大跨建设 结构——空间结构体系
大跨度空间结构
大跨度空间结构简介
近二十余年来,建筑物的跨度和规模越来越大,目前,尺度达150m 以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料 和新技术,发展了许多新的空间结构形式。
1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m, 长期被认为是世界上最大的球面网壳。
工,在建造后的沉降、变形、
吊装等问题正在逐步解决,
相关施工技术难题还被列为
科技部重点攻关项目。
第29届奥运会主场馆:北京奥林匹克体育场
悉尼超级穹顶体育馆是被作为 2000年奥林匹克运动会的多功能 体育馆进行设计的。
菲利普·考克斯与其合作者们 把大穹顶体育馆想象成一座庞大、 水平且半透明的建筑。建筑外形 呈鼓状,由24根钢柱支撑着的放 射状网架结构形成了遮盖赛场的 轻型屋盖体系。为使其尺度不至 于过大,他们在两侧设置了环抱 体育场的轻质廊道,这就给这个 大尺度的表皮添上了一些人性化 的细部。但是要欣赏大穹顶还是 需要一定的角度和高度,所以他 们在设计时运用了一种类似桅杆 的结构,就像是一个花冠围绕在 体育馆的周围。他们以其纤细但 不失强度的悬索和自由排列的柱 廊强调大穹顶的整体外观。支撑 柱廊的是树状的柱子,屋顶采用 了有拉索支撑的桁架结构,大尺 度出挑的屋檐为场馆提供了阴凉 的空间。
大跨度空间结构的定义
空间结构是相对平面结构而言的,一般说来我们日常所采用的梁、 桁架、拱···都属于平面结构。它所承受的荷载以及由此产生的内力的 变形都考虑为二维的,即处于一个平面内。而空间结构的荷载、内力 和变形则是有三维空间考虑的,即作用于空间。它的结构分析即要考 虑空间作用,用一般二维的假设和分析是无法得到准确解答的。
镇江巨蛋又称“神州第一蛋”,是高48米、直径 38米、斜度23.5度的巨型不锈钢网壳结构。
最新大跨建筑 结构——空间结构体系
大跨建筑结构——空间结构体系大跨建筑屋架结构体系——高跨比:1:6屋架形式及适用跨度平行弦屋架拱形屋架折线形屋架梯形屋架杆件受力不均匀,用料较多力情况虽然合理,但由于上弦各节点都落在抛物线上,尺寸很零件,施工不方便三角形屋架适用于较小跨度的屋盖(跨度宜在15m以内)弦支点座落在抛曲线附近,所以,受力比较合理,折线形屋架采用较多上弦扦出两个坡度较小的斜直线组成,半边屋架的外轮廓线为梯形,斜杆呈人字形。
这种屋架的刚度、构造比较简单,自重较大,一般用于跨度为24m一36m的工业建筑物二、空间结构体系(一)网架结构体系网架的优点•结构组成灵活多样但又有高度的规律性,适应各种支承条件和各种建筑造型,可适应各种建筑方面的要求•网架高度内的空间可以用以设置管道等设施,网架结构外露或部分外露,因其几何图形的规则,可以丰富建筑效果•网架的结构高度较小,不仅可以有效地利用建筑空间,而且能够利用较小规格的杆件建造大跨度的结构•杆件类型划一,适合于工厂化生产、地面拼装和整体吊装网架结构受力特点•具有各向受力的性能,它改变了一般平面桁架的受力状态,是高次超静定空间结构•网架结构的各杆件之间互相起支撑作用,整体性强、稳定性好,空间刚度大,是一种良好的抗震结构型式,尤其对大跨度建筑其优越性更为显著•在结点荷裁作用下,网架的杆件主要承受轴力,充分发挥材料强度,节省钢材网架的分类1、几何形态上分:平板网架、柱面网架、球面网架2、平面桁架系、四角锥体系、三角锥体系3、螺栓球节点、焊接球节点4、双层网架、多层网架网架材料——钢材:钢管、型钢、钢球双向正交正放、斜放三向交叉正放四角锥体系四角锥体网架的上弦和下弦平面均为方形网格,上下弦错开半格,用斜腹杆连接上下弦的网格交点,形成一个个相连的四角锥体。
四角锥体网架上弦不易再分杆,因此网格尺寸受限制,不宜太大。
它用于中小跨度斜放四角锥•所谓斜放,是指四角锥单元的底边与建筑平面周边夹角为45。
房屋 建筑学 大 跨度 建筑构造 大 跨度 建筑结构型式与建筑造型
房屋建筑学大跨度建筑构造大跨度建筑结构型式与建筑造型大跨度建筑结构型式与建筑造型结构是房屋的骨架,是形成建筑内部空间和外部形式的物质基础,结构是在特定的材料和施工技术条件下运用力学原理创造出来的。
某种新的结构一旦产生并在工程实践中反复出现时,便会逐渐形成一种崭新的建筑形式。
可见结构技术是影响建筑的重要因素,在大跨度建筑中尤其如此。
通过上述例子说明,在建筑设计中,选择结构型式不仅是结构工程师的工作,也是建筑师的职责,现代建筑的特点是建筑艺术与建筑技术的高度统一。
建筑师只有对各种结构形式的基本力学特征和适用范围有深入的了解才能自由地进行创作,把结构型式与建筑造型融为一体。
现就大跨度建筑常见的各种结构型式及其建筑造型作介绍。
一、拱结构及其建筑造型拱结构及其建筑造型(一)拱的受力特点、优缺点和适用范围拱是古代大跨度建筑的主要结构型式。
