二元一次不等式表示平面区域
课程资料:二元一次不等式(组)表示的平面区域
3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y
≥
a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O
域
x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)
二元一次不等式(组)与平面区域 课件
|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.
二元一次不等式表示的平面区域(2)
4x+y=10
18x+15y=66 x 1 2 3 4
探究拓展
(1)画出不等式(x+2y-1)(x-y+3)>0表示的 区域 解: y x-y+3=0
o
x x+2y-1=0
2 将如图阴影部分用二元一次 不等式组表示出来。
2 x y 4 0 0 y 2 x 0
B -2
O 1
C 2 x
的下方, 且在直线BC的上方, 故 x, y 满足 的条件为 2 x y 4 0 ,
ABC内任意一点x, y 都在直线AB, AC
2x y 4 0 , y 0.
例3.一个化肥厂生产甲、乙两种混合肥料, 生产1车皮甲种肥料需用的主要原料是磷酸 盐4吨,硝酸盐18吨,生产1车皮乙种肥料 需用的主要原料是磷酸盐1吨,硝酸盐15吨, 现有库存磷酸盐10吨,硝酸盐66吨。如果 在此基础上进行生产,设x,y分别是计划 生产甲、乙两种混合肥料的车皮数,请列 出满足生产条件的数学关系式,并画出相 应的平面区域。
例2
如图, ABC 三个顶点坐标为 A0,4 ,
y
B 2,0 , C 2,0 , 求 ABC 内任 一点 x, y
解 写出ABC三边所在的直线方程 :
所满足的条件 .
4A
AB : 2 x y 4 0 ; AC : 2 x y 4 0 ;
BC : y 0 .
x 0 y 0 x y 3 所表示的平 0
3.求不等式组 面区域内的整点个数。
10个
(4).由y≤2和|x|≤y≤|x|+1围成的几何
图形的面积是
3
。
寻求二元一次不等式(组)所表示的平面区域的方法
寻求二元一次不等式(组)所表示的平面区域的方法东北师范大学 熊明军 大连理工大学 曾玲莉简单线性规划问题是高考必考知识点,而其基础在于研究二元一次不等式(组)所对应的平面区域.下面介绍一些方法来快速准确地确定二元一次不等式(组)所表示的平面区域.方法一:直线定界,特殊点定域找出一个二元一次不等式(组)在平面直角坐标系内所表示的平面区域的基本方法是:①画直线②取特殊点③代值定域④求公共部分①画直线──作出各不等式对应方程表示的直线(原不等式带等号的作实线,否则作虚线);②取特殊点──平面直角坐标系内的直线要么过原点,要么不过原点;当直线过原点时我们选取特殊点或(坐标轴上的点),当直线不过原点时我们选取原点做特殊点;③代值定域──将选取的特殊点代入所给不等式:如果不等式成立,则不等式所表示的平面区域就是该特殊点所在的区域;如果不等式不成立,则不等式所表示的平面区域就是该特殊点所在区域的另一边.④求公共部分──不等式组所确定的平面区域,是各个二元一次不等式所表示平面区域的公共部分.例1 画出不等式组所表示的平面区域.解析:①画直线:不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②取特殊点:直线过原点,可取特殊点;直线不过原点,可取特殊点.③将代入,即,不等式不成立,直线另一侧区域就是不等式所表示的平面区域;将代入,即,不等式成立,则原点所在区域就是不等式所表示的平面区域.(图一)④求公共部分:如图二所示公共部分就是不等式组所表示的平面区域.方法二:法向量判定法由平面解析几何知识知道直线(不同时为0)的一个法向量为.以坐标原点作为法向量的始点,可以利用向量内积证明如下结论:(1)不等式(),不等式表示的平面区域就是法向量指向的区域;(大于同向)(2)不等式(),不等式表示的平面区域就是法向量反向的区域;(小于反向)例2画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是,法向量;不等式对应的直线方程是,法向量;在平面直角坐标系中作出直线与及其相应的法向量(如图).②由于不等式(),平面区域是法向量指向的区域(图一);不等式(),平面区域是法向量反向的区域(图二).③然后求的公共部分就是不等式组所表示的平面区域.方法三:未知数系数化正法直线(不同时为0)含有两个未知数,于是我们可以将未知数的系数分为两类:项系数与项系数来研究.(1)项系数化正法:顾名思义就是利用不等式性质,不等号两边同时(移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的上方;反之为下方)有结论:项系数正值化:上;下.例3画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②将不等式组中每个不等式项系数正值化,得或(移项).③关于的不等式()即(或者),直线上方的区域就是该不等式所表示的平面区域(图一);关于的不等式()即,直线下方的区域就是该不等式所表示的平面区域(图二).④然后求的公共部分就是不等式组所表示的平面区域.(2)项系数化正法:同(1)一样,不等号两边同时(或移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的右方;反之为左方)有结论:项系数正值化:右;左.可结合例3来对项系数化正法进行理解.上述方法中,方法一是寻找二元一次不等式所表示的平面区域的常规方法,思维回路较长,适合对理论的学习,但要快速准确地解决简单的线性规划问题就必须掌握方法二或方法三中之一.2011-05-04 人教网。
高考专题练习: 二元一次不等式(组)及简单的线性规划问题
1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。
3.3.1二元一次不等式(组)与平面区域
§3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域学习目标 1.了解二元一次不等式(组)表示的平面区域;2.会画出二元一次不等式(组)表示的平面区域(重、难点).预习教材P82-85完成下列问题:知识点一二元一次不等式(组)表示平面区域1.二元一次不等式(组)的概念含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为二元一次不等式组.2.二元一次不等式与平面区域在平面直角坐标系中,二元一次不等式Ax+By+C>0(<0)表示直线Ax+By+C =0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax+By+C≥0(≤0)表示的平面区域包括边界,把边界画成实线.【预习评价】1.二元一次不等式的一般形式是什么?提示二元一次不等式的一般形式是Ax+By+C>0,Ax+By+C<0,Ax+By +C≥0,Ax+By+C≤0,其中A,B不同时为0.2.每一个二元一次不等式(组)都能表示平面上的一个区域吗?提示不一定.当不等式组的解集为空集时,不等式组不表示任何图形.知识点二二元一次不等式表示的平面区域的确定平面区域的确定依据直线Ax+By+C=0同一侧的所有点,把它们的坐标(x,y)代入Ax+By+C所得符号都相同方法在直线Ax+By+C=0的一侧取某个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域【预习评价】1.原点与点(-1,10)在直线x+y-1=0的________(填“同侧”或“两侧”).解析将点(0,0)和(-1,10)代入到x+y-1中符号相反.答案两侧2.已知点A(2,1),B(1,0),C(-1,0),则不等式x-2y<0表示的平面区域内的点是________.解析由于-1-2×0=-1<0,故符合.而2-2×1=0,1-2×0>0.所以符合的为点C.答案C题型一二元一次不等式与平面区域【例1】(1)如图所示的平面区域(阴影部分)用不等式表示为________.(2)画出不等式2x+y-4>0表示的平面区域.解(1)由截距式得直线方程为x2+y1=1,即x+2y-2=0.因为0+2×0-2<0,且原点在阴影部分中,故阴影部分可用不等式x+2y-2<0表示.(2)先画直线2x+y-4=0(画成虚线).取原点(0,0)代入,得2x+y-4=2×0+0-4=-4<0,所以不等式2x+y-4>0表示的区域是直线2x+y-4=0右上方的平面区域,如图中的阴影部分所示.规律方法 1.已知平面区域求不等式的步骤(1)利用已知平面区域边界上点的坐标求出直线方程.(2)将平面区域内的特殊点代入直线方程两侧,判断不等号的方向.(3)结合平面区域的边界虚实写出相应的不等式.2.二元一次不等式表示平面区域的判断方法(1)对于Ax+By+C>0(或<0)表示的平面区域,直线Ax+By+C=0,其中A>0可以这样来确定:所表示区域位置不等式B>0B<0Ax+By+C>0在直线右上方在直线右下方Ax+By+C<0在直线左下方在直线左上方①当A<0时,可通过不等式两边乘以-1的方法转化成上述情况.②当A或B为0时,可通过不等式直接确定.(2)对于区域的确定要灵活,如果给定点P(x0,y0)和直线Ax+By+C=0(B≠0),判断点P在直线哪一侧时,设d=B·(Ax0+By0+C),则①d>0⇔P在直线上方;②d=0⇔P在直线上;③d<0⇔P在直线下方.【训练1】 不等式组⎩⎨⎧x -y ≤0,x +y ≤0表示的平面区域是( )解析 取特殊点坐标(如:(0,-1),(-1,0)等)代入不等式组⎩⎪⎨⎪⎧x -y ≤0,x +y ≤0,检验可得C 符合. 