初中数学各种四边形的定义、性质、判定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学各种四边形的定义、性质、判定(一)、平行四边形的定义、性质及判定.
1:两组对边平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分.
3.判定:
(1)两组对边分别平行的四边形是平行四边形:
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形:
(5)对角线互相平分的四边形是平行四边形.
4·对称性:平行四边形是中心对称图形.
(二)、矩形的定义、性质及判定.
1-定义:有一个角是直角的平行四边形叫做矩形.
2·性质:矩形的四个角都是直角,矩形的对角线相等
3.判定:
(1)有一个角是直角的平行四边形叫做矩形;
(2)有三个角是直角的四边形是矩形:
(3)两条对角线相等的平行四边形是矩形.
4·对称性:矩形是轴对称图形也是中心对称图形.
(三)、菱形的定义、性质及判定.
1·定义:有一组邻边相等的平行四边形叫做菱形.
2.性质:
(1)菱形的四条边都相等;。
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形.
(4)菱形的面积等于两条对角线长的积的一半:
3.判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形;
(3)对角线互相垂直的平行四边形是菱形.
4.对称性:菱形是轴对称图形也是中心对称图形.
(四)、正方形定义、性质及判定.
1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
2.性质:
(1)正方形四个角都是直角,四条边都相等;
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;
(4)正方形的对角线与边的夹角是45度;
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
3.判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等;
(2)先判定一个四边形是菱形,再判定出有一个角是直角.
4.对称性:正方形是轴对称图形也是中心对称图形.
(五)、梯形的定义、等腰梯形的性质及判定.
1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形.一腰垂直于底的梯形是直角梯形.
2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.
3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰
梯形;两条对角线相等的梯形是等腰梯形.
4.对称性:等腰梯形是轴对称图形.
(六)、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半.
(七)、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点..
(八)、依次连接任意一个四边形各边中点所得的四边形叫中点四边形
学习完四边形专题的各个知识点,我们就需要掌握一些巧妙的解题方法~想必童鞋们都知道:在解决一些和四边形有关的问题时往往需要添加辅助线进行解题,下面小编介绍一些辅助线的添加方法。
1. 和平行四边形有关的辅助线作法
平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。
(1)利用一组对边平行且相等构造平行四边形
(2)利用两组对边平行构造平行四边形
(3)利用对角线互相平分构造平行四边形
2. 与矩形有辅助线作法
(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。
(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。和矩形有关的试题的辅助线的作法较少。
3. 和菱形有关的辅助线的作法
和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。
(1)作菱形的高
(2)连结菱形的对角线
4. 与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。
5. 与梯形有关的辅助线的作法
和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:
(1)作一腰的平行线构造平行四边形和特殊三角形
(2)作梯形的高,构造矩形和直角三角形
(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形
(5)作两腰的平行线等