由于拱呈曲面形状,在外力作用下,拱内的变矩值可以降低到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。
但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
常见的方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。
很明显,这会使建筑的平面空间组合受到约束。
拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。
古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢桁架拱,跨度可达百米以上。
拱结构所形成的巨大空间常常用来建筑商场、展览馆、体育馆、散装货仓等建筑。
(二)拱的型式拱结构按组成和支座方式不同分为三铰拱、两铰拱和无铰拱三种。
(三)拱结构的建筑造型拱结构的造型主要取决于矢高大小和平衡拱推力的方式。
拱的矢高对建筑的外部轮廓形象影响最大。
矢高小的拱,外形起伏变化小,呈扁平状,结构占用的空间小,但水平推力和拱身轴力都偏大。
而矢高大的拱,外形起伏变化强烈,产生的水平推力和轴向力都较小,但拱身材料耗费量多,拱下形成的内部空间大,拱曲面坡度很陡,当采用油毡屋面时,容易出现沥青流淌和油毡滑移现象。
大跨度结构其结构体系有很多种
大跨度结构其结构体系有很多种,如网架结构、索结构、薄壳结构、充气结构、应力膜皮结构、混凝土拱形桁架等,常用于展览馆、体育馆、飞机机库等。
一.网架结构网架结构为大跨度结构最常见的结构形式,因其为空间结构,故一般称为空间网架。
其杆件多采用钢管或型钢,现场安装。
常见的为平面桁架、四角锥体和三角形锥体组成,其节点形式可分为焊接钢板节点和焊接空心球节点两种。
二.索结构索结构是将桥梁中的悬索“移植”到房屋建筑中,可以说是土木工程中结构形式互通互用的典型范例。
三.薄壳结构薄壳结构常用的形状为圆顶、筒壳、折板、双曲扁壳和双曲抛物面壳等。
圆形圆顶结构是轴对称结构,在轴对称荷载作用下,将只产生两种力:径向力和环向力。
径向力为沿经线方向的力,因其要平衡垂直向下荷载,所以必定为压力。
环向力为沿纬线方向的力。
圆形屋顶在垂直荷载作用下,上部的圆顶部分将受压收缩,其直径将变小,而下部近支承部分直径将增大,即上部将产生环向压力,而下部将产生环向拉力,中间将有一截面,为环向压力向环向拉力转变的交界线,该处的环向力为0,该截面称为“过渡缝”。
悉尼歌剧院格拉加尼亚修道院教堂上页下页四.混凝土拱形桁架混凝土拱形桁架在以前的工程中应用较多,但因其自重较大,施工复杂,现已很少采用。
目前最大跨度的拱形桁架为贝尔格莱德的机库,为预应力混凝土桁架结构,跨度为135.8m。
日本姬路市中心体育馆五.充气结构充气结构又称充气薄膜结构,是在玻璃丝增强塑料薄膜或尼龙布罩内部充气形成一定的形状,作为建筑空间的覆盖物。
对角跨长200m,由室内地面至顶高6.07m的东京穹顶,是不用柱子,只依靠室内外气压差来制成的膜屋盖结构,也是在日本最初用于多功能全天候的体育场,约30,000平方米超大椭圆形屋顶,采用悬索加强的充气膜结构。
其双向各配置14根共28根钢索,在其上张拉着涂有特富龙的玻璃纤维布。
请看充气膜的充气过程:六.应力膜皮结构应力膜皮结构一般是用钢质薄板做成很多块各种板片单元焊接而成的空间结构。
大跨度结构的发展概况
大跨度结构的发展概况一、概 述在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。
与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。
空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。
当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。
事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。
从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。
近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。
建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。
例如 1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。
1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。
70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。
空间结构体系
什么是空间结构?
为什么采用空间结构?
空间结构是什么?
• 大跨度建筑通常是指跨度在30米以上的建筑, 我国现行钢结构规范则规定跨度在60米以上结 构为大跨度结构。大跨度空间结构往往是衡量 一个国家或地区建筑技术水平的重要标志。其 结构形式主要包括拱结构、刚架结构、桁架结 构、网架结构、折板结构、网壳结构、悬索结 构、结构、薄壳结构等空间结构及各类组合 空间结构。形态各异的空间结构在体育场馆、 会展中心、影剧院、大型商场、工厂车间等建 筑中得到了广泛的应用。
空间结构的优势
框架结构
• 优点:强度高、耐久 性好、抗震性好并具 有可塑性。 • 缺点:自重大、抗裂 能力差、费工费模板
空间结构
优点:强度大、重量 轻、质地均匀、运输 方便 缺点:易腐蚀、耐火 性能差
• 常用的空间结构体系
薄壳
折板
网架
悬索
膜
• 空间结构体系所适用的建筑类型
薄壳
薄壳属于空间薄 壁结构,又可分 为曲面壳和折板 两种
罗马小体育宫
Y型支撑、葵花、力量与进取、穹顶荷叶、波浪 起伏、欢快优美,形式富于变化
Kibi dome
折板结构
由多块条形平板组合 而成的空间结构,是 一种既能承重,又可 围护,用料较省,刚 度较大的薄壁结构, 可用作车间、仓库、 车站、商店、学校、 住宅、亭廊、体育场 看台等工业与民用建 筑的屋盖。此外,折 板还可用作外墙、基 础及挡土墙。
巴黎联合国教科文组织总部大厦会议厅屋顶、应力变化的规律、截面由两端到 跨中逐渐增大、韵律感
凯恩斯会议中心
网架结构
网架由许多杆件按照 受力的合理性有规律 地排列组合而成,可 以分为平板网架和网 壳。网架空间整体性 好。
大跨度空间结构复习题
1空间结构的特点:1)空间结构具有合理形体,三维受力特性,内力均匀,结构整体刚度大,抗震性能好。
对集中荷载的分散性较强,能很好的承受不对称荷载或较大的集中荷载。
2)自重轻,经济性好。
3)便于工业化生产4)形式多样化,造型美观。
5)有较大的跨越能力,为建筑功能提供较大的空间。
6)建筑,结构和使用功能的统一。
2大跨度空间结构分类按大跨度空间结构的受力特点可分为刚性,柔性空间结构和杂交结构体系按单元划分分为板壳单元,梁单元,杆单团,索单元和膜单元。
3刚性空间结构体系包括薄壳,空间网络和立体桁架结构。
薄壳结构多为钢筋混凝土整体浇灌而成4空间网格结构一般是由钢杆件按一定规律组成的网格状高次超静定空间杆系结构。
空间网格结构根据外形分:网架——外形呈平板状,网壳——其外形呈曲面状5立体桁架结构是以钢管通过焊接有机连接而成的一种空间结构。
6柔性空间结构体系是指由柔性构件构成,通过施加预应力而形成的具有一定刚度的空间结构体系(包括:悬索结构,膜结构,xx整体结构)。
7杂交空间结构体系:第一类为刚性结构体系之间的组合,第二类为柔性结构体系于刚性结构体系的组合,第三类为柔性体系之间的组合。
8单层网壳由梁单元组成,而双层网壳由杆单元组成9网架结构具有空间三维受力、整体性好、刚度好、施工简单、快捷等优点。
优点:1,应用范围广2,建筑高度小,能更有效的利用建筑空间,获得良好的经济效益。
3,网格结构的刚度大,整体性好,抗震性好。
4,网格尺寸小,可采用小规模的杆件界面,并为采用轻型屋面提供了便利的条件。
5)便于制造定型化,网格可做成少数几种标准尺寸的组合单元,节点和零件,在工厂大量生产。
组合单元若采用螺栓连接,网架可装可拆,也可任意加长或缩短,灵活性更大。
6)由于网架杆件与节点的单一性,一般结构设计所需的施工图纸比较少。
10网架结构形式按结构组成分有双层和三层网架;按支承情况,可分为周边支承、点支承、三边支承和两边支承,周边支承与点支撑相结合的混合支承,按网格组成情况,可分为有两向或三向平面桁架组成的平面桁架体系和由三角锥、四角锥组成的空间桁架体系。
大跨度空间结构的主要形式及特点
膜结构的主要形式
膜结构形式上主要有气 压式膜结构、气承式膜 结构、混合式膜结构和 悬挂薄膜结构。
膜结构主要特点
膜结构主要有自重轻、跨度 大,建筑造型自由、丰富,施工 方便,具有良好的经济性和较高 的安全性,透光性和自结性好, 耐久性较差等特点。
团结 信赖 创造 挑战
4、悬索结构
悬索结构是以能受拉的索作为基本承重构件并将索 按照一定规律布置所构成的一类结构体系。悬索屋 盖结构通常由悬索系统、屋面系统和支撑系统三部 分构成。用于悬索结构的钢索大多采用由高强钢丝 组成的平行钢丝束、钢绞线或钢缆绳等,也可采用 圆钢、型钢、带钢或钢板等材料。
团结 信赖 创造 挑战
国家大剧院
团结 信赖 创造 挑战
悉尼歌剧院
团结 信赖 创造 挑战
本次结构分析总结
相对而言,网架结构和网壳结构在施工、结构
上比较简单,方便,稳定。但在造型上相对单
一,变化不大。而膜结构,悬索结构在造型上
较多变,灵活,适合多种形式,但对于结构受
力等要求更高。
在本次设计上,我们认为这几种结构对于我们
团结 信赖 创造 挑战
2、网壳结构
曲面形网格结构称为网壳结构。有单层网 壳和双层网壳之分,网壳的用材主要有钢网 壳、木网壳、钢筋混凝土网壳等。
团结 信赖 创造 挑战
球面网壳
双曲面网壳
圆柱面网壳
双曲抛物面鞍型网壳
单块扭网壳ຫໍສະໝຸດ 四块组合型扭网壳团结 信赖 创造 挑战
网壳结构主要特点
大跨度空间结构概述
1975年建成的美国新奥尔良“超级 穹顶”(Superdome),直径 207m,长期被认为是世界上最大的 球面网壳。
美国新奥尔良“超级穹顶”
东京代代木国立体育中心莫斯 Nhomakorabea中央红军之家综合体育馆
巴塞罗那圣乔地体育馆
3.大跨空间结构问题及解决方法
多种作用耦合情况对结构影响(温度应力,风载,焊接残余应力等)
70年代以来,由于结构用织物材料的改进,膜结构或索 -膜结构(用索加强的膜结构)获得了发展: 1988年东京建成的“后乐园”棒球馆,就采用这种结构, 技术尤为先进,其近似圆形平面的直径为202m; 1996年,美国亚特兰大为奥运会修建的“佐治亚穹顶” (Geogia Dome,1992年建成)采用新颖的索穹顶结构,其 准椭圆形平面的轮廓尺寸达192mX241m。
第29届奥运会主场馆:北京奥林匹克体育场
悉尼超级穹顶体育馆是被作为 2000年奥林匹克运动会的多功能 体育馆进行设计的。 菲利普· 考克斯与其合作者们 把大穹顶体育馆想象成一座庞大、 水平且半透明的建筑。建筑外形 呈鼓状,由24根钢柱支撑着的放 射状网架结构形成了遮盖赛场的 轻型屋盖体系。为使其尺度不至 于过大,他们在两侧设置了环抱 体育场的轻质廊道,这就给这个 大尺度的表皮添上了一些人性化 的细部。但是要欣赏大穹顶还是 需要一定的角度和高度,所以他 们在设计时运用了一种类似桅杆 的结构,就像是一个花冠围绕在 体育馆的周围。他们以其纤细但 不失强度的悬索和自由排列的柱 廊强调大穹顶的整体外观。支撑 柱廊的是树状的柱子,屋顶采用 了有拉索支撑的桁架结构,大尺 度出挑的屋檐为场馆提供了阴凉 的空间。
扩展内容:
空间网格结构 网壳结构的出现早于平板网架结构。在国外,传统的肋环型穹顶已有一百多 年历史,而第一个平板网架是1940年在德国建造的(采用Mero体系)。中国第 一批具有现代意义的网壳是在50和60年代建造的,但数量不多。当时柱面网壳大 多采用菱形“联方”网格体系,1956年建成的天津体育馆钢网壳(跨度52m)和 l961年同济大学建成的钢筋混凝土网壳(跨度40m)可作为典型代表。球面网壳 则主要采用肋环型体系,1954年建成的重庆人民礼堂半球形穹顶(跨度46.32m) 和1967年建成的郑州体育馆圆形钢屋盖(跨度64m)可能是仅有的两个规模较大 的球面网壳。自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。 