答案 C题型二 不等式组表示平面区域的应用【例2】(1)画出不等式组⎩⎨⎧x +2y -1≥0,2x +y -5≤0,y ≤x +2所表示的平面区域,并求其面积;(2)求不等式组⎩⎨⎧y ≤2,|x |≤y ≤|x |+1所表示的平面区域的面积大小.解 如图所示,其中的阴影部分便是不等式组所表示的平面区域.由⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,得A (1,3). 同理得B (-1,1),C (3,-1). ∴|AC |=22+(-4)2=25,而点B 到直线2x +y -5=0的距离为 d =|-2+1-5|5=65,∴S △ABC =12|AC |·d =12×25×65=6.(2)可将原不等式组分解成如下两个不等式组: ①⎩⎪⎨⎪⎧x ≥0,y ≥x ,y ≤x +1,y ≤2,或②⎩⎪⎨⎪⎧x ≤0,y ≥-x ,y ≤-x +1,y ≤2.上述两个不等式组所表示的平面区域如图所示,所围成的面积S =12×4×2-12×2×1=3.规律方法 求平面区域面积的方法求平面区域的面积,先画出不等式组表示的平面区域,然后根据区域的形状求面积.(1)若画出的平面区域是规则的,则直接利用面积公式求解.(2)若平面区域是不规则的,可采用分割的方法,将平面区域分成几个规则图形求解.【训练2】 在平面直角坐标系中,不等式组⎩⎨⎧y ≥0,x +3y ≤4,3x +y ≥4表示的平面区域的面积是( ) A.32 B.23 C.43D.34解析 不等式组表示的平面区域如图阴影部分所示.平面区域为一个三角形及其内部,三个顶点的坐标分别为(4,0),⎝ ⎛⎭⎪⎫43,0,(1,1),所以平面区域的面积为S =12×⎝ ⎛⎭⎪⎫4-43×1=43.答案 C题型三 用二元一次不等式组表示实际问题【例3】 投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,用数学关系式和图形表示上述要求.解 设生产A 产品x 百吨,生产B 产品y 百吨,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0.用图形表示以上限制条件,得其表示的平面区域如图所示(阴影部分). 规律方法 用平面区域来表示实际问题的基本方法(1)根据问题的需要选取两个起关键作用的关联较多的量,用字母表示. (2)把问题中有关的量用这两个字母表示.(3)把实际问题中有关的限制条件用不等式表示出来. (4)把这些不等式所组成的不等式组用平面区域表示出来.【训练3】 某人准备投资1 200万元兴办一所中学,他对教育市场进行调查后,得到了下面的数据表格(以班级为单位): 学段 班级学生人数配备教师数硬件建设/万元教师年薪/万元初中 45 2 26/班 2/人 高中40354/班2/人因生源和环境等条件限制,办学规模以20至30个班为宜.分别用数学关系式和图形表示上述的限制条件.解 设开设初中班x 个,开设高中班y 个,根据题意,总共招生班数限制在20~30之间,所以有20≤x +y ≤30,考虑到所投资金的限制,得到26x +54y +2×2x +2×3y ≤1 200,即x +2y ≤40, 另外,开设的班数不能为负且为整数,则x ≥0,y ≥0,x ,y ∈Z . 把上面的四个不等式合在一起,得到⎩⎪⎨⎪⎧20≤x +y ≤30,x +2y ≤40,x ≥0,y ≥0,x ,y ∈Z .用图形表示这个限制条件,得到如图的平面区域(阴影部分中x ,y 为整数点).课堂达标1.不在不等式3x +2y <6表示的平面区域内的一个点是( ) A.(0,0) B.(1,1) C.(0,2)D.(2,0)解析 将四个点的坐标分别代入不等式中,其中点(2,0)代入后不等式不成立,故此点不在不等式3x +2y <6表示的平面区域内,故选D. 答案 D2.如图所示,表示阴影部分的二元一次不等式组是()A.⎩⎨⎧y ≥-2,3x -2y +6>0,x <0B.⎩⎨⎧y ≥-2,3x -2y +6≥0,x ≤0C.⎩⎨⎧y >-2,3x -2y +6>0,x ≤0D.⎩⎨⎧y >-2,3x -2y +6<0,x <0解析 观察图象可知,阴影部分在直线y =-2上方,且不包含直线y =-2,故可得不等式y >-2.又阴影部分在直线x =0左边,且包含直线x =0,故可得不等式x ≤0.由图象可知,第三条边界线过点(-2,0)、(0,3), 故可得直线3x -2y +6=0,因为此直线为虚线且原点O (0,0)在阴影部分, 故可得不等式3x -2y +6>0.观察选项可知选C. 答案 C3.完成一项装修工程需要木工和瓦工共同完成.请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x 人,瓦工y 人,满足工人工资预算条件的数学关系式为________.答案⎩⎨⎧50x +40y ≤2 000,x ∈N *,y ∈N *4.画出二元一次不等式组⎩⎨⎧x +y ≤1,x ≥0,y ≥0表示的平面区域,则这个平面区域的面积为________.解析 平面区域如图阴影部分(含边界)所示. S 阴=12×1×1=12. 答案 12课堂小结1.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时, (1)Ax +By +C >0表示直线Ax +By +C =0上方的区域; (2)Ax +By +C <0表示直线Ax +By +C =0下方的区域.2.画平面区域时,注意边界线的虚实问题.基础过关1.已知点P 1(0,1),P 2(2,1),P 3(-1,2),P 4(3,3),则在4x -5y +1≤0表示的平面区域内的点的个数是( ) A.1 B.2 C.3D.4解析 经验证,P 1,P 3,P 4均在区域内. 答案 C2.若点(m ,1)和(-3,m )不在直线x +2y -1=0的同侧,则实数m 的取值范围是( ) A.(-1,2) B.(-2,1)C.[-1,2]D.(-∞,-1]∪[2,+∞)解析 记f (x ,y )=x +2y -1,则f (m ,1)·f (-3,m )≤0,即(m +1)(2m -4)≤0,解得-1≤m ≤2. 答案 C3.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落入区域A 的概率为( ) A.13 B.23 C.19D.29解析 Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0}表示的平面区域面积为12×62=18, A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0}表示的平面区域面积为12×4×2=4,由几何概型计算公式,P =418=29.选D. 答案 D4.在坐标平面上,不等式组⎩⎨⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为________.解析 画出约束条件表示的可行域,如图中阴影部分,由题意M (2,3),N ⎝ ⎛⎭⎪⎫-23,13,P (0,-1),Q (0,1),不等式组⎩⎪⎨⎪⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为:12×2×2+12×2×23=83.答案835.若点A (1,1),B (2,-1)位于直线x +y -a =0的两侧,则a 的取值范围为________. 解析 ∵点A (1,1),B (2,-1)位于直线x +y -a =0的两侧,∴(1+1-a )(2-1-a )<0,即(2-a )(1-a )<0,则(a -1)(a -2)<0,即1<a <2. 答案 (1,2)6.某夏令营有48人,出发前要从A ,B 两种型号的帐篷中选择一种,A 型号的帐篷比B 型号少5顶,若只选A 型号的,每顶帐篷住4人,则帐篷不够,每顶帐篷住5人,则有一顶帐篷没有住满,若只选B 型号的,每顶帐篷住3人,则帐篷不够,每顶帐篷住4人,则有帐篷多余,设A 型号的帐篷有x 顶,用不等式将题目中的不等关系表示出来.解 由题意得⎩⎪⎪⎨⎪⎪⎧x >0,x +5>0,4x <48,0<5x -48<5,3(x +5)<48,4(x +5)>48,x ∈N *.7.画出下列不等式(组)表示的平面区域: (1)3x +2y +6>0;(2)⎩⎨⎧x ≤1,y ≥-2,x -y +1≥0.解 (1)画出满足条件的平面区域,如图所示:(2)画出满足条件的平面区域,如图所示:能力提升8.若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形及其内部,则a 的取值范围是( ) A.[43,+∞) B.(0,1]C.[1,43]D.(0,1]∪[43,+∞)解析 先画出不含参数的不等式表示的平面区域,如图所示,要使不等式组表示的平面区域是一个三角形及其内部,需使直线x +y =a 在点A (1,0)的下方或在点B (23,23)的上方.当直线x +y =a 过点A 时,a =1.当直线x +y =a 过点B 时,a =43.又因为直线x +y =a 必在原点O 的上方,所以0<a ≤1或a ≥43. 答案 D9.在平面直角坐标系中,若不等式组⎩⎨⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) A.-5 B.1 C.2D.3解析 由题意知,不等式组所表示的平面区域为一个三角形区域,设为△ABC ,则A (1,0),B (0,1),C (1,1+a ),且a >-1.∵S △ABC =2,∴12(1+a )×1=2,∴a =3. 答案 D10.在平面直角坐标系内,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为________.