基于单片机汽车倒车测距仪设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- - -
机电职业技术院
毕业设计(论文)作者:真学号:********
系部:电气工程系
专业:应用电子技术
题目:基于单片机的汽车倒车测距仪的设计
指导者:平王建青
评阅者:
2011 年05 月
- - - 毕业设计(论文)中文摘要
毕业设计(论文)外文摘要
目录
1绪论 (1)
2 超声波传感器的介绍 (2)
2.1超声波传感器的概述
(2)
2.2 超声波传感器的特点 (3)
2.3超声效应 (3)
2.4超声波传感器的应用
(4)
3 单片机的介绍............................................................................... ..5 3.1 单片机的定义.. (5)
3.2 单片机的特点 (5)
3.3 单片机的应用 (5)
3.4 AT89C51单片机的介绍 (6)
4 汽车倒车测距仪的硬件设计
(9)
4.1 设计的思路 (9)
4.2 设计的重点与难点........................................................................ .9 4.3硬件设计的基本原理及原理图.. (9)
5超声波汽车倒车测距仪软件设计 (14)
5.1 主程序编制及流程图 (16)
5.2 中断服务程序的流程图及编制 (16)
5.3 显示距离子程序和延时子程序 (17)
5.4信号处理程序
(18)
5.5程序中有关存储器,寄存器及标志位的容及用途…………………………. .21
结论………………………………………………………………………..................
23 致 (25)
参考文献 (26)
1 绪论
汽车倒车测距仪能测量并显示车辆后部障碍物离车辆的距离,同时用间歇嘟嘟声报警,间歇时间随障碍物距离缩短而缩短。驾驶员不但可以直接观察被显示的距离,还可以用听觉判断车后障碍物距离的远近。特别适用于长车身车辆倒车。仪器共有三部分组成:监控器、接线盒与探测器。监控器由单片计算机为核心的集成电路组成,发射,并接收频率稳定的40kHz超声波,根据发射信号与回波信号之间的时间差计算障碍物与车辆后部的距离。监控器安装在驾驶室驾驶员便于观察的位置,面板上有3位LED数码管显示器,清晰悦目,小数点固定在第一位数后, 显示单位精确到厘米。接线盒包括电器盒主体,电器盒主体设有电器插座,所述电器插座与电器盒主体。由于本实用新型中电器插座与电器盒主体之间为拆分式结构连接,根据车型需要,当汽车的电气电路或电气连接变更时,不用重新开发电器盒模具,只需拔掉电器插座,在其空位上安装另一个不同结构的电器插座,快速便捷。探测器是用来探测汽车后障碍物离车距离及时反馈给电路,保证倒车安全性。
利用超声测距技术与单片机设计制作出超声波汽车倒车测距仪。该系统在常见的汽车倒车预警装置的基础上采用计算机控制技术和超声波测距技术,通过显示障碍物与汽车的距离并根据其距离远近实时发出报警,解除了驾驶员泊车和起动车辆时前后左右探视所引起的困扰,提高了驾驶安全性。
目前国一般使用专用集成电路设计超声波测距仪,但是专用集成电路的成本很高,并且显示距离也比较困难,操作使用也不是很方便,而本设计研究的测距器成本低廉,性能优良,市场前景极为广阔,对提高我国汽车工业实际水平,具有较大的时间意义,在整个倒车过程中自动测量车尾到最近障碍物的距离,并用数字显示
出来,在倒车到极限距离时会发出急促的警告声,提醒驾驶员注意刹车。本设计可有效的减少和避免那些视野不良的大型汽车如冷藏车、集装箱车、垃圾车、食品车、载货车、公共汽车等倒车交通事故,另外还特别适用于夜间辅助倒车、倒车入库以及进入停车场停车到位,甚至还能防止盗贼扒车。
近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术更新快。在自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,应根据具体硬件结构软硬件结合,加以完善。
2 超声波传感器的介绍
2.1 超声波传感器的概述
2.1.1 超声波传感器的含义
超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。
2.1.2 超声波传感器及其测距原理
超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超
声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。
超声波测距的原理一般采用渡越时间法TOF。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。
由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。
超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。
2.2 超声波传感器的特点
超声波传感器实质上是一种可逆的换能器。一方面,它将电振荡的能量转变为机械振荡,形成超声波;另一方面,它又将接收的超声波能量转变为电振荡。因此超声波传感器可分为发送器及接收器。典型的产品是在空气中传播的小型超声波传感器。
2.3 超声效应
当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应: