洞门计算

合集下载

洞门检算参考

洞门检算参考

3. 洞门结构的设计及检算3.1 洞门结构的设计洞门是隧道洞口用圬工砌筑并加以建筑装饰的支档结构物。

它联系衬砌和路堑,是整个隧道结构的主要组成部分,也是隧道进、出口的标志。

洞门的作用在于支挡洞口正面仰坡和路堑边坡,拦截仰坡上方的小量剥落、掉块,保持边、仰坡的稳定,并将坡面汇水引离隧道,保证洞口线路的安全。

另外,洞门是隧道唯一的外露部分,对它进行适当的建筑艺术处理,可以起到美化环境的作用。

根据洞口地形、地质及衬砌类型等不同的情况和要求,洞门的结构形式主要有环框式、端墙式、柱式、翼墙式、耳墙式、台阶式及斜交式。

3.1.1设计原则(1) 选用洞门结构形式时,应根据洞口的地形、地质条件及工程特点确定。

(2) 当线路中线与洞口地形等高线斜交,经技术经济比较不宜采用正交洞门,且围岩分类在III级以上时,可采用斜交式洞门,其端墙与线路中线的交角不应小于45°。

(3) 设置通风帘幕的洞门或通风道洞口与隧道洞门相连时,洞门的结构形式应结合通风设备和要求一并考虑。

(4) 位于城镇、风景区、车站附近的洞门,必要时应考虑与环境相协调和建筑美观的要求。

(5) 铁路重点隧道应考虑国防要求,按铁道部《铁路建设贯彻国防要求的规定》文件的相关规定办理。

3.1.2洞门设计根据西格二线八号隧道沿线地形、地质状况,并结合隧道设计专业事前指导书,在确定进、出口洞门位置的基础上,拟定龙池山隧道进口和出口均采用台阶式洞门,边、仰坡坡度均为1:1.25,开挖方式为乙式,进、出口洞门各部分尺寸参照洞门标准图及隧道净空加宽来确定。

隧道进、出口洞门图分别见附录一中的图LCST-03。

3.2 洞门结构的检算洞门是支挡洞口正面仰坡和路堑边坡的结构物,因此洞门的端墙和挡墙均可视为墙背承受土压力的挡土墙结构,根据挡土墙理论设计。

3.2.1计算原理及方法根据《铁路隧道设计规范》的规定,洞门墙计算时,应按照表3.1的要求,与挡土墙一样用容许应力法检算其强度,并检算其绕墙趾倾覆及沿基底滑动的稳定性。

第6章隧道结构计算

第6章隧道结构计算
φ— 构件的纵向弯曲系数,对隧道衬砌拱圈及墙背紧密回填的边 墙可取1;
α— 轴向力偏心影响系数。 1 1.5 e0 h
抗拉控制检算
大偏心判断准则:
e0 0.2h
此时承载能力由抗拉强度控制:
KN 1.75Rlbh
6e0 1 h
式中: Rl — 混凝土的抗拉极限强度,
其它符号意义同前。
6.5 衬砌截面强度验算
6.4 隧道洞门计算
1.洞门墙墙身抗压承载能力计算(承载能力极限状态)
2.洞门墙墙身抗裂承载能力计算(正常使用极限状态)
6.4 隧道洞门计算
3.洞门墙地基承载能力计算
4.抗倾覆计算 5.抗滑动计算
6.5 衬砌截面强度验算
6.5.1 检算内容
(1)安全系数检算 (2)偏心检算
6.5.2 适用范围
铁路隧道拼装式衬砌、复合式衬砌 双线隧道整体式衬砌 公路隧道衬砌结构
6.5.3 安全系数检算
(1) 允许安全系数 混凝土和石砌结构的强度安全系数
圬工种类及 荷载组合
破坏原因
混凝土
主 附主 要 加要 荷 荷、 载载
石砌体 主 附主 要 加要 荷 荷、 载载钢筋ຫໍສະໝຸດ 凝土主附主要
加要

荷、


(钢筋)混凝土或石砌
设围岩垂直压力大于 侧向压力, 则存在拱顶 脱离区,两侧 抗力区。
6.2 结构力学方法
6.2.3 隧道衬砌荷载分类
(1) 主动荷载 主要荷载:围岩压力、支护结构自重、回填土荷载、地下 静水压力及车辆活载等。 附加荷载:冻胀压力、地震力等。 (2) 被动荷载 被动荷载是指围岩的弹性抗力,计算有共同变形理论和局 部变形理论。
直刚法计算流程

毕业设计——青龙山隧道设计计算说明书

毕业设计——青龙山隧道设计计算说明书

毕业设计——青龙山隧道设计计算说明书目录摘要 (I)Abstract (II)第1章绪论 (3)1.1选题的背景目的及意义 (3)1.2国内外研究状况 (4)1.3设计依据 (5)1.3.1 设计标准 (5)1.3.2 技术标准 (5)1.4建筑材料选用 (5)1.5拟解决的主要问题 (6)1.6本章小结 (6)第2章青龙山隧道总体设计 (7)2.1青龙山隧道工程地质资料 (7)2.1.1 地形地貌 (7)2.1.2 区域稳定性 (7)2.1.3 地层岩性 (7)2.1.4 地质构造 (7)2.1.5 水文地质 (7)2.2围岩等级的确定 (8)2.4青龙山隧道选址 (8)2.4.1 隧道选址原则 (8)2.4.2 青龙山隧道选址 (6)2.5隧道洞口选择及线型设计 (9)2.5.1 洞口选择和线型设计的原则 (9)2.5.2 洞口位置的选择 (9)2.6隧道纵断面设计 (7)2.7隧道横断面设计 (10)2.7.1 建筑限界 (10)2.8本章小结 (15)第3章洞门设计 (16)3.1洞口段地质评价 (16)3.1.1 上行出口端 (16)3.1.2 下行入口段 (16)3.2洞门设计 (16)3.2.1 洞门类型选择 (16)3.2.2 洞门设计 (17)3.2.3 洞门建筑材料 (17)3.3洞门强度及稳定性验算 (18)3.3.1 洞门结构计算 (18)3.3.2 抗滑动稳定性验算 (20)3.3.3 抗倾覆稳定性验算 (20)3.3.4 基底合力偏心距验算 (21)3.3.5 基底压应力验算 (21)3.3.6 墙身截面强度验算 (21)3.4本章小结 (22)第4章明洞设计 (23)4.1明洞长度确定 (23)4.2明洞设置 (23)4.2.1 明洞基本参数设置及配筋 (23)4.2.2 衬砌内力计算 (20)4.2.3 衬砌截面强度检算 (35)4.2.4 明洞衬砌内力图 (41)4.3本章小结 (41)第5章衬砌设计 (42)5.1概述 (42)5.2荷载计算 (43)5.2.1 计算断面参数选择 (43)5.2.2 浅、深埋的判断 (44)5.2.3围压的确定 (59)5.3.1 计算方法 (61)5.3.2 计算图示 (62)5.3.3衬砌几何要素 (63)5.3.4主、被动荷载作用下的衬砌压力的计算 (93)5.3.5最大抗力值的计算 (96)5.3.6衬砌总内力计算(不同围压级别) (104)5.4衬砌验算 (70)5.4.1 超浅埋断面衬砌验算 (70)5.4.2 浅埋断面衬砌验算 (116)5.4.3 深埋断面衬砌验算 (80)5.6隧道衬砌内力图 (126)5.6.1 浅埋、超浅埋界限截面内力图(超浅埋) (126)5.6.2 深埋、浅埋界限截面内力图(浅埋) (127)5.6.3 浅埋、超浅埋界限截面内力图(深埋) (127)5.5本章小结 (128)第6章通风照明设计 (129)6.1通风设计 (129)6.2照明设计 (130)6.2.1 洞外接近段照明 (130)6.2.2 洞内照明 (131)6.2.6 照明计算 (90)6.3本章小结 (139)第7章隧道防排水设计 (139)7.1防水设计 (139)7.1.1 防排水标准 (139)7.1.2 防水措施 (140)7.1.3 复合式衬砌防水系统 (140)7.1.4 二次衬砌防水系统 (140)7.2隧道洞内排水 (141)7.2.1 围岩疏导排水 (141)7.2.2 路侧边沟排水 (141)7.3洞口与明洞防排水 (143)7.3.1 洞口防排水 (143)7.3.2 明洞防排水 (144)7.4本章小结 (144)第8章施工工艺 (100)8.1施工方法 (100)8.2辅助施工 (100)8.3施工注意事项 (100)本章小结 (101)结论 (102)参考文献 (103)致谢 (150)摘要本设计为五海公路青龙山隧道隧道设计。

有关涵洞设计应该注意的几点问题

有关涵洞设计应该注意的几点问题

有关涵洞设计应该注意的几点问题(对于新手)1、涵长计算对于正交涵洞,用《见习日记》中或者《铁路小桥涵设计》中记录的公式,正确计算涵洞长度;对于斜交涵洞,用《标准图》中的公式,正确计算涵洞长度。

斜交斜做盖板涵入口靠上坡端涵长计算(采用第二法计算——对于陡坡涵洞)公式为:jm jm tg jm D W m a H L θθθsin cos )1(4.02)2.0(μμ⨯+++--=下上下上 (第二法)=m i j jm tg jm D W m a H )(sin cos )1(4.02)2.0(-⨯+++--θθθμμ下上 (第一法)2、涵洞涵身分节 首先确定出入口定长,(正交)一般情况翼墙式洞门为1米,端墙式洞门为2米,(斜交定长查斜交涵洞兰图中的B o 值)然后,按3米或2米的涵节分节,沉降缝一般设置为3厘米。

用适当的涵节加沉降缝加出入口定长凑足涵长,不够或多出部分,用最后一节涵节变化满足,应保证宁长勿短的要求。

具体计算公式为:整个涵长=1(或2)+n ×涵节长度+(n+1)×0.03+1(或2) 3、涵洞数量计算及查表注意,在查表时,涵身数量等于表中所查数据乘以各涵节相加的涵身长,而不是乘以总涵长;出入口数量计算时,应注意是否有提高节,当有提高节时,可以直接用查到的出口加上入口数量即可;若无提高节,则用出口数量乘以2则为出入口数量。

4、标高控制设计时,必须满足轨底至盖板顶≥0.41(0.8)米的最低要求,用公式表示为:41.086.0≥---+gbh hjng zxxsmbg ljbg d h H H (0.8)上式中:H——线路中心路肩标高jlbgH——涵洞中心泄水面标高(为未知)zxxsmbgh——涵洞内部高度hjngd——盖板厚度gbh用上式求出最大的泄水面标高后,再根据拟订的泄水面坡度,反推到上游路肩垂直对下来的泄水面处的标高,再用上式检算是否满足大于等于0.41的要求,如不满足,应适当降低泄水面标高,直到刚好满足时为最佳(因为此时既满足规范要求,又做到了尽量少开挖基础)。

隧道工程工程量计算

隧道工程工程量计算

3.3.1 洞身工程
3.3.1 洞身工程
二、洞身工程定额工作内容及说明
2、定额说明
(5)连拱隧道中导洞、侧导洞开挖和中隔墙衬砌是按拱隧道 施工方法编制的,除此以外的其他部位的开挖、衬砌、支护 可套用其他定额。
(6)格栅刚架和型钢刚架均按永久性支护编制,如作为临时 支护使用时,应按规定计取回收。定额中已综合连接钢筋的数 量。
1、洞身工程量计算
(1)定额所指隧道长度均指隧道进出口 (含与隧道相连的明 洞)洞门端墙墙面之间的距离,即两端端墙面与路面的交线同 路线中线交点间的距离。双线隧道按上、下行隧道长度的平 均值计算。
(2)洞身开挖工程量按设计断面数量(成洞断面加衬砌断面) 计算,包含洞身及所有附属洞室的数量,定额中已考虑超挖因 素,不得将超挖数量计入工程量。
3.3.1 洞身工程
一、洞身工程简介
1.洞身幵挖
(2)应采用光面爆破、预留光面层光面爆破或预裂爆破等控 制爆破技术。炮眼的孔径、孔数、孔深及炮眼布置满足要求, 炸药及起爆器材的品种及规格选取合适,装药量、装药结构 及起爆顺序要合理。
(3)开挖出的洞身断面尺寸,按设计要求或表中预留一定的 围岩变形量。
3.3.1 洞身工程
二、洞身工程定额工作内容及说明
1、定颔工作内容(部分)
(4)半隧道开挖。工作内容包括:打眼、装药、爆破,安全 警戒,排险,运渣。 (5)钢支撑。工程内容包括:下料,成型,钻孔,焊接,修正; 安装就位,紧固螺栓;拆除,整理,堆放。 (6)锚杆及金属网。 砂浆锚杆工作内容包括:搭、拆、移动脚手架,锚杆及附件 制作,运输,钻孔,安装,砂浆拌合、灌注,锚固。 中空及自钻式锚杆工作内容包括:搭、拆、移动脚手架, 锚杆运输,钻运,安装附件,砂浆拌合、灌注,锚固。 金属网工作内容包括:制作,挂网,绑扎,点焊,加固。

洞门计算

洞门计算

隧道洞门型式方案比选洞门型式方案比选表2-2洞门型式方案的选择:线路洞门左侧洞门处也属于V级围岩,地势较陡,地质条件较差,纵向推力较大,综合比较决定采用冀墙式洞门。

线路右侧洞门处虽然处属于V级围岩,但其洞口周边地形比较平坦,方便施工,采用了削竹式洞门。

洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:1、洞门仰坡坡脚至洞门墙背的水平距离不宜小于,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于,洞门墙顶高出仰坡脚不小于。

2、洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定。

3、洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保证洞门的稳定。

基底埋入土质地基的深度不小于,嵌入岩石地基的深度不小于;基底标高应在最大冻结线以下不小于。

基底埋置深度应大于墙边各种沟、槽基底的埋置深度。

4、松软地基上的基础,可采取加固基础措施。

洞门结构应满足抗震要求。

验算满足条件采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性。

验算时应符合表2-3和表2-4(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。

洞门主要验算规定表2-4洞门结构设计计算计算参数如下:(1)边、仰坡坡度1:;(2)仰坡坡脚ε=30°,tanε=,tanα=;(3)地层容重γ=17kN/m3;(4)地层计算摩擦角 =40°;(5) 基底摩擦系数;(6) 基底控制应力[σ]=建筑材料的容重和容许应力洞门材料选用C25混凝土,容许压应力[σa]=,重度γ'=23KN/ m3。

洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=18m;其中基底埋入地基的深度为,洞口仰坡坡脚至洞门墙背的水平距离为2m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度2m,洞门翼墙与仰坡间的的水沟深度为,洞门墙顶高出仰坡坡脚。

端墙式洞门计算

端墙式洞门计算

3.1 . 洞门结构设计计算3.1 .1 计算参数计算参数如下:(1)边、仰坡坡度 1:0.5;(2)仰坡坡脚& =63.5°, tan& =2,a =6°;(3)地层容重丫 =22kN/m3;(4)地层计算摩擦角© =70 °;( 5) 基底摩擦系数 0.6;(6) 基底控制应力[(T ]=0.8Mpa3.1 .2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为 M10。

(2)容许压应力[(T a]=2.2MPa,重度丫 t=22KN/ m3。

3.1.3 洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=12m;其中基底埋入地基的深度为 1,0m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度 1.38m,洞门翼墙与仰坡间的的水沟深度为0.5m,洞门墙顶高出仰坡坡脚0.7m,洞口仰坡坡脚至洞门墙背的水平距离为1.5m,墙厚2.0m,设计仰坡为1:1,具体见图纸。

3.2. 洞门验算3.2.1 洞门土压力计算根据《公路隧道设计规范》(JTJ026-90),洞门土压力计算图示具体见图 3.2图3-4洞门土压力计算简图最危险滑裂面与垂直面之间的夹角: tan 2tan tan (1 tan 2)(tan tan )(tan tan )(1tan tan ) 2 tan (1 tan ) tan (1 tan tan )式中: 一一围岩计算摩擦插脚& ――洞门后仰坡坡脚;a ——洞门墙面倾角代入数值可得:2 I 2tanw = ta 门7° tan6tan63.5 ^(1 tan 70 )(tan70 tan63.5)(tan70 tan6)(1 tan6 tan63.5)tan63.5(1 tan 70) tan70(1 tan6 tan63.5)=0.266故:w=14.89°根据《公路隧道设计规范》(JTG —2004), 土压力为;1 2E 2 [H 2 h °(h h °)]b(tan tan )(1 tan tan )tan( )(1 tan tan )式中: E ――土压力(kN );h atan tantanw地层重度(kN/m3)入一一侧压力系数;3 -- 墙背土体破裂角;b ――洞门墙计算条带宽度(m ),取b=1m ;E -- 土压力计算模式不确定系数,可取E =0.6把数据代入各式,得:止匕89 tan6)(1 仙6^63.5)=0.0559tan(14.89 63.5 )(1 tan 14.89 tan63.5 )由三角关系可得:h 。

端墙式洞门计算

端墙式洞门计算

3.1 .洞门结构设计计算3.1 .1 计算参数计算参数如下:(1)边、仰坡坡度1:0.5;(2)仰坡坡脚ε=63.5°,tanε=2,α=6°;(3)地层容重γ=22kN/m3;(4)地层计算摩擦角φ=70°;(5)基底摩擦系数0.6;(6)基底控制应力[σ]=0.8Mpa3.1.2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为M10。

(2)容许压应力[σa]=2.2MPa,重度γt=22KN/ m3。

3.1.3洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=12m;其中基底埋入地基的深度为1,0m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度1.38m,洞门翼墙与仰坡间的的水沟深度为0.5m,洞门墙顶高出仰坡坡脚0.7m,洞口仰坡坡脚至洞门墙背的水平距离为1.5m,墙厚2.0m,设计仰坡为1:1,具体见图纸。

3.2.洞门验算3.2.1洞门土压力计算根据《公路隧道设计规范》(JTJ026-90),洞门土压力计算图示具体见图3.2。

图3-4 洞门土压力计算简图最危险滑裂面与垂直面之间的夹角:tan w =式中: ϕ——围岩计算摩擦插脚;ε——洞门后仰坡坡脚;α——洞门墙面倾角代入数值可得:tan w =0.266故:w=14.89°根据《公路隧道设计规范》(JTG —2004),土压力为;2001[()]2E H h h h b γλξ'=+- (tan tan )(1tan tan )tan()(1tan tan )ωααελωϕωε--=+- tan tan a h ωα'=- 式中: E ——土压力(kN );γ——地层重度(kN/m 3)λ——侧压力系数;ω——墙背土体破裂角;b ——洞门墙计算条带宽度(m ),取b=1m ;ξ——土压力计算模式不确定系数,可取ξ=0.6。

隧道洞门与洞门结构

隧道洞门与洞门结构
----隧道明洞结构
- 偏压斜墙式拱形明洞
• 适用于地形倾斜,低侧处路堑外侧有较宽敞的地面供回填土石,以增
加明洞抵抗侧向压力的能力。
• 承受偏压荷载,拱圈为等截面,内侧边墙为等厚直墙式,外侧边墙不
等厚斜墙式。
- 半路堑单压式拱形明洞
• 受单侧的压力,结构内轮廓与隧道一致,左右对称,结构截面左右不
同,内侧边墙为等厚直墙,外墙需要相对地加大,而且必须把基础放在 稳固的基岩上
---洞门结构的构造
- 拱形明洞门
- 拱形明洞门可分为路堑式和半路堑式两类。路堑式明洞门有端墙式 (常用柱式)和翼墙式两种,与一般隧道门形式相类似
柱式拱形明洞门路堑式
翼墙式拱形明洞门路堑式
隧道洞门与洞门结构
---洞门结构的构造
- 半路堑式明洞门多用于傍山线路,其山侧与原地层相接,为了适应 傍山、横向地面坡陡的地形,一般也多以台阶形式加高端墙,并在山 侧设置挡墙支挡边坡,降低开挖高度,
• 当线路位于有可能被淹没的河滩上或水库回水影响
范围以内时,隧道洞口标高应在洪水位以上,并加上 波浪的高度,以防洪水倒灌到隧道中去
隧道洞门与洞门结构
----隧道洞口位置的选定
•为了保证洞口的稳定和安全,边坡及仰坡均不宜开挖过高,不
使山体扰动太甚,也不使新开出的暴露面太大。一般情况下,设
计各类围岩中隧道洞口上方的仰坡和路堑的边坡控制高度和坡度 可参考下表
---明洞的构造
- 棚洞:当山坡的坍方、落石数量
较少,山体侧向压力不大,或因受地质、 地形限制,难以修建拱式明洞时可采用 棚式明洞。
棚式明洞常见的结构形式有盖 板式、刚架式和悬臂式三种。
- 盖板式棚洞
•盖板式棚洞是由内墙、外墙及

隧道中的环框式洞门应用分析

隧道中的环框式洞门应用分析

隧道中的环框式洞门应用分析引言:我国是一个多山国家,75%左右的国土是山地或重丘,过去几十年中,越来越多的公路镶嵌于祖国的大地之上,建国初期,由于技术的落后及资金的局限,公路的普遍做法是盘山绕行或切坡深挖。

伴随着我国社会经济快速发展的需要,近年来我国交通事业得以迅猛发展,公路隧道作为公路工程的重要组成部分,也得以快速的发展。

洞门是隧道的咽喉,也是隧道的重要装饰点。

洞门造型不但要融自然环境于一体,还要体现显出时代风貌,和地方人文景观,体现出地区的文化特点,同时也消减了进出隧道时的黑洞效应及白洞效应,确保行车安全。

1、隧道的种类隧道洞门型式多样,分类也多样不一,根据已建成的隧道,主要有以下几种:(1)环框式洞门。

将衬砌略伸出洞外,增大其厚度,形成洞口环框,适用于洞口石质坚硬、地形陡峻而无排水要求的场合。

(2)端墙式洞门。

适用于地形开阔、地层基本稳定的洞口;其作用在于支护洞口仰坡,并将仰坡水流汇集排出。

(3)翼墙式洞门。

在端墙的侧面加设翼墙而成,用以支撑端墙和保护路堑边坡的稳定,适用于地质条件较差的洞口;翼墙顶面和仰坡的延长面一致,其上设置水沟,将仰坡和洞顶汇集的地表水排入路堑边沟内。

(4)此外,当地形较陡,地质条件较差,且设置翼墙式洞门又受地形条件限制时,可在端墙中设置柱墩,以增加端墙的稳定性,这种洞门称为柱式洞门。

它比较美观,适用于城郊、风景区或长大隧道的洞口。

(5)在傍山地区,为了降低仰坡的开挖高度,减少土石方开挖量,可将端墙顶部作成与地表坡度相适应的台阶状,称为台阶式洞门。

2、工程概况枣林隧道为分离式的四车道高速公路隧道,隧道进口位于枣林镇青滩坡村,出口位于巴州镇玉堂村,到达隧道进口需要跨过巴河(临渔江路),然后走一段1.5m宽左右的土路,方可到达隧道进口,施工时候需要修建一段施工便道方可到达,进口地势较陡;出口无较为便利的道路可以达到,施工中需要修建一条施工便道,出口上方有一条冲沟,设计中需要做好防排水设计。

洞门计算

洞门计算

2.4隧道洞门型式方案比选洞门型式方案比选表2-2洞门型式方案的选择:线路洞门左侧洞门处也属于V级围岩,地势较陡,地质条件较差,纵向推力较大,综合比较决定采用冀墙式洞门。

线路右侧洞门处虽然处属于V级围岩,但其洞口周边地形比较平坦,方便施工,采用了削竹式洞门。

2.4.1洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:1、洞门仰坡坡脚至洞门墙背的水平距离不宜小于1.5m,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于 1.0m,洞门墙顶高出仰坡脚不小于0.5m。

2、洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定。

3、洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保证洞门的稳定。

基底埋入土质地基的深度不小于 1.0m,嵌入岩石地基的深度不小于0.5m;基底标高应在最大冻结线以下不小于0.25m。

基底埋置深度应大于墙边各种沟、槽基底的埋置深度。

4、松软地基上的基础,可采取加固基础措施。

洞门结构应满足抗震要求。

2.4.2 验算满足条件采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性。

验算时应符合表2-3和表2-4(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。

洞门墙设计参数表2-3洞门主要验算规定表2-42.4.3洞门结构设计计算计算参数如下:(1)边、仰坡坡度1:1.5;(2)仰坡坡脚ε=30°,tanε=0.58,tanα=0.1;(3)地层容重γ=17kN/m3;(4)地层计算摩擦角 =40°;(5) 基底摩擦系数0.4;(6) 基底控制应力[σ]=0.25Mpa2.4.3.1建筑材料的容重和容许应力洞门材料选用C25混凝土,容许压应力[σa]=0.5MPa,重度γ'=23KN/ m3。

(仅供参考)第6章--山岭隧道洞门结构及洞口景观设计

(仅供参考)第6章--山岭隧道洞门结构及洞口景观设计
随着高等级公路的快速发展,国内外公路隧道洞门有了较大突破和创新,如削竹式洞门。这种 洞口表现形式以斜切式为主,洞口为隧道衬砌向外延伸到仰坡以外形成环框,减少洞口附近的刷坡, 甚至不刷坡,保护周边环境,越来越引起人们的注意。如台湾北宜高速公路隧道门(图 6-1-1)、珠 海板障山公路隧道门、日本的一些公路隧道洞门(图 6-1-2)。其设计将建筑学、园林学及环境美学 的一些理论、原则和观点运用到公路隧道洞门的设计中,收到了美的效果,给人以美的享受。
第六章 山岭隧道洞门结构及洞口景观设计
第六章 山岭隧道洞门结构及洞口景观设计
第一节 概 述
隧道洞门作为整个隧道的外露部分,应该起到整条隧道的突出标志的作用,除了发挥其结构功 能外,还应该对周围的总体环境有一种符号和象征的意义。洞门型式的特点和美观影响人们对整个 隧道工程的评价。我国传统铁路隧道洞门根据地形特点分为基本型、变化型、和特殊型三大类十六 种型式,但始终脱离不了端墙、柱式的形式。传统洞门设计常常从力学和安全角度出发,照搬标准 图模式,适应地形特点变化作些修改,洞门结构型式上创新较少;而且墙式洞门施工过程中,开挖 进洞均需不同程度地对隧道洞口附近的边坡和仰坡进行刷坡处理。过多的刷坡破坏了原有植被及地 貌,有时甚至危及洞口附近山体的稳定。施工期间大面积的刷坡改变了洞口周边的生态环境,远远 不能满足当前生态和环境保护等方面的需要。因此传统的铁路隧道洞门型式和施工方法在一定程度 上是需要革新和补充完善的。随着社会的发展,人们对洞门建筑的要求已不仅仅停留在结构的功能 上,而对美学和环境的要求越来越重视,力求达到建筑学、园林学、美学理论的完美统一。
第 6 页 共 29 页
第六章 山岭隧道洞门结构及洞口景观设计
经建立的洞口建筑设计数据库,大约有近 200 多个样本。可以作为设计中的重要参考依据。 该数据库包括 1 个表,8 个表单,1 个报表,9 个查询和一些宏命令。 数据库结构如图 6-2-10 所示: 表的设计:表主要是隧道洞口信息表,表的结构见图 6-2-11。 数据库中隧道洞口信息表是其的主要的内容。

洞门计算书--实用.docx

洞门计算书--实用.docx

隧道洞门设计及稳定性验算一、概况金鸡山隧道为分离式单向行车双线隧道,隧道右洞进口为Ⅳ级围岩,隧道右洞进口为Ⅲ级围岩,隧道区中部为分水岭,两侧沟谷切割较深,地表径流水水量较少,仅进口段处于冲沟交汇处(尤其右洞口)地表水较发育,出口段左右洞口均为Ⅴ级围岩。

隧道入口洞门形式皆按照Ⅳ级设计,采用端墙式洞门,出口洞门形式皆采用翼墙式洞门。

洞门设计计算参数洞门墙主要验算规定二、进口段洞门结构设计计算(端墙式)(一)基本参数1.计算参数1)边、仰坡坡度 1 :2)计算摩擦角ψ=53°3)仰坡坡角 tan ε=34) 重度γ=24KN/m5) 基底摩擦系数 f=6) 墙身斜度 1:7) 基底控制应力 [ σ ]=2. 建筑材料容重及容许应力1)墙的材料为粗料石砌体,石料的强度等级为 Mu100,水泥砂浆的强度等级为 M10。

32) 容许压应力 [ σ]=5Mpa,重度γt =25KN/m。

3.洞门各部尺寸拟定根据《公路隧道设计规范》(JTG-2004),结合洞门所处地段的工程地质条件,拟定洞门的高度: H=12m;其中基底埋入地基的深度为,洞门与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度 1m,洞门与仰坡间的水沟深度为,洞门墙顶高出仰坡坡脚,洞口仰坡坡脚至洞门墙背的水平距离为 2m,墙厚,设计仰坡为 1:1, 具体见图。

