解是降低或消除过敏原的有效方法。通过酶免疫测定法对大豆活性肽的抗原性进行测定,结果指出,活性肽抗原性比大豆蛋白降低1%~2%。 1.4 降血压 血压在血管紧张素转换酶(ACE)的作用下进行调节,血管紧张素I不具有活性,在ACE作用下可以转变为血管紧张素Ⅱ。血管紧张素Ⅱ具有收缩血管平滑肌的功能,从而引

木瓜蛋白酶水解海洋鱼鳞蛋白的工艺研究

木瓜蛋白酶水解海洋鱼鳞蛋白的工艺研究 杨丽虹1,吴琴琴1,唐旭2,徐长安2,何建林2 (1.厦门大学海洋系,福建厦门 361005)(2.国家海洋局第三海洋研究所,福建厦门 361005) 摘要:研究了木瓜蛋白酶水解鱼鳞蛋白的单一影响因素,并采用L9(34)正交实验,考察了温度、时间、酶量、底物浓度等因素对水解鱼鳞蛋白的影响。确定了木瓜蛋白酶水解鱼鳞蛋白工艺条件,即温度65 ℃,时间75 min,酶量0.04 g/g鱼鳞,底物浓度10%,适合规模化生产。 关键词:木瓜蛋白酶;海鱼鳞蛋白;水解 文章篇号:1673-9078(2011)12-1484-1486 Hydrolysis Process of Sea-fish Scale Protein Catalyzed by Papain YANG Li-hong1, WU Qin-qin1, TANG Xu2, XU Chang-an2, HE Jian-lin2 (1.Department of Oceanography, Xiamen University, Xiamen 361005, China) (2.Third Institute of Oceanography, SOA, Xiamen 361005, China) Abstract: Hydrolysis of the protein from sea-fish scales by papain was studied using orthogonal experiment method. Effects of several factors on hydrolysis were investigated. Based on the research work, the optimum treatment condition was summarized as follows: temperature 65 ℃, hydrolysis time 75 minutes, enzyme 0.04 g/g scale and substrate concentration 10%. The result indicated that the conditions were suitable for large-scale production. Key words: papain; sea-fish scales protein; hydrolysis 改革开放以来,海洋水产品加工方面取得了长足的进步。也产生了占30%的废弃物,其中有10%的左右鱼鳞资源未得到很好利用[1]。鱼鳞中含有丰富的胶原蛋白,是动物体内含量最丰富的蛋白质[2]。具有促进伤口癒合和组织修复的重要功能[3]。同时水解鱼鳞蛋白的主要产物胶原肽,也具有保护胃粘膜、抗溃疡、抑制血压上升,促进骨形成、皮肤胶原代谢等营养及生理功能,在食品及医药等领域具有巨大的开发前景[4]。由于目前,陆生动物资源的生物危险性不断增大,因此,水生动物资源特别是丰富的海洋生物资源越来越受到关注。利用生物酶方法水解鱼鳞比酸碱法条件要温和,效率更高,而且对环境污染小。其酶解产物中含有丰富的小分子肽,更容易被生物体吸收利用,可以有效地缓解细胞衰老,并且有抗菌、抗肿瘤等功效。本文主要探索木瓜蛋白酶酶解海洋鱼鳞蛋白的工艺条件,为进一步开发利用海洋鱼类资源,制造功能性食品发掘新的途径。 1 材料和方法 1.1 实验材料 收稿日期:2011-08-25 基金项目:国家海洋局第三海洋研究所科研基本业务费(海三科2009006) 作者简介:杨丽虹(1989-),女,本科生,海洋化学专业 美国红鱼鱼鳞:购自福建东山,经洗涤、脱脂和脱钙处理后干燥备用;木瓜蛋白酶:南宁庞博生物工程有限公司,酶活力80万U/g。 电子天平:METTLER TOLEDO AL104型;烘箱:上海恒一科学仪器公司,DHG-9240A型;酶标仪:美国分子仪器公司,SpectraMax M5型;pH计:Sartorius PB-10型。 化学试剂购:自汕头西陇化工有限公司。其中碳酸氢钠为食品级其他均为分析纯。 1.2 实验工艺流程 脱脂脱钙鱼鳞→前处理→酶解→灭酶→离心过滤→酶解液 1.3 分析方法[5] 氨基酸态氮:甲醛滴定法;粗蛋白:微量凯氏定氮法;氨基酸显色反应:茚三酮显色法;水解度[6,7]:以水解液中的肽键数目与原料中总肽键数目的百分数表示, 即:% 100 DH× = 原料总氮 水解液氨态氮 1.4 酶解前处理 脱脂、脱钙[8]干鱼鳞称重,在稀碳酸氢钠溶液中浸泡过夜,然后用清水洗至中性。80 ℃加热5 h预处理。 1484

相关文档
最新文档