LM324应用电路

合集下载

LM324功能应用简介

LM324功能应用简介

LM324功能应用简介您现在的位置是:主页>>>电子元器件资料>>>正文LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

LM324电压比较器电路图和应用

LM324电压比较器电路图和应用

电压比较器基本原理及设计应用本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。

电压比较器(以下简称比较器)是一种常用的集成电路。

它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。

什么是电压比较器简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。

图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。

另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。

VA和VB的变化如图1(b)所示。

在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。

在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。

根据输出电平的高低便可知道哪个电压大。

如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。

与图1(c)比较,其输出电平倒了一下。

输出电平变化与VA、VB的输入端有关。

图2(a)是双电源(正负电源)供电的比较器。

如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。

VB>VA时,Vout输出饱和负电压。

如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。

此VB称为参考电压、基准电压或阈值电压。

如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。

比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。

由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

LM324电压比较器电路图和应用

LM324电压比较器电路图和应用

电压比较器基本原理及设计应用本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。

电压比较器(以下简称比较器)是一种常用的集成电路。

它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。

什么是电压比较器简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。

图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。

另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。

VA 和VB的变化如图1(b)所示。

在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。

在这种情况下,Vout 的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。

根据输出电平的高低便可知道哪个电压大。

如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。

与图1(c)比较,其输出电平倒了一下。

输出电平变化与VA、VB的输入端有关。

图2(a)是双电源(正负电源)供电的比较器。

如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。

VB>VA时,Vout输出饱和负电压。

如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。

此VB称为参考电压、基准电压或阈值电压。

如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。

比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。

由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

lm324音调控制电路原理

lm324音调控制电路原理

lm324音调控制电路原理
LM324音调控制电路原理:
LM324是一种四路运算放大器,被广泛应用于音频系统中的音调控制电路。

音调控制电路是一种能够调节音频信号的频率的电路,它可以改变音频信号的高低音效果。

LM324音调控制电路的原理如下:
1. 输入信号:音频信号通过输入端进入音调控制电路。

基本上,音频信号可以
被认为是一个交流信号。

2. 增益控制:LM324的四个运算放大器中的一个被用作增益控制器。

该运算放大器的增益可以通过改变外部电阻值来调整。

增益控制器可以增加或降低输入信号的振幅,并影响音频信号的音量。

3. 频率调节:音调控制电路使用电容和电阻来改变音频信号的频率。

通过改变
电容和电阻的值,可以调整音频信号的频率范围,从而产生不同的音调效果。

4. 滤波器:音调控制电路中可以包含滤波器电路,用于调节音频信号的频率响应。

滤波器可以增强或抑制特定频率范围内的音频信号,从而产生不同的音调效果。

5. 输出信号:经过音调控制电路的音频信号最终通过输出端输出。

经过调节后
的音频信号具有不同的音量和音调效果。

LM324音调控制电路的原理基本上是通过改变音频信号的振幅、频率和响应范围来调节音调效果。

这种电路设计简单且易于调整,因此被广泛应用于音频系统中的音调控制功能。

lm324典型电路

lm324典型电路

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

●反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

●同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

lm324放大电路 (2)

lm324放大电路 (2)

LM324放大电路介绍LM324是一种四路低功耗、操作放大器,常用于放大电路的设计,具有广泛的应用领域。

本文将介绍使用LM324构建的放大电路的基本原理和常见的应用。

原理LM324是一种硅片集成放大器,内部包含四个独立的运算放大器。

每个运算放大器都具有高增益、稳定的直流工作状态以及高输入阻抗和低输出阻抗的特性。

通过配置外部电路元件,可以构造各种不同的放大电路。

线性放大电路设计非反向放大电路非反向放大电路是一种最简单的放大电路设计,使用LM324可以方便地实现。

该电路的输入信号与输出信号的相位一致,电路增益大于1。

示意图如下:+---------+Vin -| LM324 |---- Vout+---------+在该电路中,将输入信号Vin连接到LM324的正输入端,将输出信号Vout连接到LM324的输出端。

通过增加输入信号的幅度,可以实现信号的放大。

反向放大电路反向放大电路是另一种常见的放大电路设计,同样可以利用LM324来实现。

该电路的输入信号与输出信号的相位反向,电路增益可以大于或小于1。

示意图如下:+---------+Vin -| LM324 |---- Vout| |Rf +---------+||GND在该电路中,将输入信号Vin通过电阻Rf连接到LM324的负输入端,将输出信号Vout连接到LM324的输出端。

根据电阻Rf的值,可以调节电路的增益。

应用案例信号放大使用LM324可以实现信号的放大,常见的应用场景包括音频放大、传感器信号放大等。

通过增加输入信号的幅度,可以将弱信号放大到适合处理的范围。

滤波器利用LM324构建滤波器电路,可以滤除特定频率范围内的信号。

滤波电路可以用于音频处理、信号解调等应用。

比较器利用LM324的四个运算放大器,可以构建多路比较器电路。

比较器可以用于电压检测、开关控制等应用。

总结LM324作为一种常见的低功耗操作放大器,具有高增益、稳定的特性,被广泛应用于放大电路的设计。

LM324引脚图资料

LM324引脚图资料

LM324引脚图资料与电路应用LM324为四运放集成电路,采用14脚双列直插塑料封装。

,内部有四个运算放大器,有相位补偿电路。

电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。

它的输入电压可低到地电位,而输出电压范围为O~Vcc。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。

每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324引脚排列见图1。

2。

lm124、lm224和lm324引脚功能及内部电路完全一致。

lm124是军品;lm224为工业品;而lm324为民品。

由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等特点,因此他被非常广泛的应用在各种电路中。

《lm324引脚图》《lm324管脚图》《lm324原理图》《lm324工作电压》《lm324无线.LM324应用电路图LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。

可工作在单电源下,电压范围是3.0V-32V或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。

6.具有内部补偿的功能。

7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能 2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器。

LM324 是四运放集成电路

LM324 是四运放集成电路

LM324 是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-” 为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324作反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值, Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

LM324作同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

LM324电压比较器电路图和应用

LM324电压比较器电路图和应用

电压比较器‎基本原理及‎设计应用本文主要介‎绍电压比较‎器基本概念‎、工作原理及‎典型工作电‎路,并介绍一些‎常用的电压‎比较器。

电压比较器‎(以下简称比‎较器)是一种常用‎的集成电路‎。

它可用于报‎警器电路、自动控制电‎路、测量技术,也可用于V‎/F变换电路‎、A/D变换电路‎、高速采样电‎路、电源电压监‎测电路、振荡器及压‎控振荡器电‎路、过零检测电‎路等。

什么是电压‎比较器简单地说,电压比较器‎是对两个模‎拟电压比较‎其大小(也有两个数‎字电压比较‎的,这里不介绍‎),并判断出其‎中哪一个电‎压高,如图1所示‎。

图1(a)是比较器,它有两个输‎入端:同相输入端‎(“+”端) 及反相输入‎端(“-”端),有一个输出‎端Vout‎(输出电平信‎号)。

另外有电源‎V+及地(这是个单电‎源比较器),同相端输入‎电压VA,反相端输入‎V B。

VA和VB‎的变化如图‎1(b)所示。

在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。

在这种情况‎下,Vout的‎输出如图1‎(c)所示:VA>VB时,Vout输‎出高电平(饱和输出);VB>VA时,Vout输‎出低电平。

根据输出电‎平的高低便‎可知道哪个‎电压大。

如果把VA‎输入到反相‎端,VB输入到‎同相端,VA及VB‎的电压变化‎仍然如图1‎(b)所示,则Vout‎输出如图1‎(d)所示。

与图1(c)比较,其输出电平‎倒了一下。

输出电平变‎化与VA、VB的输入‎端有关。

图2(a)是双电源(正负电源)供电的比较‎器。

如果它的V‎A、VB输入电‎压如图1(b)那样,它的输出特‎性如图2(b)所示。

VB>VA时,Vout输‎出饱和负电‎压。

如果输入电‎压VA与某‎一个固定不‎变的电压V‎B相比较,如图3(a)所示。

此VB称为‎参考电压、基准电压或‎阈值电压。

如果这参考‎电压是0V‎(地电平),如图3(b)所示,它一般用作‎过零检测。

lm324芯片常用电路

lm324芯片常用电路

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

●反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

●同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

LM324应用电路

LM324应用电路

lm324应用电路
lm324引脚图管脚图lm324应用电路
通用型低功耗集成四运放LM324。

LM324内含4个独立的高增益、频率补偿的运算放大器,既可接单电源使用(3~30 V),也可接双电源使用(±1.5~±15 V),驱动功耗低,可与TTL逻辑电路相容。

1.LM324应用电路图
LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。

可工作在单电源下,电压范围是3.0V-32V或+16V.
LM324的特点:
1.短跑保护输出
2.真差动输入级
3.可单电源工作:3V-32V
4.低偏置电流:最大100nA(LM324A)
5.每封装含四个运算放大器。

6.具有内部补偿的功能。

7.共模范围扩展到负电源
8.行业标准的引脚排列
9.输入端具有静电保护功能
2.LM324多路反馈带通滤波器电路图
3.LM324高阻抗差动放大器电路图
4.LM324函数发生器电路图
5.LM324双四级滤波器
6.LM324维思电桥振荡器电路图
7.LM324滞后比较器电路图。

LM324应用电路图

LM324应用电路图

LM324系列运算放大器就是价格便宜得带差动输入功能得四运算放大器。

可工作在单电源下,电压范围就是3、0V-32V或+16V、LM324得特点:1、短跑保护输出2、真差动输入级3、可单电源工作:3V-32V4、低偏置电流:最大100nA(LM324A)5、每封装含四个运算放大器。

6、具有内部补偿得功能。

7、共模范围扩展到负电源8、行业标准得引脚排列9、输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1、LM324电压参考电路图2、LM324多路反馈带通滤波器电路图3、LM324高阻抗差动放大器电路图4、LM324函数发生器电路图5、LM324双四级滤波器6、LM324维思电桥振荡器电路图7、LM324滞后比较器电路图恒流源运算放大器LM324得D单元构成恒流源,使用中为保证恒流源得线性度,应充分保证电阻R16与R17阻值不小于R14与R15得10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波得线性度,调试时有时测得得锯齿波为下凹得,这就是由于R14与R15或R16与R17两个电阻之间阻值有较大得差值造成得。

本文就高性能集成四运放LM324得参数,进行实用电路设计,论述电路原理。

LM324就是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它得内部包含四组形式完全相同得运算放大器, 除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示得符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo得信号与该输入端得位相反;Vi+(+)为同相输入端,表示运放输出端Vo得信号与该输入端得相位相同。

LM324得引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LM324应用电路——自制镍氢电池充电器
本文介绍的自制充电器用LM324的4个运算放大器作为比较器,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进
行充电,其原理电路见图1。

其特点是电路简单、工作可靠、无需调整、元器件容易购买等,下面分几个部分进行介绍。

1.基准电压Vref形成
外接电源经插座X、二极管VD1后由电容C1滤波。

VD1起保护作用,防止外接电源极性反接时损坏TL431。

R3、R4、R5和TL431组成基准电压Vr ef,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约
为1.40V)。

2.大电流充电
(1)工作原理
接入电源,电源指示灯LED(VD2)点亮。

装入电池(参考图片,实际上是用
导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。

此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充
电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。

(2)充电的指示
首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。

刚开始时C2上端没有电压,则IC1-3输出高电平。

这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。

其次看IC1-4的工作情况:电池电压经R2、R16分压,接IC1-4的12脚,因为R2<<R16,所以输入IC1-4的12脚电压基本上略低于电池电压,
显然它更低于其l3脚电压因此,IC1-4输出稳定的低电平。

结合上面的讨论,我们可以看出,加在R12和VD 3通路一端为频率固定的方波电
压,另一端为稳定的低电平,因此,发光二极管VD3会周期性点亮,给人一闪一闪的感觉。

最后看IC1-1的工作情况:当IC1-2输出低电平时,显然IC1-1的3脚为低电平,而其2脚通过R1接Vref所以,IC1-1也输出低电平。

结合上面的讨论,我们可以看出,R11和VD5两端电压差为零,因此,VD5(饱和指示)不能点亮!
另外,由于IC1-1输出低电平,无论IC1-3的9脚电压如何变化(电容充、放电在该脚形成三角波电压)都不会受IC1-1输出的影响—因为IC1-3的9脚电压(要么高到V+ ,要么低到V-)始终高于IC1-1的输出,VD6反偏截止!所以,这种状态下,三只指示灯的工作情况分别为:VD2点亮,指示电源正常;V D3闪烁,指示电池充电正常;VD5不亮。

3.小电流充电
当充电一段时间后,电池电压慢慢上升到接近Vref时,IC1-2输出电压慢慢上升,于是,流过R7的电流慢慢减小,即流经VT1基极的电流慢慢减小,因此VT1输出的电流也会慢慢减小,但电池电压还会持续不断地缓慢上升,当电池电压几乎等于Vref时,IC1-2会输出较高电压,这时IC1-1的3脚电压高于2.8OV (反相端2脚的输入端电压),比较器翻转输出高电平。

该电压有两个作用:一方面会使VD5正偏导通被点亮(此时,IC1-4输出还是低电平),指示充电饱和;另一方面VD6也正偏导通,而R17很小,实际上是强制C2上端为高电平,所以IC1-3的9脚电压高于10脚电压,IC1-3被强迫输出低电平,VD3因无正偏压而熄灭。

虽然,从外在的表现看充电灯熄灭,饱和灯点亮在某一时刻瞬间转换完成,但是实际上充电过程却是逐渐过渡的:当电池电压远低于Vref时持续大电流充电,当电池电压接近于时充电电流慢慢减小,直至逐渐充电趋近零——即使饱和灯点亮时,小电流充电仍在继续!所以这种状态下,三只指示灯的工作情况分别为:VD2点亮,指示电源正常;VD3不亮;VD5点亮(饱和指示,小电流充电)。

4.IC1-4的用途
从上面2、3内容的分析中可以看出,无论电路是大电流或小电流充电,IC 1-4的输出一直是“低电平”,好像它没有什么作用似的,还不如直接把VD3、V D5负极接“地”?刚开始设计时,确实没有考虑用IC1-4,把VD3、VD5的负极直接接地。

然而,当制作好后通电工作时发现一个问题:当不装电池通电时,饱和指示灯VD5点亮—显然不合适!因为,没装电池时VT1处于微导通状态,IC 1-2的5脚电压高于,IC1—2输出高电平,于是IC1-2也输出高电平,VD5
点亮。

若在原理图中接入IC1-4,没装电池时VT1处于微导通状态,IC1-4的1 2脚电压也会高于,因此,IC1-4输出高电平,这样VD5就不能点亮。

需要说明一点,外接输入电压不能太高,也不能太低。

输入电压太高,大电流充电时调整管发热严重;另一方面,IC1-2输出高电平的时间会因为电源电压较高而提前超过Vref(设定值),这样就会给我们一个错觉,电池很快就充满了!实际上并非如此。

输入电压太低也不好,同上面的分析一样,IC1-2输出高电平的时间会因为电源电压较低而迟后,更有甚者,也可能永远达不到充电指示灯一直闪烁,但大电流充电过程早已结束。

所以,外接电压太高或太低,充电和饱和指示的状态是不准确的。

相关文档
最新文档