解析 不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1表示的平面区域如图,y =x -1与y =-3|x |+1的交点为(12,-12),(-1,-2). ∴S =12×2×12+12×2×1=34×2=32. 答案 3211.若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2所表示的平面区域是一个三角形,则a 的取值范围是________.解析 不等式组⎩⎪⎨⎪⎧x -y +5≥0,0≤x ≤2表示的平面区域如图中的阴影部分所示,用平行于x 轴的直线截该平面区域,若得到一个三角形,则a 的取值范围是[5,7).答案 [5,7)12.画出下列不等式表示的平面区域. (1)(x -y )(x -y -1)≤0;(2)|3x +4y -1|<5; (3)x ≤|y |≤2x .解 (1)由(x -y )(x -y -1)≤0,得⎩⎪⎨⎪⎧x -y ≥0,x -y -1≤0,解得0≤x -y ≤1;或⎩⎪⎨⎪⎧x -y ≤0,x -y -1≥0,无解.故不等式表示的平面区域如图(1)所示. (2)由|3x +4y -1|<5,得-5<3x +4y -1<5, 得不等式组⎩⎪⎨⎪⎧3x +4y -6<0,3x +4y +4>0,故不等式表示的平面区域如图(2)所示.(3)当y ≥0时,原不等式可化为⎩⎪⎨⎪⎧x ≤y ,y ≤2x ,x ≥0,点(x ,y )在第一象限内两条过原点的射线y =x (x ≥0)与y =2x (x ≥0)所表示的区域内. 当y ≤0时,由对称性作出另一半区域, 故不等式表示的平面区域如图(3)所示.13.(选做题)若直线y =kx +1与圆x 2+y 2+kx +my -4=0相交于P ,Q 两点,且P ,Q 关于直线x +y =0对称,则不等式组⎩⎨⎧kx -y +1≥0,kx -my ≤0,y ≥0表示的平面区域的面积是多少?解 P ,Q 关于直线x +y =0对称,故PQ 与直线x +y =0垂直,直线PQ 即为直线y =kx +1,故k =1;又线段PQ 为圆x 2+y 2+kx +my -4=0的一条弦, 故该圆的圆心在线段PQ 的垂直平分线上, 即为直线x +y =0,又圆心为⎝ ⎛⎭⎪⎫-k2,-m 2,∴m =-k =-1,∴不等式组为⎩⎪⎨⎪⎧x -y +1≥0,x +y ≤0,y ≥0.它表示的平面区域如图所示,是一个三角形,直线x -y +1=0与x +y =0的交点为⎝ ⎛⎭⎪⎫-12,12,∴S △=12×1×12=14. 故平面区域的面积为14.。
二元一次不等式(组)所表示的平面区域
二元一次不等式(组)表示平面区域主备人:审核:使用人:班级:【课题】:二元一次不等式(组)表示平面区域【学习目标】1、了解二元一次不等式(组)的概念,理解其解集的几何意义;2、会画二元一次不等式(组)所表示的平面区域。
【学习重难点】会画二元一次不等式(组)所表示的平面区域。
【课前预习案】1、二元一次不等式表示平面区域:一般的,二元一次不等式Ax By C++>在平面直角坐标系中表示直线0Ax By C++=某一侧所有点组成的________________.我们把直线画成_________以表示区域不包括边界直线.当我们在坐标系中画出不等式0Ax By C++≥所表示的平面区域时,此区域应包括边界直线,则把边界直线画成___________.2、如何确定二元一次不等式0Ax By C++>(或<0)表示的平面区域?【预习检测】画出不等式组10230x yx y--<⎧⎨--≥⎩表示的平面区域.【课内探究案】一、二元一次不等式表示平面区域例1、画出下列不等式表示的平面区域(1)230x y-->;(2)3260x y+-≤【变式训练】画出二元一次不等式320ax y++≥表示的平面区域,已知点(-1,0)在区域边界上.二、二元一次不等式组表示平面区域例2、画出不等式组表示的平面区域(1)21010x yx y-+≥⎧⎨+-≥⎩(2)232021030x yyx-+>⎧⎪+≥⎨⎪-≤⎩【变式训练】已知直线ax=2与x-by+1=0的交点为(1,2),试分别画出2a x<与10x by-+≥所表示的平面区域.三、用二元一次不等式组表示实际问题例3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需用的主要原料是磷酸盐4吨,硝酸盐18吨,生产1车皮乙种肥料需用的主要原料是磷酸盐1吨,硝酸盐15吨,现有库存磷酸盐10吨,硝酸盐66吨。
如果在此基础上进行生产,设x,y分别是计划生产甲、乙两种混合肥料的车皮数,请列出满足生产条件的数学关系式,并画出相应的平面区域。
高三数学二元一次不等组表示的平面区域试题答案及解析
高三数学二元一次不等组表示的平面区域试题答案及解析1.不等式组表示的平面区域的面积为______________.【答案】11【解析】作出可行域如图中阴影部分所示,易求得C(4,0),B(4,2),D(0,3),A(2,3),所以阴影部分面积为12-=11.考点:二元一次不等式组表示的平面区域2.已知点A(a,1)与点B(a+1,3)位于直线x-y+1=0的两侧,则a的取值范围是 .【答案】【解析】由已知得,即答案为.【考点】不等式表示的平面区域.3.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域,上的一个动点,则·的取值范围是()A.[-1,0]B.[0,1]C.[0,2]D.[-1,2]【答案】C【解析】·=-x+y,令z=-x+y,做出可行域,求线性规划问题.4.若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为 .【答案】3【解析】时,平面区域是一个无限区域,故.作出不等式组表示的平面区域如图所示,易得点,所以.【考点】不等式组表示的平面区域.5.已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(,1),则z=·的最大值为().A.4B.3C.4D.3【答案】C【解析】作不等式组表示的平面区域D,如图所示.又z=·=(x,y)·(,1)=x+y,∴y=-x+z.令l0:y=-x,平移直线l,当过点M(,2)时,截距z有最大值.故zmax=×+2=46.如果实数满足,若直线将可行域分成面积相等的两部分,则实数的值为______.【答案】【解析】画出可行域,如图所示的阴影部分,直线过定点(1,0),要使得其平分可行域面积,只需过线段的中点(0,3)即可,故.【考点】1、二元一次不等式组表示的平面区域;2、直线的方程.7.在平面直角坐标系中,记不等式组所表示的平面区域为.在映射的作用下,区域内的点对应的象为点,则由点所形成的平面区域的面积为()A.B.C.D.【答案】C【解析】由得,代入得,,画出平面区域,面积为8.【考点】1、映射的概念;2、不等式组表示的平面区域.8.已知实数x,y满足,则z=2|x|+y的取值范围是_________【答案】[-1,11]【解析】作出可行域与目标函数,结合图象可得目标函数经过(0,-1)时,有最小值-1,经过点(6,-1)时有最大值11,所以取值范围是[-1,11]。
高三数学考点-二元一次不等式(组)与简单的线性规划问题
7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax +By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据_________________ (即画出不等式组所表示的公共区域).②设__________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的__________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出__________条件,确定__________函数.然后,用图解法求得数学模型的解,即__________,在可行域内求得使目标函数__________.自查自纠1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解(2016·济南模拟)已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解:根据题意知(-9+2-a )(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.故选B .(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3. 在点B (2,0) 处取得最大值z =2-0=2.故选B .(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5解:作出可行域如图中阴影部分所示,则当z =2x +y 经过点P (1,2)时,取最大值,z max =2×1+2=4.故选C .(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解:由题意,画出可行域如图,目标函数为z =3x -4y ,则直线y =34x -z4纵截距越大,z 值越小.由图可知,在A (1,1)处取最小值,故z min =3×1-4×1=-1.故填-1.(2017届云南四川贵州百校大联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,4x -y +1≥0,则目标函数z =y -3x 的最大值是________.解:作可行域如图所示,由目标函数z=y-3x得直线y=3x+z,当直线y=3x+z平移经过点A⎝⎛⎭⎫12,3时,目标函数z=y-3x取得最大值为32.