相对而言,平板网架结构自60年代后期起获得较多应用,1967年建成的首都体育 馆和1973年建成的上海体育馆是早期成功采用平板网架结构的杰出代表,对这种 结构形式在其后一段时期的持续发展有很大影响。80年代后期北京为迎接1990亚 运会兴建的一批体育建筑中,多数仍采用平板网架结构。随着经济和文化建设需 求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑 时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑 功能和建筑造型多样化的要求。这种现实需求对网壳结构、悬索结构等多种空间 结构形式的发展起了良好的刺激作用。
大跨空间结构论文
大跨空间结构新体系概论1.张拉整体结构张拉整体结构(tensegrity system)的概念最早是由美国著名建筑师富勒在20世纪40年代提出的。
所谓张拉整体体系就是一组不连续的压杆与一组连续的受拉单元组成的自支撑、自应力的空间平衡体系。
这种结构体系的刚度由受拉索和受压单元之间的平衡预应力提供,在施加预应力之前,结构几乎没有刚度,并且初始预应力的值对结构的外形和结构刚度的大小起着决定作用。
富勒认为宇宙的运动是按照张拉整体的原理运行的,万有引力是一种平衡的张力网,而各个星球是这个网中互相独立的受压体。
自然界中总是趋于有孤立的压杆所支撑的连续的张力状态,大自然符合“间断压连续拉”的规律,我们一定能制造出基于这个原理的结构模型。
在张拉整体结构体系的发展中,多面体几何构成了张拉整体几何研究的基础,结构拓扑的研究完善了张拉整体体系的形态学内容,特别是过去的十多年中,力学方法得到了长足的发展,逐步建立起了模型制作的理论框架。
由于张拉整体体系固有的符合自然规矩的特点,最大限度的利用了材料和截面的特性,因为可以用尽量少的钢材建造超大跨度的空间。
张拉整体体系的刚度是受拉索与受压单元之间自应力平衡的结果而与外界作用无关。
张拉整体体系从最初的设想到工程实践,大约经过了以下几个阶段:想象和几何学、拓扑和图形理论、力学分析及试验研究,其中力学分析包括找形(form-finding)、自应力准则、工作机理和外力作用下的性能等。
在张拉整体几何学方面做出重要贡献的是富勒和艾默里奇。
因为主要从形态学的角度出发,所以这些几何学上的工作多以多面体几何为基础。
富勒构思了一种由三角形网格的索网组成的张拉整体穹顶(tensegrity dome),于1962年申请了专利,这也是有关张拉整体结构的第一个专利。
在这项专利中,富勒详尽的描述了他的结构思想,即:在结构中尽可能减少受压状态,因为受压存在屈曲现象,张拉整体使结构处于连续的张拉状态。
1963年,在艾默里奇在他的专利中给出了张拉整体的另一个定义:张拉整体结构由压杆和索组成,其组成方式使压杆在连续的索中处于孤立状态,所有压杆都必须严格地分开同时靠索的预应力连接起来,结构整体不需要外部的支撑和锚固,像一个自支承结构一样稳定。
常用大跨度结构
大跨度建筑构造--屋顶构造
彩色压型钢板屋面
——材料形式
大跨度建筑构造--屋顶构造
彩色压型钢板屋面
——材料形式
大跨度建筑构造--屋顶构造
彩色压型钢板屋面——构造层次与细部构造: 波高以35mm为界,纵向接缝搭接长度不小于100mm
彩色压型钢板屋面
大跨度建筑构造--中庭天窗构造
四、网架结构及其造型
四、网架结构及其造型
四、网架结构及其造型
四、网架结构及其造型
四、网架结构及其造型
Palacio de los Deportes, /wiki/Venues_of_the_1968_Summer_Olympics
四、网架结构及其造型
——设置排水槽,排水槽要保证必要的排水坡度,排水路径不能过长
3. 天窗应有良好的防水性能
——足够的排水坡度、排水路线短捷畅通、接缝严密
4. 防止眩光对室内的影响
——采用具有漫反射性能的透光材料、加设折光构件
大跨度建筑构造--屋顶构造