(二)洞门土压力计算根据《公路隧道设计规范》(JTG-2004),洞门土压力计算图示具体见图 1。

最危险滑裂面与垂直面之间的夹角:2htan2tan tan(1tan2) tan tan tan tan 1 tan tantan tan 1tan2tan1tan tan 式中:ε、α——地面坡角与墙面倾角(°);——围岩计算摩擦角()图1代入数据,得Tanω=,ω =°根据《公路隧道设计规范》( JTG — 2004 ),土压力:E1H 2h 0h' h0 b2tan tan 1 tan tantan1tan tanh'atan tan式中:E ——土压力( KN);——地层重度 KN / m3;——侧压力系数;——墙背土体破裂角;代入数据,得:0.078; h0 3.0843m; h' 6.7135m; E 87.1567kN 由 E计算得:E x E ? cosE y E ? sin23式中:——墙背摩擦角代入数据得:E x72.2561kNE y48.7374kN(三)洞门抗倾覆验算翼墙计算图示如图 2 所示,挡土墙在荷载作用下应绕O点产生倾覆时应满足下式: K 0M y1.6 M 0图 2 G bBHZ x H 3Z y B H tan3Z GB H tan2M y G Z G E y Z y M 0E x Z x代入数值得:G=325kN ; Z x4m; Z y 1.72m; Z G 1.28m;∑M y = ·m;∑ M0=·mM 代入 K 0M y1.7294 1.6 0故抗倾覆稳定性满足要求。

隧道翼墙式洞门计算教程

隧道翼墙式洞门计算教程
4.1.3 洞门构造要求
按《公路隧道设计规范》(JTG-2004),洞门构造要求为: (1)洞门仰坡坡脚至洞门墙背的水平距离不宜小于 1.5m,洞门端墙与仰坡之间水
沟的沟底至衬砌拱顶外缘的高度不小于 1.0m,洞门墙顶高出仰坡脚不小于 0.5m。 (2)洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计 算或结合其他工程类比确定。 (3)洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保 证洞门的稳定。基底埋入土质地基的深度不小于 1.0m,嵌入岩石地基的深度 不小于 0.5m;基底标高应在最大冻结线以下不小于 0.25m。基底埋置深度应 大于墙边各种沟、槽基底的埋置深度。 (4)松软地基上的基础,可采取加固基础措施。洞门结构应满足抗震要求。
4.2.2 建筑材料的容重和容许应力 (1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为 Mu100,水泥砂浆的
强度等级为 M10。 (2)容许压应力【σa】=2.2Mpa,重度γt=22KN/ m3。
4.2.3 洞门各部尺寸的拟定
4.洞门设计应与自然环境相协调。
4.1.1 确定洞门位置洞口位置的确定应符合下列要求
1.洞口的边坡及仰坡必须保证稳定。 2.洞口位置应设于山坡稳定、地质条件较好处。 3.位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞。 4.跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选后确定。 5.漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分 析确定。 6.洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采取防范
当洞门傍山侧坡地区,洞门一侧边坡较高时,为减小仰坡高度及外露长度, 可以将端墙顶部改为逐步升级的台阶形式,以适应地形的特点,减少仰坡土石方 开挖量。 遮光棚式洞门

翼墙式隧道洞门计算算例

翼墙式隧道洞门计算算例

翼墙式隧道洞门计算算例(一) 原始资料(专遂 0002-15图)仰坡率 1:1;岩体内摩擦角 ϕ=50°; 内轨面至路基面高 2h =75厘米;衬砌加宽值 W =0;岩土容重γ=2.0吨/立方米;圬工计算容重γ0=2.2吨/立方米;基底容许压应力[]σ=3.5公斤/平方厘米;基底摩擦系数f=0.4;墙身仰角 tg α=0.1;查表6-11及6-12洞门土压力系数表得:λ端=0.1792w /tgw = 3015'︒/0.5831λ翼=0.0992 (二)洞门尺寸的拟定1. 依据所选用洞口衬砌断面,按规范要求作洞门正面主要尺寸图。

2. 按工程类比初选洞门主墙厚b =0.9米,翼墙厚1米。

3.绘制计算断面图如图6-30.(三)翼墙稳定性和强度检算翼墙计算条为取洞门端墙墙趾前之翼墙宽1米的条带,如图6-9 I 部分。

计算高度 ()1=8.35-8.35+0.5-1.00=6.02m 10H ⎡⎤⨯⎢⎥⎣⎦平均 1. 翼墙墙身偏心距检算(1) 墙背主动土压力:()22112 6.020.0992 3.6t/m 22E H γλ==⨯⨯⨯= (2) 倾覆力矩(对B 点) ()()11 6.02 3.67.23 t-m 33B M H E ===平均 (3) 稳定力矩自重 0.40.56.021 2.20.3 2.213.250.29712.953t 2N +=⨯⨯-⨯⨯=-=∑ 稳定力矩:1110.5 6.0213.25 6.020.50.29721010y M ⎛⎫⎛⎫=+⨯⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭10.610.32810.282t m =-=-(4) 偏心计算: 10.2827.230.236m 12.953y B M M c N --===∑ 0.50.2360.264m 0.310.3m()2b ec =-=-=<⨯=可 (5) 墙身应力验算2.584612.95360.264=1112.9530.584111M N N e F W F b σ⎛⎫⨯⎛⎫⎛⎫±=±=±=⨯ ⎪ ⎪ ⎪-⨯⎝⎭⎝⎭⎝⎭∑ =33.47.6-2t/m =3.340.76-2kg/cm []()σ<可2. 翼墙基底的计算(按墙高H =7.02米计):(1)主动土压力21'2E H γλ==2127.020.09922⨯⨯⨯=4.89 t/m (2) 倾覆力矩(对'B 点)11''7.02 4.8911.4533B M HE ==⨯⨯= t-m (3)稳定力矩:自重 1.5 1.4'13.25 1.0 2.20.29716.1432N +=+⨯⨯-=∑t 稳定力矩1.411'=(0.801+0.5)13.25+1.42.2+0.1 2.201+140.297(0.5+0.5+0.602)223ij M ⨯⨯⨯⨯⨯⨯⨯∑(..)- =17.3+2.16+0.158-0.476=19.142 t-m(4)稳定计算:倾覆稳定安全系数 0''19.1421.6711.45ijB M K M ===> 1.5(可)滑动稳定安全系数 '0.416.143 1.32' 4.89c f N K E ⨯===∑>1.3(可) (5)基底偏心及应力检算 ''19.14211.45'0.476'16.143y B M M C N --===∑∑m 偏心 '''0.70.4760.2242b e c =-=-=< 1.40.23466b ==m (可) 基底应力:1.96'6'16.14360.224(1)(1)11.520.04'' 1.4 1.4N c F b σ⎛⎫⨯=±=±== ⎪⎝⎭22.60.5<[]σ=35 2t m (四)端墙的检算检查端墙最不利的II 部分:1. 尺寸及数据()0.60.30.30.40.1 1.16a m =++-⨯=0.5b m =(根据计算取轨面以上2.46+0.568=3.028m 处)000.1h a h =+ 0 1.161.2890.90.9a h m ∴=== 011.10(1.050.75 3.028)0.5 5.772h H m +=-++-=5.772 1.289 4.483H m =-=已知λ端=0.1792,tg w =0.5831,w =3015'︒由表6-10求得 1.16' 2.40.58310.1a h m tgw tg α===-- 0' 1.111h h m -=0' 5.772 2.4 3.372H h h m +-=-=20' 1.289'(1)2 2.4(1)0.17920.399t/m ' 2.4h h h h σγλ=-=⨯-⨯= 2=2 4.4830.1792=1.607 t/m H H σγλ=⨯⨯端2. 主动土压力'01122H h E H h σσ⎡⎤=+⎢⎥⎣⎦ 0.5111.607 4.4830.399 1.28922⎡⎤=⨯⨯+⨯⨯⎢⎥⎣⎦0.5=3.8580.5=1.929⨯3. 倾覆力矩 ()()()()0'00'0111111=''''''0.5323232H h h M H H h H h h h h h H h h h h σσσ⎧⎫⎡⎤⎡⎤+++-⨯--++-⨯-⨯⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭倾11111= 4.483 3.6 2.4 3.3720.399 2.4 1.111 3.3720.399 1.1110.533232⎧⎫⎡⎤⎡⎤⨯⨯+⨯+⨯⨯⨯-⨯+⨯⨯⨯⨯⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭ {}5.38 2.00.8320.5 6.5480.5 3.274=+-=⨯=t-m 4. 稳定力矩墙身自重N()()20110.250.90.30.040.0250.650.60.250.10.5 2.222N H h ⎡⎤=++⨯-++⨯⨯+⨯-⨯⨯⎢⎥⎣⎦ []5.420.1190.150.0050.5 2.2=-+-⨯⨯ 11.980.5 5.9=⨯= M 稳=⎧⎨⎩()()01115.420.9+0.6020.30.650.40.10.90.3223H h ⎡⎤⨯-⨯⨯+-⨯+-⎢⎥⎣⎦ ()()010.0650.650.40.10.90.0650.250.60.6020.23H h ⎡⎤-⨯+-⨯++⨯+⨯+⎢⎥⎣⎦ 0.120.0050.6023⨯⎛⎫-- ⎪⎝⎭⎫⎬⎭0.5 2.2⨯⨯ {}= 3.9960.5 2.2=8.790.5⨯⨯⨯ = 4.395 t-m5. 强度及偏心计算 8.796.5480.188m 11.98c -== ()0.450.1880.260.30.272b e c b =-=-=<=可11.980.560.26=10.90.50.9σ⨯⨯⎛⎫± ⎪⨯⎝⎭=13.2(1 1.73)± =13.2 2.73=-0.73⎛⎫ ⎪⎝⎭36-9.72t/m []()<σ可 (五)端墙与翼墙共同作用检算(III 部分)1. 数据00021.84m11.100.5010.60mH 10.60 1.2899.311m =29.3110.1792=3.34t/m H b H h H σγλ=+=-==-==⨯⨯端2. 主动土压力 0'011+ 1.8422H h E H h σσ⎡⎤=⎢⎥⎣⎦ 1=3.349.311+0.2581.84=29.2t /m 2⎡⎤⨯⨯⎢⎥⎣⎦3. 洞门端墙自重()211=1.84 2.211.10-0.250.9-0.3650.65+0.60.250.122N ⎡⎤⨯⨯⨯⨯⨯-⎢⎥⎣⎦端 []1.84 2.29.79541.3t =⨯=洞口翼墙自重()()()1110.50.4= 6.52+0.17.35+ 6.52+6.52+0.1 1.4+1.510.37.522 2.22222N +⎡⎤⨯⨯-⨯⨯⎢⎥⎣⎦翼 [][]24.39.55 1.46 2.232.39 2.271.2t=+-=⨯= 4.端、翼墙共同作用滑动稳定性()()()0.441.371.20.4112.5 1.54 1.329.229.2c f N K E +====>∑∑ 可。

隧道桩基承台洞门落石冲击下结构计算与分析

隧道桩基承台洞门落石冲击下结构计算与分析

隧道桩基承台洞门落石冲击下结构计算与分析发布时间:2021-04-13T02:40:57.006Z 来源:《防护工程》2020年34期作者:朱雯蕾[导读] 考虑在隧道洞门在受落石的荷载冲击下,结构设计需要考虑的荷载情况,并对洞门结构计算结果进行验算分析。

中交铁道设计研究总院有限公司北京 100088摘要:为了更好地研究分析危岩落石对隧道桩基承台无仰拱双耳墙式洞门结构的影响作用,本文以某铁路隧道出口为例,通过对洞门概况及结构型式的介绍,根据洞口危岩落石调查情况,量化落石荷载,利用Midas-civil软件,建立结构-荷载模型,考虑在隧道洞门在受落石的荷载冲击下,结构设计需要考虑的荷载情况,并对洞门结构计算结果进行验算分析。

关键词:隧道;桩基承台洞门;危岩落石;结构计算随着我国铁路工程的不断发展建设,陡坡、险山等困难地形不再成为限制铁路走向的主要制约条件,隧道洞口危岩落石风险也经常存在,因而为保障铁路运营的安全,隧道结构的设计需要从自身承载力上克服危岩、落石等不良地质条件的影响。

本文以某铁路隧道为例,针对其桩基承台无仰拱双耳墙式洞门结构型式,利用结构计算软件,根据基本设计参数建立结构-荷载模型,计算落石冲击荷载下洞门结构受力,并根据受力情况进行结构设计。

1 概况1.1 工程概况案例为时速350km高速铁路双线隧道,线间距为5.0m,有砟轨道,隧道最大埋深约270m,全长1872m。

隧道出口紧邻市区公路,洞口位于公路上方约50m,平面距离约50m。

出口紧邻大桥,根据地形条件,出口采用桩基承台无仰拱双耳墙式洞门,设置10m长护桥明洞。

洞口正面图如下图1所示。

图1 洞口正面图1.2 工程地质、水文地质(1)工程地质条件地形地貌:丘陵地貌,地形起伏较小,自然坡度5~30o不等,局部较陡。

地层岩性:上覆第四系全新统坡残积层(Q4dl+el)粉质黏土、崩坡积层(Q4dl+col)块石土,下伏基岩为侏罗系下统珍珠冲组(J1z)、三叠系上统须家河组(T3xj)。

洞门计算

洞门计算

2.4隧道洞门型式方案比选洞门型式方案比选表2-2洞门型式方案的选择:线路洞门左侧洞门处也属于V级围岩,地势较陡,地质条件较差,纵向推力较大,综合比较决定采用冀墙式洞门。

线路右侧洞门处虽然处属于V级围岩,但其洞口周边地形比较平坦,方便施工,采用了削竹式洞门。

2.4.1洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:1、洞门仰坡坡脚至洞门墙背的水平距离不宜小于1.5m,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于1.0m,洞门墙顶高出仰坡脚不小于0.5m。

2、洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定。

3、洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保证洞门的稳定。

基底埋入土质地基的深度不小于1.0m,嵌入岩石地基的深度不小于0.5m;基底标高应在最大冻结线以下不小于0.25m。

基底埋置深度应大于墙边各种沟、槽基底的埋置深度。

4、松软地基上的基础,可采取加固基础措施。

洞门结构应满足抗震要求。

2.4.2 验算满足条件采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性。

验算时应符合表2-3和表2-4(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。

洞门墙设计参数表2-3洞门主要验算规定表2-42.4.3洞门结构设计计算计算参数如下:(1)边、仰坡坡度1:1.5;(2)仰坡坡脚ε=30°,tan ε=0.58,tan α=0.1; (3)地层容重γ=17kN/m 3; (4)地层计算摩擦角ϕ=40°; (5) 基底摩擦系数0.4; (6) 基底控制应力[σ]=0.25Mpa2.4.3.1建筑材料的容重和容许应力洞门材料选用C25混凝土,容许压应力[σa]=0.5MPa ,重度γ'=23KN/ m 3。

端墙式洞门计算范文

端墙式洞门计算范文

端墙式洞门计算范文一、端墙式洞门的构造1.墙洞体:墙洞体是指墙体上开设的洞口部分,通常由墙四个边缘的砖石构成。

墙洞体的高度和宽度是根据设计要求来确定的,通常需要考虑洞门的功能、人员通行的要求和建筑风格等。

2.门洞体:门洞体是指洞门上方的构造体,用于承载和固定门扇。

门洞体通常由门洞两侧的立柱和上梁构成。

立柱通常由砖石或者混凝土构成,而上梁通常由梁板或者梁柱构成。

门洞体的尺寸和强度需要根据门扇的尺寸和重量来确定。

二、端墙式洞门的计算1.洞口尺寸计算:洞口的尺寸计算是根据设计要求和建筑规范来确定的。

通常需要考虑门扇的尺寸、门洞的高度和宽度、门扇和墙洞之间的间隙等因素。

一般来说,门洞的高度应为门扇高度加上一定的间隙,门洞的宽度应为门扇宽度加上一定的间隙和两侧立柱的宽度。

2.门洞体的受力计算:门洞体的受力计算需要考虑墙洞体的重力荷载和门扇的重力荷载。

墙洞体的重力荷载可以通过墙洞体的尺寸和墙体本身的重力来计算。

而门扇的重力荷载可以通过门扇的尺寸和材料的密度来计算。

门洞体需要承受这些重力荷载,并且承受安装门扇时的水平荷载和垂直荷载。

三、端墙式洞门的设计1.强度设计:强度设计主要包括墙洞体的受力计算和门洞体的受力计算。

墙洞体的受力计算需要考虑压力、剪切和弯曲等力的作用。

而门洞体的受力计算需要考虑垂直荷载和水平荷载的作用。

设计时需要选择合适的材料和构造形式,确保门洞体的强度足够。

2.稳定性设计:稳定性设计主要包括门洞体的稳定和墙体的稳定。

门洞体的稳定性需要考虑水平荷载和垂直荷载的作用,可以通过增加立柱和上梁的数量和尺寸来提高稳定性。

而墙体的稳定需要考虑墙洞体的位置和墙体的尺寸,可以通过增加墙洞体的宽度和高度来提高稳定性。

综上所述,端墙式洞门是建筑领域中常用的洞门形式之一、它的构造、计算和设计都需要严谨的考虑,以确保洞门的质量和安全性。

在实际设计中,还需要考虑其他因素,如保温、防水、防火等要求。

因此,对于端墙式洞门的计算和设计,建议寻求专业工程师的帮助和指导。

【2017年整理】根据规范上提供的计算洞门土压力的计算公式

【2017年整理】根据规范上提供的计算洞门土压力的计算公式

根据规范上提供的计算洞门土压力的计算公式:[]ξγλb h h h H E )'(21002-+= (5-3)E —土压力(kN );r —地层重度(kN/m 3),参考资料取20 kN/m 3;λ—侧压力系数,根据上述计算为:0.297;b —洞门墙计算条带宽度(m )ξ—土压力计算模式不确定性系数,可取ξ=0.6。

由图可知:0o h = 则'00tan tan 0a h α===ω- 因此,可求得土压力如下:[][]6.01055.6297.02021)'(212002⨯⨯+⨯⨯=-+=E b h h h H E ξγλ (3-3) 故有E=76.45KN重力为:kN G b H bB H G 85.2054.21231155.523'21=⨯⨯+⨯⨯⨯=+=砼砼γγ (3-4)B.稳定性及强度验算a.倾覆稳定性的验算∑⋅=⨯+++⨯⨯=m 59.3192.146)7.05.01.055.5(65.150kN M y (3-5)∑⋅=⨯=m 163355.665.740kN M (3-6) 6.113.215059.31900>===∑∑M M K y(3-7) ∴满足倾覆稳定的要求。

b.滑动稳定的验算隧道怀化端洞门仰坡自然坡度约35~40°,通道端洞门仰坡自然坡度约35~40°怀化段左右洞洞口均处在陡立山坡上,自然坡度35~40°,左右洞洞口处隧道轴线与等高线大致呈70°角相交。

边坡及仰坡的坡比采用1:1.0,并进行拱形骨架支护,仰坡后缘设置截水沟。

通道段左右洞洞口处隧道轴线与等高线大角度相交,但两洞外轮廓线均位于沟壁附近。

洞口附近覆盖层厚度较小,建议边坡及仰坡的坡比采用1:1.0,并进行拱形骨架支护,仰坡后缘设置截水沟。

综上所述,根据规范边、仰坡比1:1.0采用翼墙式洞门。

由于左右洞的进出口端地质情况差不多,所以洞门形式都采用翼墙式洞门。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4隧道洞门型式方案比选洞门型式方案比选表2-2洞门型式方案的选择:线路洞门左侧洞门处也属于V级围岩,地势较陡,地质条件较差,纵向推力较大,综合比较决定采用冀墙式洞门。

线路右侧洞门处虽然处属于V级围岩,但其洞口周边地形比较平坦,方便施工,采用了削竹式洞门。

2.4.1洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:1、洞门仰坡坡脚至洞门墙背的水平距离不宜小于1.5m,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于 1.0m,洞门墙顶高出仰坡脚不小于0.5m。

2、洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定。

3、洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保证洞门的稳定。

基底埋入土质地基的深度不小于 1.0m,嵌入岩石地基的深度不小于0.5m;基底标高应在最大冻结线以下不小于0.25m。

基底埋置深度应大于墙边各种沟、槽基底的埋置深度。

4、松软地基上的基础,可采取加固基础措施。

洞门结构应满足抗震要求。

2.4.2 验算满足条件采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性。

验算时应符合表2-3和表2-4(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。

洞门墙设计参数表2-3洞门主要验算规定表2-42.4.3洞门结构设计计算计算参数如下:(1)边、仰坡坡度1:1.5;(2)仰坡坡脚ε=30°,tanε=0.58,tanα=0.1;(3)地层容重γ=17kN/m3;(4)地层计算摩擦角 =40°;(5) 基底摩擦系数0.4;(6) 基底控制应力[σ]=0.25Mpa2.4.3.1建筑材料的容重和容许应力洞门材料选用C25混凝土,容许压应力[σa]=0.5MPa,重度γ'=23KN/ m3。

2.4.3.2洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=18m;其中基底埋入地基的深度为1.5m,洞口仰坡坡脚至洞门墙背的水平距离为2m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度2m,洞门翼墙与仰坡间的的水沟深度为0.4m,洞门墙顶高出仰坡坡脚0.8m。