故填32.类型一二元一次不等式(组)表示的平面区域(2016·郑州模拟)在平面直角坐标系xOy中,满足不等式组⎩⎪⎨⎪⎧|x|≤|y|,|x|<1的点(x,y)的集合用阴影表示为下列图中的()解:|x|=|y|把平面分成四部分,|x|≤|y|表示含y轴的两个区域;|x|<1表示x=±1所夹含y轴的区域.故选C.【点拨】关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O(0,0)为特殊点.不等式组⎩⎪⎨⎪⎧x+y-2≥0,x+2y-4≤0,x+3y-2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD|=2,C点坐标(8,-2),所以S△ABC=S△ABD+S△BCD=12×2×(2+2)=4.故填4.类型二利用线性规划求线性目标函数的最优解(2017·天津)设变量x,y满足约束条件⎩⎪⎨⎪⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y的最大值为()A.23 B .1 C.32D .3解:可行域为四边形ABCD 及其内部,所以直线z =x +y 过点B (0,3)时取最大值3.故选D .【点拨】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用. 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2017·北京)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x , 则x + 2y 的最大值为( )A .1B .3C .5D .9解:如图,画出可行域,z =x +2y 表示斜率为-12的一组平行线,当过点C (3,3)时,目标函数取得最大值z max=3+2×3=9.故选D .类型三 含参数的线性规划问题(1)(北京西城区2017届期末)实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥0,x -y +6≥0. 若z =ax +y 的最大值为3a +9,最小值为3a-3,则a 的取值范围是( ) A .[-1,0] B .[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞)解:作出不等式组对应的平面区域如图,由z =ax +y 得y =-ax +z .因为z =ax +y 的最大值为3a +9,最小值为3a -3, 所以当直线y =-ax +z 经过点B (3,9)时直线截距最大, 当经过点A (3,-3)时,直线截距最小. 则直线y =-ax +z 的斜率-a 满足, -1≤-a ≤1,即-1≤a ≤1.故选C .(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0 (a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D .【点拨】例3(1)考查了简单的线性规划中的斜率问题,通过y =-ax +z 得到参数-a 是动直线y =-ax +z 的斜率,z =ax +y 的最大值为3a +9,则动直线y =-ax +z 纵截距的最大值为3a +9,最优解在三个端点处取得;例3(2)中的ax -y +1=0,即为y =ax +1,其中a 为动直线的斜率,利用数形结合的方法求解.注意把握两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,所以作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B .(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 非线性目标函数的最优解问题(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解:可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即⎝ ⎛⎭⎪⎫|-2|52=45.易求得B (2,3),最大值为OB 2=22+32=13.故填⎣⎡⎦⎤45,13. 【点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2 .(3)斜率型:形如z =y -bx -a ,本题属于距离形式.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.故填3.类型五 线性规划与整点问题设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0, 若x ,y 为整数,则3x +4y 的最小值为( )A .14B .16C .17D .19解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B .【点拨】求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *) 所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为a n =______.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n .故填3n.类型六 线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元解:设每天生产甲、乙两种产品分别为x 、y 吨,利润为z 元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y .作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z =3x +4y 得y =-34x +z 4,平移直线y =-34x 至经过点B 时,直线y =-34x +z4的纵截距最大,此时z 最大,解方程组⎩⎪⎨⎪⎧3x +2y =12,x +2y =8, 得⎩⎪⎨⎪⎧x =2,y =3, 即B (2,3).所以z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D . 【点拨】对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解:设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元,依题意得⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N , 即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y .作出可行域如图所示.当直线z =2 100x +900y经过点M (60,100)时,z 取得最大值.z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.故填216 000.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距z b 的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距zb取最大值,z 也取最大值;截距z b 取最小值,z 也取最小值;②当b <0时,截距z b 取最大值,z 取最小值;截距zb 取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是. 第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数Z P i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13 D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1, 得y D =12,所以S △BCD =12×(x C -x B )×12=14.故选D . 2.(湖北孝感市2017届期中)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1, 则目标函数z =2x -y 的最大值为( )A .-3 B.12 C .5 D .6解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (-1,-1),B (2,-1),C (0.5,0.5),将直线2x -y =0进行平移,当其经过点B 时,目标函数z 达到最大值.所以z 最大值=5.故选C .3.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0.则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解:可行域为一个三角形ABC 及其内部,其中A (0,2),B (3,0),C (1,3),根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3-5×0=6.故选B .4.(2017·浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)解:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值.故选D .5.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2 D .6解:如图△PQR 为线性区域,区域内的点在直线x +y -2=0上的投影构成了线段AB .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0得Q (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0得R (2,-2),|AB |=|RQ |=(-1-2)2+(1+2)2=3 2.故选C .6.(2016·商丘模拟)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .2解:作出可行域如图中阴影部分所示,当直线z =2x +y 通过A (1,-2a )时,z 取最小值,z min =2×1+(-2a )=1,所以a =12.故选B .7.(2016·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解:画出可行域,如图所示阴影部分,易得A (0,1),B (-2,-1),C ⎝⎛⎭⎫1,12,可得z =x +y 在C 点处取得最大值为32.故填32.8.(山西四校2017届联考)已知y =-2x -z 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0, 若2x +y +k ≥0恒成立,则实数k的取值范围为________.解:可行域为一个三角形ABC 及其内部,其中A (2,0),B (-2,-2),C (0,2),直线z =-2x -y 过点B 时取最大值6,而2x +y +k ≥0恒成立等价于k ≥[-(2x +y )]max =6.故填[6,+∞).9.(2016·昆明模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,x -y ≤0,求z =2x -y 的最大值.解:作出可行域如图中阴影部分所示.当直线过点B (2,2)时,z =2x -y 取得最大值2.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx ,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=y x 表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].11.(2015·广东模拟)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率大0.25,甲产品为二等品的概率比乙产品为一等品的概率小0.05. (1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分工人(名)资金(万元)甲420乙85解:(1)依题意得⎩⎪⎨⎪⎧甲乙1-P甲=P乙-0.05,解得⎩⎪⎨⎪⎧P甲=0.65,P乙=0.4,故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=0.4.(2)依题意得x,y应满足的约束条件为⎩⎪⎨⎪⎧4x+8y≤32,20x+5y≤55,x≥0,y≥0,且z=0.65x+0.4y.作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l:0.65x+0.4y=0即13x+8y=0,把直线l向上方平移到l1的位置时,直线经过可行域内的点M,且l1与原点的距离最大,此时z取最大值.解方程组⎩⎪⎨⎪⎧x+2y=8,4x+y=11,得⎩⎪⎨⎪⎧x=2,y=3.故M的坐标为(2,3),所以z的最大值为z max=0.65×2+0.4×3=2.5.当实数x,y满足⎩⎪⎨⎪⎧x+2y-4≤0,x-y-1≤0,x≥1时,1≤ax+y≤4恒成立,则实数a的取值范围是________.解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax+y≤4得⎩⎪⎨⎪⎧1≤a≤4,1≤a+32≤4,1≤2a+1≤4.解不等式组可得1≤a≤32.故填⎣⎡⎦⎤1,32.项目用量产品。
二元一次不等式表示的平面区域
1
o
1
x x+=0
【问题2】
在直线上方和下方 取一些点:上方:(0,2), (1,3),(0,5),(2,2) 下方:(-1,0),(0,0),(0,-2) (1,-1)各点坐标代入 x+y-1中, 你有什么发现?
y
5 4 3
【问题3】
. .
直线L右上方点的坐 标都满足x+y–1>0吗?
-3
3.不等式x-2y>0表示的平面区域是
( C )
y y x O O y y
x
O
x O
x
(A)
(B)
(C)
( D)
(1)二元一次不等式Ax+By+C>0在平面直角坐标系
中表示什么图形?
(2)怎样画二元一次不等式(组)所表示的平面区域?
应注意哪些事项?
(3)熟记“直线定界,特殊点定域”方法。
作业:
课本P96 习题A第1,2题
感谢指导!
临邑一中
4:画出不等式组
Y
x y 5 0 x y 0 x 3
表示的平面区域
x+y=0
O
X
x-y+5=0 x=3
2x y 3 0
解:(1)用虚线画直线 2x-y-3=0 (2)取特殊点.取原点 (0,0)代入2x-y-3=-3<0. (3)判断.不等式2x-y3>0所表示的区域是不 包含原点的那一侧。
直线定界 特殊点定域
y
2x-y-3=0
.
-3
o 1 2
x
(2)3x 2 y 6 0.
y
Ax+By+C=0
§4 4.1 二元一次不等式(组)与平面区域
一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表: 例 4 一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表:
品种 甲 乙 电力/kW·h 电力/kW·h 2 8 煤/t 3 5 工人/ 工人/人 5 2
的用电额度, 该厂有工人 200 人,每天只能保证 160kW ⋅ h 的用电额度,每天用煤 150t,请在直角坐标系中画出每天甲、 不得超过 150t,请在直角坐标系中画出每天甲、乙两种产品允许的 产量范围。 产量范围。
每月用餐费最低标准240元 每月用餐费最低标准240元; 240 其他费用最少支出180元 其他费用最少支出180元. 180 可用来支配的资金为500元 可用来支配的资金为500元, 500 如何使用这些钱呢? 如何使用这些钱呢?
设用餐费为 x 元,其他费用为 y 元, 由题意 x 不小于 240, y 不小于 180, x 与 y 之和不超过 500, , ,
因为对在直线 Ax+By+ 同一侧的所有点( 因为对在直线 Ax+By+C=0 同一侧的所有点( x, y ),把它的坐标 Ax+By+ 所得到实数的符号都相同。 ( x, y ) 代入 Ax+By+C,所得到实数的符号都相同。
所以只需在此直线的某一侧取一特殊点(x0,y0),从 Ax0+By0+C 所以只需在此直线的某一侧取一特殊点( Ax+By+ (<0)表示直线哪一侧的平面区域 表示直线哪一侧的平面区域. 的正负即可判断 Ax+By+C>0(<0)表示直线哪一侧的平面区域.
l : x + 2y −3 = 0
, 在 l 上方的平面区域内的任一点的坐标( x y )满足不等式
“二元一次不等式表示平面区域”的简单判断
“二元一次不等式表示平面区域”的简单判断作者:钱正卫来源:《中学生数理化·教研版》2010年第07期随着课程改革的进一步深入,“线性规划问题”现已被安排到高中以及各类中等专业学校的数学教材之中.而要解决“线性规划问题”,就要学会判断“二元一次不等式”表示的是哪一部分平面区域我们知道,二元一次不等式Ax+By+C>0或Ax+By+C0,则点P所在直线Ax+By+C=0这一侧就是不等式Ax+By+C>0所表示的平面区域,反之如果Ax0+By0+C实际上,关于“二元一次不等式表示平面区域”还有一个更为简单的判断方法,下面就介绍给大家.对任一二元一次不等式,作为x的系数A有三种情况:A>0、A1.如果A>0,那么直线Ax+By+C=0右侧(正右侧、右上侧或右下侧)的区域一定是Ax+By+C>0所表示的平面区域;直线Ax+By+C=0左侧(正左侧、左上侧或左下侧)的区域一定是Ax+By+C首先,在直线Ax+By+C=0右侧任取一点P(x0,y0),过点P作x轴的平行线,交直线Ax+By+C=0于点M(x1,y1),显然x0>x1,y0=y1.又因为A>0,所以Ax0>Ax1,By0=By1.由不等式的性质得Ax0+By0+C>Ax1+By1+C.由于点M(x1,y1)是直线Ax+By+C=0上一点,Ax1+By1+C=0,所以得Ax0+By0+C>0,即直线Ax+By+C=0右侧是Ax+By+C>0所表示的平面区域.同理可证:直线Ax+By+C=0左侧是Ax+By+C2.如果A3.如果A=0,则要看B的情况.(1)若B>0,直线By+C=0的上侧是不等式By+C>0所表示的平面区域,下侧是不等式By+C(2)若B此种情况容易证明,在此就不再赘述,读者不妨自己一试.由上述讨论可知,判断二元一次不等式Ax+By+C>0或Ax+By+C 例画出下列不等式所表示的平面区域.(1)2x-3y+6>0;(2)3x+4y-12(3)-2x-3y+6>0;(4)-4x-3y-12(5)2y-3>0;(6)-2y+1解:利用上述判断方法判断,如下图(注:图中阴影部分即为二元一次不等式所表示的平面区域)。
巧解二元一次不等式(组)表示的平面区域
4
1
图 5
v一
、
两个 点 的 上 下 左右 的概 念
4
x + l ( 虚线 ) , 原不 等式表示 的平面 区域在直线
1 阴影 部 分 。
在平面直角坐标系 中,两个点在横坐标相同的 条件下 ,纵坐标大 的点在上方 ,纵 坐标小 的点在下
y
图 1
● ..