金属瓦屋面
——构造层次:檩条、木望板、干铺油毡(一层)、瓦材(防腐处理) ——屋面划分:瓦材尺寸不宜超过2m ——细部构造:拼缝、泛水、天沟、檐口等
大跨度建筑构造--屋顶构造
金属瓦屋面拼缝构造
金 属 瓦 屋 面 构 造 实 例
金 属 瓦 屋 面 构 造 实 例
五、折板结构及其造型
特点
L1/L2≤1 L1/L2≥1 短折板 长折板 L2:波长(不宜大于12m), L1:跨度
f长折板=(1/10~1/15)L1,f短折板≥(1/8)L1
——薄、省材;预制装配(装配整体式);构造简单
五、折板结构及其造型
第九章 大跨屋盖结构
厦门国际会展中心
厦门国际会展中心
81×81米有柱展厅,屋盖采用双向空间钢桁架结构。桁架下弦 标高为10.55米,桁架高度H=4.0米,钢桁架沿纵向间距为27米, 沿横向间距为9米,均支承在钢筋砼柱柱顶,由于该区屋面为屋 顶花园,屋面活荷载按8.0KN/m2设计,故屋盖承重结构选用钢桁 架,并且正交桁架高度相等,弦杆为刚接,在纵向垂直支撑、系杆 的保证作用下形成空间桁架结构体系。
(6)如果需要考虑温度变化引起的网架内力,可采用 空间桁架位移法,或近似计算方法。 (7)对非抗震设计的网架,荷载及荷载效应组合应按 国家标准《建筑结构荷载规范》GB 50009—2001 的规定进行计算。 (8)对抗震设计的网架, 荷载及荷载效应组合尚 应符合国家标准《建筑 抗震设计规范》的规定。
五、网架高度及网格尺寸 ⑴网架高度:与屋面荷载、跨 度、平面形状、支承条件及 设备管道等因素有关。 下列情况时,网架高度大些: A、屋面荷载较大、跨度较大时; B、狭长平面时,单向传力明显 时; C、点支承网架; D、网架中有穿行管道时。
⑵网格尺寸:与网架高度关系密切。 A、斜腹杆与弦杆夹角在40°~55°之间为宜; B、网格尺寸要与屋面材料相适应,直接铺设钢筋混凝 土板时尺寸不宜大于3m。 C、若采用有檩体系时,檩条长度一般不超过6m。 对周边支承的各类网架高度及网格尺寸按下表选用。
— 系数,对钢管杆件网架取1.0;对型钢杆件网架取1.2。
2、网架结构的可变荷载有: ①屋面(或楼面)活荷载; ②雪荷载(雪荷载不应与屋面活荷载同时组合); ③风荷载,由于网架刚度较大,自振周期较小,计算 风载时可不考虑风振系数的影响; ④积灰荷载; ⑤吊车荷载(工业建筑有吊车时考虑)。 3、抗震设防烈度为6度或7度的地区,网架屋盖结构可 不进行竖向抗震验算; 在抗震设防烈度为8度或9度的地区,网架屋盖结构应 进行竖向抗震验算。
大跨度空间结构
佛山罗村 文化广场
大梅沙 体育公园
索穹顶结构
索穹顶结构实质是用一个周边受压环梁来平衡张拉 体系的结构。索穹顶较之于其它结构形式, 体系的结构。索穹顶较之于其它结构形式,具有特殊 优越性。首先, 优越性。首先,它大量采用预应力钢索而较少使用压 能够充分利用钢材的抗拉刚度, 杆,能够充分利用钢材的抗拉刚度,若能避免柔性结 构有可能的结构松弛, 构有可能的结构松弛,索穹顶结构便不存在弹性失稳 问题。其次,使用薄膜等轻质材料作为屋面材料, 问题。其次,使用薄膜等轻质材料作为屋面材料,使 得结构自重相当轻。 得结构自重相当轻。
兰伯特圣路易市 航空港候机室
展览馆(波形装配式薄壳) 都灵 展览馆(波形装配式薄壳)
网架结构
使用比较普遍的一种大跨度屋顶结构。 网架屋顶结构 使用比较普遍的一种大跨度屋顶结构。这种结构 整体性强,稳定性好,空间刚度大,防震性能好。 整体性强,稳定性好,空间刚度大,防震性能好。网构架高度 较小,能利用较小杆形构件拼装成大跨度的建筑, 较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用 建筑空间。适合工业化生产的大跨度网架结构, 建筑空间。适合工业化生产的大跨度网架结构,外形可分为平 板型网架和壳形网架两类,能适应圆形、方形、 板型网架和壳形网架两类,能适应圆形、方形、多边形等多种 平面形状。平板型网架多为双层,壳形网架有单层和双层之分, 平面形状。平板型网架多为双层,壳形网架有单层和双层之分, 并有单曲线、双曲线等屋顶形式。 并有单曲线、双曲线等屋顶形式。