2.4.3.3洞门验算根据《公路隧道设计规范》(JTJ026-90),洞门土压力计算最危险滑裂面与垂直面之间的夹角:洞门计算简图)tan tan 1(tan )tan 1(tan )tan tan 1)(tan (tan )tan )(tan tan 1(tan tan tan tan 222εαϕϕεεααϕεϕϕεαϕω--+-+-+-+=式中: ϕ——围岩计算摩擦角; ε——洞门后仰坡坡角; α——洞门墙面倾角 代入数值可得:tan w =0.68 故:w=34.217° 2.4.3.4翼墙墙身验算翼墙计算高度取距洞门前0.5m 处高度为H=8m,洞门后填土高度为H '=7.2m,翼墙厚度B=1.7m根据《公路隧道设计规范》(JTG —2004),土压力为:2001[()]2E H h h h b γλξ'=+-(tan tan )(1tan tan )tan()(1tan tan )ωααελωϕωε--=+-εαεαtan tan 1tan -= h , tan tan ah ωα'=-式中: E ——土压力(kN ); γ——地层重度(kN/m 3)λ——侧压力系数; ω——墙背土体破裂角;b ——洞门墙计算条带宽度(m ),取b=1m ; ξ——土压力计算模式不确定系数,可取ξ=0.6。

把数据代入各式,得:λ=0.2550 h ′=3.4483 h 。

=1.44洞门土压力E :ξγλb E h h h H ⎥⎦⎤⎢⎣⎡-+=)('21'2 =71.16KNKN a E E x 4367.66)cos(16.71)cos(7.57.26=-⨯=-⋅=δ KN a E E y 5015.25)sin(16.71)sin(7.57.26=-⨯=-⋅=δ 式中:δ——墙背摩擦角 δ=23φ=23×40=26.7°(1)抗倾覆验算挡土墙在荷载作用下应绕O 点产生倾覆时应满足下式: 001.6y M k M=≥∑∑式中: K 0——倾覆稳定系数,0 1.6k ≥;y M ∑——全部垂直力对墙趾O 点的稳定力矩; 0M ∑——全部水平力对墙趾O 点的稳定力矩;墙身重量G : KN G 8.3127.11823=⨯⨯⨯=E x 对墙趾的力臂:m H Z x 4.232.73'===E y 对墙趾的力臂:m H B Z y 967.131.087.13tan =⨯+=+=α G 对墙趾的力臂:m H B Z G 25.121.087.12tan =⨯+=+=αm KN G Z E Z My y G y⋅=⨯+⨯=⨯+⨯=∑1615.441967.15015.2525.18.312m KN Z E M x x ⋅=⨯==∑4481.1594.24367.66 代入上式得:6.177.24481.1591615.441>==k故抗倾覆稳定性满足要求(2)抗滑动验算对于水平基底,按如下公式验算滑动稳定性: 1.3cN f K E⋅=≥∑∑式中: K c ——滑动稳定系数N ∑——作用于基底上的垂直力之和; E ∑——墙后主动土压力之和,取E ∑=E x ; F ——基底摩擦系数,取f=0.4 代入式得: 3.104.24346.664.0)5015.258.312()(>=⨯+=⋅+=EE k xy c fG故抗滑稳定性满足要求(3)基底合力偏心矩验算设作用于基底的合力法向分力为N ∑,其对墙趾的力臂为Z N ,合力偏心矩为e ,则:mG G NE Z E Z E Z M MZ yxx y y G yN8328.05015.258.31244.1591615.441=+-=+⨯-⨯+⨯=-=∑∑∑0172.08328.027.12=-=-=Z N B e <2833.06=B 满足基底合力的偏心距,对于6Be <KPa KPaBe BN 0793.2119207.186max min)7.10172.061(7.15015.258.312)61(=⨯±⨯+=±=∑σ[]MPa kpa 3.00793.211max=<=σσ,计算结果满足要求。

(4)墙身截面偏心矩及强度验算墙身截面偏心矩e0.3Me B N=<式中: M ——计算截面以上各力对截面形心力矩的代数之后;N ——作用于截面以上垂直力之后。

m KN B H H M E E y x ⋅=⨯--⨯=⋅--⋅=8810..6627.15015.25)3828(4346.662)32(KN G N E y 3015.3385015.258.312=+=+=将数据代入墙身偏心矩E 的公式,可得: 51.03.01977..03015.3388810.66=<===B N M e ,计算结果满足要求。

应力σ6(1)N e bbσ=+∑[]MPa KPa a5.0)7.11977.061(7.13015.3388622.3371378.60=<=⨯±=σσ满足强身截面的要求 2.4.3.5翼墙基底的运算2236.0=λ ,端墙墙高m H 18= ,墙背厚土m H 5.12'=,端墙厚m B 6.1=土压力E:[]KNb E h h h H 1385.2196.01)44.14483.3(44.15.122550.01821)('212'2=⨯⨯-⨯+⨯⨯⨯=⎥⎦⎤⎢⎣⎡-+=ξγλKN a E E x 5834.204)cos(1385.219)cos(7.57.26=-⨯=-⋅=δKN a E E y 5322.78)sin(1385.219)sin(7.57.26=-⨯=-⋅=δKN G 4.6626.111823=⨯⨯⨯= 滑动稳定的运算:3.145.15834.2044.0)5322.784.662()(>=⨯+=⋅+=EE k xy c fG满足滑动稳定的要求 2.4.3.6端墙的验算2550.0=λ ,所取墙高为m H 4.3= ,墙背厚土m H 6.2'=,端墙厚m B 6.1=,取条带宽度m b 5.0=土压力的计算[]KNb E h h h H 6456.66.05.0)44.14485.3(44.16.22550.01821)('212'2=⨯⨯-⨯+⨯⨯⨯=⎥⎦⎤⎢⎣⎡-+=ξγλ KN a E E x 2042.6)cos(6456.6)cos(7.57.26=-⨯=-⋅=δKN a E E y 3816.2)sin(6456.6)sin(7.57.26=-⨯=-⋅=δKN Hsb G 47.665.07.14.323'=⨯⨯⨯==γ(1)倾覆稳定性的运算m KN M ⋅=⨯⨯=∑3770.56.22042.631m KN M y ⋅=⨯+⨯+⨯+⨯=∑5564.68)31.04.36.1(3816.221.04.36.147.66 6.175.123770.55564.68>==k 满足倾覆稳定的要求 (2)滑动稳定的要求3.14390.42042.64.0)3816.247.66()(>=⨯+=⋅+=EE k xy c fG满足滑动稳定的要求 (3)合力偏心距的运算mNM MZ yN9176.03816.247.663770.55564.68=+-=-=∑∑∑m Bm B e Z N 267.061176.09176.08.02=<-=-=-=满足基底偏心距的要求 (4)基底压力的验算 当6Be <时,[]KPa Be BN KPa KPa300)6.11176.061(6.13816.247.66)61(0095.620551.24max min=<=⨯±⨯+=±=∑σσ(5)墙身截面的偏心验算m KN B H H M E E y x ⋅=⨯--⨯=⋅--⋅=6106.126.13816.2)34.324.3(2042.62)32(KN G N E y 8516.683816.247.66=+=+=将数据代入墙身偏心矩E 的公式,可得:48.03.00234.08516.686106.1=<===B N M e ,计算结果满足要求6(1)N e bbσ=+∑KPa 4904.1204258.34maxmin )6.148.061(6.18516.68-=⨯±⨯=σ 因为出现负值,故尚因检算不考虑圬工承受拉力时受压区应力重分布的最大压力。

相关文档
最新文档