。 ) 8 ( x 2 , Y 】 ) 如 图2 : 设 点 A( Y 。 ) , 点 B( x , A( Y
Y 1 ) , x l < x ,则说 点A在点 的左边 , 点 在点A的右边 。
二、 二 元 一 次 不 等 式 表 示 的平 面 区 域
不等式组的解表示 的平面 区域为它们 的公 共部分 , 如图8 阴影部分 。 这样 ,二元一次不等式表示的平面 区域就不难 画出了,它位于相应 的二元一次方程表示的直线的 侧, 至于在哪一侧 , 一般要把不等式画成相应的斜
一
不等式y > 2 x + l 表 示的平 面 区域 位 于这条直线的上方 , 如图 中阴影部
方。
例3 画出下列不等式表示的平面 区域。
( 1 ) y + 3 < 0 ( 2 ) x + 3 ≤0
( 1 ) 解: 原 不等 式化 为 : y < 一 3 , 画 出 直线 y = - 3 ,
・ 4 ( l , y
;
如 图1 : 设 点 ( Y ) , 点 B( y 2 ) , Y l > y 2 , 则 说 点A 在点B 的 上方 。
2 . 两个 点 左 右 的概 念
D
在平 面直 角坐标系 中, 两 个点 在纵 坐标 相同 的条件下 , 横坐标大 的点在 右边 ,横 坐标小 的点 在左
二元一次不等式(组)所表示的平面区域教案人教版
-能够将实际问题转化为二元一次不等式(组)问题。
-学会运用二元一次不等式(组)解决实际问题,如线性规划、区域限制等。
6.二元一次不等式(组)的性质:
-了解二元一次不等式(组)的性质,如传递性、互补性等。
-掌握不等式(组)的解集的性质,如闭合性、连续性等。
作业布置与反馈
1.逻辑推理:通过学习二元一次不等式(组)的表示方法,培养学生运用逻辑推理能力,理解不等式(组)之间的逻辑关系,能够准确判断平面区域内各点是否满足不等式(组)的条件。
2.直观想象:通过在平面直角坐标系中表示二元一次不等式(组)所表示的平面区域,培养学生的直观想象能力,使学生能够直观地认识和理解不等式(组)所表示的区域的形状和位置。
解决方法:通过大量练习,让学生在坐标系中绘制不同类型的不等式(组)所表示的区域,加深对“交集”和“并集”的理解。
(2)将实际问题转化为二元一次不等式(组)问题,并求解。
解决方法:引导学生分析实际问题中的约束条件,将其转化为不等式(组)形式,然后运用所学知识求解。可以结合生活实例进行讲解,让学生感受到数学与生活的联系。
(二)存在主要问题
1.课堂管理:在教学过程中,部分学生在课堂上注意力不集中,影响教学效果。
2.教学方法:在讲解知识点时,有时过于侧重理论,忽视了学生的实际操作能力的培养。
3.作业布置:作业布置有时过于繁琐,导致学生花费大量时间完成,影响学习效果。
(三)改进措施
1.改进课堂管理:通过设置课堂规则,加强课堂管理,提高学生的课堂注意力。
教学难点与重点
1.教学重点:
(1)理解二元一次不等式在平面直角坐标系中的表示方法,掌握“交集”和“并集”的概念。
举例:在坐标系中,不等式x+y<2表示的是直线x+y=2下方的区域,不包括直线上的点。
高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面
辅导讲义――二元一次不等式(组)与简单的线性规划[例4] 若点A (1,1),B (2,-1)位于直线0=-+a y x 的两侧,则a 的取值范围是___________.)2,1([巩固] 若点A (1,a )与原点在直线l :01=-+y x 的同侧,则实数a 的取值范围是_________.)0,(-∞[例5] 如图所示的平面区域(阴影部分)用不等式表示为_________________.033<--x y[巩固] 能表示图中阴影区域的二元一次不等式组是__________________.⎪⎩⎪⎨⎧-≥≤+≤11y y x x y[例6] 画出不等式组⎪⎩⎪⎨⎧≥>≤-+02042y y x y x 所表示的平面区域.[巩固] 画出不等式0)4)(12(<--++yxyx表示的平面区域.1.基本概念名称意义约束条件由变量x,y组成的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的解析式,如:22yxz+=线性目标函数关于x,y的一次解析式,如yxz+=2可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最值问题注意:(1)对于实际背景的线性规划问题,可行域通常位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的定点;(2)对于线性规划问题,结果可能有唯一最优解,或是有无穷最优解,或是无最优解.2.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.[例1] 设yxz-=2,其中x,y满足⎪⎩⎪⎨⎧≤≥-+≥+-221xyxyx,则z的取值范围是_________________.]4,21[-知识模块2简单的线性规划精典例题透析[例4] 不等式组⎪⎩⎪⎨⎧≤--≥++≤020220x y y x x 表示的平面区域的面积为__________.3[巩固1] 若不等式组⎪⎩⎪⎨⎧<++>>a y x x y x 11所确定的平面区域的面积为0,则实数a 的取值范围是____________.]3,(-∞[巩固2] 在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040(a 为常数)表示的平面区域的面积是9,则实数._____=a 1[巩固3] 在平面直角坐标系中,若不等式组⎪⎪⎨⎧≤-≥-+0101x y x (a 为常数)所表示的平面区域内的面积等于2,则.___=a[例5] 已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-+≥-18360202y x y x y x ,且y ax z +=取得最大值的最优解恰为)3,23(,则a 的取值范围是______.(-2,2)[巩固] 若直线4=+by ax 与不等式组⎪⎩⎪⎨⎧≥++≤-+≥+-0420420852y x y x y x 表示的平面区域无公共点,则b a +的取值范围是________.(-3,3)[例6] 某公司计划招聘男职工x 名,女职工y 名,要求女职工人数不能多于男职工,女职工的人数不得少于男职工的31,最少10名男职工,则该公司最少能招聘多少名职工.CO的排放量b及每万吨铁矿石的价格c如下表:[巩固] 铁矿石A和B的含铁率a,冶铁每万吨铁矿石的2a b(万吨)c(万吨)A50% 1 3B70% 5.0 6CO的排放量不超过2(万吨),求购买铁矿石的最少费用. 某冶铁厂至少要生产9.1(万吨)铁,若要求2知识模块3经典题型[例](1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.(2)如图阴影部分表示的区域可用二元一次不等式组表示为_____________.答案 (1) 73 (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 (1)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73. (2)两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. [巩固](1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a=______.(2)如图所示的平面区域(阴影部分)满足不等式_______________.答案 (1) 7 (2)x +y -1>0解析 (1)直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A (1,0),B (1,a +1),C (0,1)组成的三角形的内部(包括边界), 且a >-1,则其面积等于12×(a +1)×1=4,解得a =7.(2)边界对应直线方程为x +y -1=0,且为虚线,区域中不含(0,0),由以上可知平面区域(阴影部分)满足x +y -1>0.题型二:求线性目标函数的最值(2)(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 (1) 6 (2)12解析 (1)画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1, ∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.(2)作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1, 解得a =12.[巩固](1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为________.(2)(2014·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为_______.答案 (1) 4 (2) -12解析 (1)由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.(2)作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A (-2k,0).∵z =y -x 的最小值为-4,∴2k =-4,解得k =-12,故选D.题型三:线性规划的实际应用[例] 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. [巩固] 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元.答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y .由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).1.在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为_______.答案 1夯实基础训练解析 不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去),故选C. 2.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为____________.答案 2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距, 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 3.(2014·课标全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.答案 8解析 画出可行域如图所示.由z =2x -y ,得y =2x -z ,欲求z 的最大值,可将直线y =2x 向下平移, 当经过区域内的点,且满足在y 轴上的截距-z 最小时, 即得z 的最大值,如图,可知当过点A 时z 最大,由⎩⎪⎨⎪⎧ x +y -7=0,x -3y +1=0,得⎩⎪⎨⎪⎧x =5,y =2,即A (5,2),则z max =2×5-2=8. 4.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积为________.答案 4解析 作出可行域为△ABC (如图),则S △ABC =4.5.设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________,z 的最小值为________.答案 2 -2解析 在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =z ,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.6.在平面直角坐标系中画出不等式组⎩⎪⎨⎪⎧|x |≤|y |,|x |<1所表示的平面区域.解析 |x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域; |x |<1表示x =±1所夹含y 轴的带状区域.7.若直线x +my +m =0与以P (-1,-1)、Q (2,3)为端点的线段不相交,求m 的取值范围.解 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧ -1-m +m >0,2+3m +m >0,或⎩⎪⎨⎪⎧-1-m +m <0,2+3m +m <0,所以,m 的取值范围是m <-12.8.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 解 (1)依题意每天生产的伞兵个数为100-x -y , 所以利润ω=5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x 、y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x 、y ∈N .目标函数为ω=2x +3y +300,作出可行域,如图所示,作初始直线l 0:2x +3y =0,平移l 0,当l 0经过点A 时,ω有最大值,由⎩⎪⎨⎪⎧ x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.∴最优解为A (50,50),此时ωmax =550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤a ,x +y ≥8,x ≥6,且不等式x +2y ≤14恒成立,则实数a 的取值范围是__________.答案 [8,10]解析 不等式组表示的平面区域如图中阴影部分所示,显然a ≥8,否则可行域无意义. 由图可知x +2y 在点(6,a -6)处取得最大值2a -6,由2a -6≤14得,a ≤10.10.(2014·课标全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=________.答案 3解析 当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分). 由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值. z min =1+3×2=7,满足题意.11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.12.若函数y =log 2x 的图象上存在点(x ,y ),满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,2x -y +2≥0,y ≥m ,则实数m 的最大值为________.答案 1解析 如图,作出函数的可行域,当函数y =log 2x 过点(2,1)时,实数m 有最大值1.能力提升训练13.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为10 000元,生产1车皮乙种肥料产生的利润为5 000元,那么适当安排生产,可产生的最大利润是________元.答案 30 000解析 设生产甲种肥料x 车皮,生产乙种肥料y 车皮, 则z =10 000x +5 000y , ⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,x ≥0,y ≥0,画出图形可知,目标函数在D (2,2)处有最大值, 且z max =10 000×2+5 000×2=30 000(元).。
二元一次不等式组表示的平面区域
二元一次不等式组表示的平面区域一、教学目标(1)能用平面区域表示二元一次不等式组;(2)能根据平面区域写出相应的二元一次不等式组.二、教学重点、难点用平面区域表示二元一次不等式组.三、教学过程(一)问题情境情境:通过前一课的学习,我们已经知道了二元一次不等式的几何意义.那么,二元一次不等式组410 (1)4320 (2)x yx y+≤⎧⎨+≤⎩的几何意义又如何呢?(二)建构数学根据前面的讨论,不等式(1)表示直线104y x=-及其下方的平面区域;不等式(2)表示直线43200x y+-=及其下方的平面区域.因此,同时满足这两个不等式的点(,)x y的集合就是这两个平面区域的公共部分(如下图①所示).如果再加上约束条件0,0x y≥≥,那么,它们的公共区域为图②中的阴影部分.(三)数学运用1.例题:例1.画出下列不等式组所表示的平面区域:(1)2124y xx y≤+⎧⎨+>⎩(2)4380xyx y>⎧⎪>⎨⎪+-<⎩图①图②解:(1)不等式21y x ≤+表示直线21y x =+及其下方的平面区域; 不等式24x y +>表示直线24x y +=上方的平面区域;因此,这两个平面区域的公共部分就是原不等式组所表示的平面区域.(2)原不等式组所表示的平面区域即为不等式4380x y +-<所表示的平面区域位于第一象限内的部分.思考:如何寻找满足(2)中不等式组的整数解?(要确定不等式组的整数解,可以画网格,然后按顺序找出在不等式 组表示的平面区域内的格点,其坐标即为不等式组的整数解)例2.ABC ∆三个顶点坐标为(0,4),(2,0),(2,0)A B C -,求ABC ∆内任一点(,)x y 所满足的条件.例3.满足约束条件202305350y x x y x y -≤⎧⎪++>⎨⎪+-<⎩的平面区域内有哪些整点?答案:画图可得:共有(1,1)-、(2,2)-、(0,0)、(0,1)-四个点.2.练习:课本第77页 练习第1、2、3、4题.四.回顾小结:1.用平面区域表示二元一次不等式组;2.平面区域中整点的寻求方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⒉ 教材的重点、难点和关键
重点:二元一次不等式表示平面区域。
难点:准确理解和判断二元一次不等式所表示的平面 区域在直线的哪一侧。 关键:用数形结合的思想方法,帮助学生用集合的观 点和语言来分析和描述几何图形,用“代点法”并结合 多媒体课件动态演示突破难点。
二、学情分析和学法指导
1、高二学生通过不等式和本章前三节学习,对解析 几何的理性思维能力已经初步形成,具备了用代数方 法(坐标、方程)讨论图形性质的能力。 2、引导学生参与整个教学过程,合作学习、交流讨论、 自主探究、归纳总结得出结论。
(1)、启发诱导,揭示知识形成过程,让学生参与教学过程,倡导布 引导学生探索分析对于直线 Ax By C 0 同一侧的所有点(x , y) ,把坐标(x , y) 鲁纳的发现教学:让学生做学习的主人。 代入 Ax By C ,所得到实数的符号都相同,所以只需要在直线的某一侧取一个 (2)、通过前面对一个具体实例的求解,归纳总结得出一般结论,遵 特殊点(x0 , 循了从“具体到抽象”的认知规律,蕴含了从“特殊到一般” 0 y0),从 A x0 B y 0 C 的正负即可判断不等式 Ax By C 的推理方法。 表示直线哪一侧的平面区域。一般把特殊点取为坐标原点,这种方法称为代点法. (3)、及时梳理归纳,符合建构主义的学习原理,能较好地形成新的 认知结构。代点法的引入,“直线定界,特殊点定域”,难点 的突破也就水到渠成了。 概括为:画二元一次不等式表示的平面区域的方法为“直线定界,特殊点定域” 特别地,当 C 0 时,常把原点作为特殊点,即“直线定界、原点定域”。
结论:一般地,二元一次不等式 Ax By C 0在平面直角坐标系中表示直线
Ax By C 0 某一侧所有点组成的平面区域。
问题4: Ax By C 0
表示的平面区域与 Ax By C 0 表示的平面区域
有何不同?如何体现这种区别?
总结:我们把直线画成虚线以表示区域不包含边界直线。画不等式 Ax By C 0
平面区域。
3、交流合作、解决问题
学生分组探索证明猜想,教师巡视参与讨论,并适时进行点拨指导。挑选 一个小组,通过实物投影展示他们对猜想的证来自方案。(师生共同进行完 善修正)
证明:在直线 l : 2x y 100 0 右上方任取一点P(x,y),过P点作垂直于y 轴的直线
y y0 交直线 l 于点Po ( x0 , y0 )。此时有
问题2: 平面直角坐标系内的点被直线2x y 100 0 分为哪三类?以上述解为坐标的点分布在 哪个区域? 问题3: 直线 2x y 100 0 右上方的平面区域如何 表示?左下方的平面区域呢?
问题2与问题3意在建构新知与旧知之间的知识链,寻找学 习新知的思维的生长点。 问题是数学的“心脏”,是数学知识、能力发展的生长点 和思维的动力,把问题作为教学出发点,有利于激发学生 学数学、用数学的兴趣。
障学生的主体地位。 都成立。 猜想得证! (证明时过P点做垂直于X轴的直线是否可行?此问题交由学生课后思考)
所以, 2x y 2x0 y0 , ( 1 )、“给学生提供活动的时(思维时间) 对课本的证明进行了改进。
。
4、归纳总结、揭示新知
对于一般的二元一次不等式,由学生自行归纳总结,不要求证明。
例一 … 例二 …
课后思考题 …
评价和说明
• 1、这节课安排了提出问题、创设情境;尝试探求,归纳猜想; 交流合作、解决问题;归纳总结、揭示新知;应用新知、练习巩 固;小结作业,问题创新等环节。整堂课围绕集合、化归、数形 结合的数学思想方法这一主题来展开的。 • 2、着重培养学生掌握数学的基本思想和提高学生的能力是设计 这堂课的出发点。 • 3、教学中注意应用建构主义的数学学习理论,引导认知主体积 极参与到探索、发现、讨论、交流的学习活动中去,使课堂教学 成为学生亲自参与的充满丰富生动的数学思维活动的场所。 • 4、教学中采用多媒体的手段,利用几何画板软件制作CAI课件, 画面丰富生动,使学生的多种感官获得外部刺激,有利于完善认 知结构。 • 5、时间大致安排:创设情境引入课题约3分钟,尝试探求,归纳 猜想约7分钟,交流合作、解决问题约10分钟,归纳总结、揭示 新知约5分钟,应用新知、练习巩固约15分钟,小结作业,问题 创新约5分钟,依据上课的具体情况可进行适当的调整。
2 x y 100 2 x y 100 0 x 10 通过思考,相继得到许多不同的解: x 10 x 20 x 30 x 35 y 20 …… y 20 y 30 y 30 y 29 x N 上述各个解都满足 2 x y 100 0 y N
1 、教学方法: 创设问题情境,采用探索讨论法进行教学,学生主动 参与提出问题、探索问题和解决问题的过程,突出以学生 为主体的探究性学习活动。 2、教学手段: 借助计算机在图形动态演示方面的优势,实现计算机 辅助教学。采用实物投影,对课堂练习进行反馈与校正。
五、教学过程
教学流程图:
以“模块”为基本单元,从问题引入到猜 想证明,从归纳新知到练习巩固,以问题 开始,以新的问题结束,环环相扣,逐层 深入,构成一个开放的回路。
(2)、多媒体动态地显示了公共平面区域的形成过程,加强了直观 性和生动性。 O 设计以下几个问题:
(1)、不等式组表示的平面区域如何确定? (各个不等式表示的平面区域的交集即公共部分) x N , y N 呢?(回到本课开始的问题1) (2)、如果增加条件
(是上述平面区域内的整点构成的) 最后,多媒体演示平面区域的形成。
备课不只是对知识和教学过程的准备, 也包括对学情的分析掌握和学法指导。 二者的和谐统一是提高教学效果的基本 要求。
三、教学目标分析
从知识、能力和情感态度三个维度分析学 生的基础、优势和不足,是制定教学目标 1、知识目标:二元一次不等式(组)表示平面区域。 的重要依据。这里避免使用“使学生掌握 …”、“使学生学会…”等通常字眼,体现 了学生的主体地位和新教材新理念。 2、能力目标:进一步巩固数形结合、分类讨论、化归的
6、小结作业、问题创新
由学生归纳本节学习内容。 1、二元一次不等式(组)表示平面区域 课后思考题的设计,提出了在问题1的线性约束条件下, 2、画二元一次不等式表示的平面区域的方法: 求X+Y的最大值问题,为下一节课最优解的解决预设了 问题。 “直线定界,特殊点定域”
研究性作业的设计一方面是为了深化直线方程和二元一 不等式组表示平面区域的知识,另一方面培养学生独立 课后思考题: 思考,敢于挑战权威的科学品质,同时也是网络环境下 开展研究性学习的一次尝试,满足了学有余力的学生的 在问题1的条件下,大、小彩球最多可以买几个? 需要。
提出问题 创设情境
尝试探求 归纳猜想
交流合作 解决问题
小结作业 问题创新
应用新知 练习巩固
归纳总结 揭示新知
1、提出问题、创设情境 问题1:我们班计划用少于100元的钱购买单价分别为2元 和1元的大、小彩球装点联欢晚会的会场,根据需要,大 球数不少于10个,小球数不少于20个,请你给出几种不同 的购买方案? 学生列式: 设购买大球x个,小球y个
数学思想,培养识图、画图的能力和探究问题的能力。 3、情感目标:体验成功的快乐,激发学习的兴趣。
四、教学方法和教学手段
建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用 过程中,通过同化和顺应,使自身的认知结构得以转换和发展。元认知理 论指出,学习过程既是认识过程又是情感过程,是“知、情、意、行”的 和谐统一。遵循教师为主导,学生为主体的教学原则,体现知识为载体, 思维为主线,能力为目标的教学思想,确定以下教学方法和教学手段:
y
o
x
教材分析
学情分析 学法指导
教学目标
教学方法 教学手段 教学过程
一、教材分析
⒈ 教材的地位和作用
线性规划是是新教材中新增内容,是学生对 不等式、直线方程知识的深化和综合应用。二元 一次不等式表示平面区域是线性规划三个课时中 的第一课时,是后续学习“图解法”解决简单线 性规划问题的基础,并有助于下一章点与圆锥曲 线的位置关系的学习和理解。起着承上启下的作 用。 本节内容体现了数学的工具性、应用性,同 时渗透了数形结合、分类讨论、化归的数学思想。
几何画板演示
练习:
学生自行练习,教师巡视,收集练习 中出现的典型错误,利用实物投影进 行集体订正。
1、画出下列不等式表示的平面区域(课本练习): (1)x-y +1<0 (3)2x +5y≥0
2、画出下列不等式组表示的平面区域(课本练习):
y x (1) x 2 y 4 y 2 x 3 2 y x (2) 3x 2 y 6 3 y x 9
作业: 1、P65习题7.4 第1题 2、研究性作业:我看“03年江苏高考数学卷错题风波” 文章见/42/33/news212343342.shtml
附:板书设计
课题:§7.4.1 二元一次不等式表示平面区域
用二元一次不等式 表示平面区域 1.判断方法 … 1.注意事项 …
y
Po(xo,yo) P(x,y)
x x0 , y y0 ,
2x y 100 2x0 y0 100 0, 空(思维空间),让主体主动构建自己的 o 先取直线右上方平面区域的 x 2 x 认知结构,培养学生的创造力”是建构主 y 100 0 即 任意一点,再过该点作Y轴的 2x+y-100=0 义理论的学习观。 垂线,得到直线L上与该点有 所以,对于直线 2 x y 100 0 右上方的任意点P (x,y), (2) 、学生分组探索解决问题,有利于培养良好 2 x y 100 相同纵坐标的点,这个思路 0 都成立。 的学习习惯,通过合作学习,提高分析和解决 符合学生的思维习惯,从而 2 问题的能力,变“学会”为“会学”。充分保 同理,对于直线 2 x y 100 0 左下方的任意点P (x,y), x y 100 0 突破了证明的难点!