工程实例: 工程实例: 1:北京工人体育馆悬索屋盖 : 2:德国法兰克福国际航空港飞机库(斜拉索) :德国法兰克福国际航空港飞机库(斜拉索)
建筑概论第8章 大跨建筑简介
中国国家游泳中心,平面尺寸177m×177m,是世界上最大的膜结构工程,总 建筑面积65000~80000平方米,见图8-33。除地面外,外表面都采用了膜材料— ETFE。
图30 阿拉伯塔酒店图
图31 水立方
(六)充气结构
充气结构是由薄膜材料制成的构件充入空气后形成的结构,具有自重轻、跨 度大、构造简单、建造方便外形灵活等优点。
图3 德国法兰克福机场机库
图4 马拉卡拉体育场
(5)首都人民大会堂,采用的是钢屋架,跨度达到60m,南北长336米,东西宽 206米,高46.5米,占地面积15万平方米,建筑面积17.18万平方米。比故宫的全 部建筑面积还要大。见图5。 (6)北京奥运会主场馆“鸟巢”,目前是世界上跨度最大的钢结构建筑,外形像 鸟巢,立面与结构达到了完美的统一,工程主体建筑呈空间马鞍椭圆形,南北长
深圳龙岗商业中心建筑面积114300平方米,2003年开工兴建,是我国也是 世界上第一个充气悬浮的建筑,见图32。
图32 深圳龙岗商业中心
(七)应力蒙皮结构
应力膜皮结构一般是用钢质薄板做成很多块各种板片单元焊接而成的空间结 构。
1959年建于美国巴顿鲁治的应力膜皮屋盖,是第一个应力蒙皮大跨结构。屋 盖直径为117m,高35.7m,由一个外部管材骨架形成的短程线桁架系来支承804 个双边长为4.6m的六角形钢板片单元,钢板厚度大于3.2mm,钢管直径为 152mm,壁厚3.2mm,见图33。
大跨空间结构的主要形式及特点
悬索结构形式
北京工人体育馆
悬索结构的特点
悬索结构的受力特点是仅通过索的轴向拉伸 来抵抗外荷载的作用!结构中不出现弯距和 剪力效应,可充分利用钢材的强度,悬索结 构形式多样布置灵活,并能适应多种建筑平 面。由于钢索的自重很小,屋盖结构较轻, 安装不需要大型起重设备,但悬索结构的分 析设计理论与常规结构相比,比较复杂,限 制了它的广泛应用"
3、膜结构
薄膜结构也称为织物结构,是20世纪中叶发展 起来的一种新型大跨度空间结构形式。它以性能优良 的柔软织物为材料, 由膜内空气压力支承膜面,或利 用柔性钢索或刚性支承结构使膜产生一定的预张力, 从而形成具有一定刚度、能够覆盖大空间的结构体系。
膜结构的主要形式
膜结构形式上主要有气 压式膜结构、气承式膜 结构、混合式膜结构和 悬挂薄膜结构。
大跨度空间结构往往是衡量一个国家或 地区建筑技术水平的重要标志。其结构 形式主要包括网架结构、网壳结构、悬 索结构、膜结构和薄壳结构等
五大空间结构及各类组合空间结构,形 态各异的空间结构在体育场馆、会展中 心、影剧院、大型商场、工厂车间等建 筑中得到了广泛的应用。
1、 网架结构
由多根杆件按照某种规律的几何图形通 过节点连接起来的空间结构称为网格结构。 其中双层或多层平板形网格结构称为网架 结构或网架。通常采用钢管或型钢材料制 作而成。
网架结构的主要特点
空间工作,传力途径简捷。重量轻、刚度大、抗 震性能好、施工安装简便。网架杆件和节点便定 型化、商品化、可在工厂中成批生产,有利于提 高生产效率。网架的平面布置灵活,屋盖平整, 有利于吊顶、安装管道和设备。网架的建筑造型 轻巧、美观、大方。便于建筑处理和装饰。
2、网壳结构
曲面形网格结构称为网壳结构。有单层网 壳和双层网壳之分,网壳的用材主要有钢网 壳、木网壳、钢筋混凝土网壳等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨建筑
屋架结构体系——高跨比:1:6
二、空间结构体系
(一)网架结构体系 网架的优点
• 结构组成灵活多样但又有高度的规律性,适应各种支承条件和各种建筑造型,可适
应各种建筑方面的要求
•网架高度内的空间可以用以设置管道等设施,网架结构外露或部分外露,因其几何图形的规则,可以丰富建筑效果
•网架的结构高度较小,不仅可以有效地利用建筑空间,而且能够利用较小规格的杆件建造大跨度的结构
•杆件类型划一,适合于工厂化生产、地面拼装和整体吊装
网架结构受力特点
•具有各向受力的性能,它改变了一般平面桁架的受力状态,是高次超静定空间结构•网架结构的各杆件之间互相起支撑作用,整体性强、稳定性好,空间刚度大,是一种良好的抗震结构型式,尤其对大跨度建筑其优越性更为显著
•在结点荷裁作用下,网架的杆件主要承受轴力,充分发挥材料强度,节省钢材
网架的分类
1、几何形态上分:平板网架、柱面网架、球面网架
2、平面桁架系、四角锥体系、三角锥体系
3、螺栓球节点、焊接球节点
4、双层网架、多层网架
四角锥体网架的上弦和下弦平面均
为方形网格,上下弦错开半格,用斜
腹杆连接上下弦的网格交点,形成一
个个相连的四角锥体。
四角锥体网架
网架的选型
•对于矩形平面、周边支承情况,当其边长比小于或等于1.5时,宜选用斜放四角锥网架,棋盘形四角锥网架,正放抽空四角锥网架,也可考虑两向正交斜放网架,两向正交正放网架。
•正放四角锥网架耗钢量较其他网架高,但杆件标准化程度比其他网架好,目前采用较多。
•对于中小跨度,也可选用星形四角锥网架和蜂窝形三角锥网架。
当边长比大于1.5时,宜先用两向正交正放网架,正放四角锥网架和正放抽空四角锥网架。
当平面狭长时,可采用单向折线形网架。
网架的结构高度
•网处的高度(即厚度)直接影响网架的刚度和杆件内力。
增加网架的高度可以提高
网架的刚座,减少弦杆内力,但相应的腹杆长度增加,围护结构加高。
网架的高度主要取决于网架的跨度。
•网架的高度与短向跨度之比一般为:
•跨度=<30m,约为1/10~1/13
•跨度30~60m,约为1/12~1/15
•跨度>60m,约为1/14~1/18
(二)薄壳
壳体的受力特征
•薄——不致于产生明显的弯曲应力,厚——可以承受压力、拉力和剪力的形抵抗结构(将材料造成一定的形式从而获得强度去承受荷载的结构)
•薄壳结构赖以获得这种能力的“形”就是曲面,薄壳的结构效能就是归功于曲面的曲率和几何特征
•薄壁壳体结构,由于它主要承受曲面内的轴力作用,所以材料强度能得到充分利用,同时由于它的空间工作,所以具有很高的强度和很大的刚度。
•钢筋混凝土壳体(所有壳体,无论效率高低)均可按鸡蛋壳厚1/100跨度作为厚度的上限值
•结构的每一个细胞都最有效地投入到抵抗外载荷的战斗中(构件不再受弯,截面厚度上均匀的只收轴力)
•壳的跨厚比:1/100~1/1000
薄壳的形式和分类
•筒壳,球壳,折板结构,双曲扁壳,双曲抛物面壳
壳体的组合和变异
壳体的特殊类型——折板
网壳结构
网壳结构的发展
•网壳结构也是近半个世纪以来发展最快、应用最广的一种空间结构
•具有优美的建筑造型,无论是建筑平面、外形和形体都能给设计师以充分的创作自由
•在建筑平面上可以适应多种形状,如园形、矩形、多边形、三角形、扇形以及各种不规则的平面
•在建筑外形上可以形成多种曲面,如球面,椭圆面,旋转抛物面,旋转双曲面,圆锥面通过曲面的切割和组合得到
网壳结构的分类
•零高斯曲率是指曲面一个方向的主曲率半径无穷大;而另一个主曲率半径为某一数值,故又称为单曲网壳:柱面网壳、圆锥形网壳等
•正高斯曲率是指曲面的两个方向主曲率同号,均为正或均为负
•球面网壳、双曲扁网壳、椭圆抛物面网壳等
扭曲面网壳
•单块扭网壳
•
•双曲抛物面网壳
切割或组合形成曲面网壳
•球面网壳用干三角形、六边形和多边形平面时,采用切割方法组成新的网壳形式
高层建筑。