线面夹角知识点及试题与答案(整理)
高三数学一轮复习立体几何系列之线面角(直线与平面夹角)
高三数学一轮复习 立体几何系列之线面角(直线与平面夹角)教学目标(1)掌握直线与平面夹角的几种求法; (2)掌握线面角问题的综合应用。
知识梳理直线与平面所成的角的定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和平面所成的角。
规定:(1)一条直线垂直于平面,它们所成的角是直角;(2)一条直线与平面平行或在平面内,它们所成的角是︒0角。
线面角的范围是[0,2π] 作法:作出直线和平面所成的角,关键是作垂线,找射影。
典例精讲例1.(★★★)在直三棱柱ABC-A 1B 1C 1中,∠AB C=90°, A B=BC=1. (1)求异面直线B 1C 1与AC 所成角的大小; (2)若直线A 1C 与平面ABC 所成角为45°, 求三棱锥A 1-ABC 的体积.【答案】:(1)因为11BC B C P ,所以∠BCA (或其补角)即为异面直线11B C 与AC 所成角∠AB C=90°, A B=BC=1,所以4BCA π∠=,即异面直线11B C 与AC 所成角大小为4π。
(2)直三棱柱ABC-A 1B 1C 1中,1A A ABC ⊥平面,所以1A CA ∠即为直线A 1C 与平面ABC 所成角,所以14ACA π∠=。
Rt ABC ∆中,AB=BC=1得到AC =,1Rt AA C ∆中,得到1AA AC =所以1136ABC ABC S AA -==V 1A V 例2.(★★★)在棱长为2的正方体1111D C B A ABCD -中,(如图)E 是棱11D C 的中点,F 是侧面D D AA 11的中心.(1) 求三棱锥EF D A 11-的体积;(2) 求EF 与底面1111D C B A 所成的角的大小.(结果用反三角函数表示) 【答案】:(1)3111311111=⋅⋅==--F D A E EF D A V V . (2)取11D A 的中点G ,所求的角的大小等于GEF ∠的大小,GEF Rt ∆中22tan =∠GEF ,所以EF 与底面1111D C B A 所成的角的大小是22arctan . 课堂检测1.(★★★)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).【答案】:过E 作EF ⊥BC ,交BC 于F ,连接DF . ∵ EF ⊥平面ABCD ,ABCD A 1B 1C 1FED 1∴ ∠ED F 是直线DE 与平面ABCD 所成的角 由题意,得EF =111.2CC = ∵11,2CF CB DF ==∴= ∵ EF ⊥DF , ∴tan 5EF EDF DF ∠== 故直线DE 与平面ABCD所成角的大小是arctan2.(★★★)如图,已知四棱锥P ABCD -的底面ABCD 是边长为1的正方形,PD ⊥底面ABCD ,且2PD =.(1) 若点E 、F 分别在棱PB 、AD 上,且4PE EB =u u u r u u u r ,4DF FA =u u u r u u u r,求证:EF ⊥平面PBC ;(2) 若点G 在线段PA 上,且三棱锥G PBC -的体积为14,试求线段PG 的长.【答案】:(1)以点D 为坐标原点,DA 为x 轴正方向,DC 为y 轴正方向建立空间直角坐标系.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,2P ,因为4PE EB =u u u r u u u r ,4DF FA =u u u r u u u r ,所以4,0,05F ⎛⎫ ⎪⎝⎭,442,,555E ⎛⎫⎪⎝⎭,则420,,55EF ⎛⎫=-- ⎪⎝⎭u u u r ,()1,0,0BC =-u u ur ,()1,1,2PB =--u u u r .0EF BC ⋅=u u u r u u u r ,0EF PB ⋅=u u u r u u u r,即EF 垂直于平面PBC 中两条相交直线,所以EF ⊥平面PBC .(2)()1,0,2PA =-u u u r ,可设()01PG PA λλ=≤≤u u u r u u u r,所以向量PG uuu r的坐标为(),0,2λλ-,平面PBC 的法向量为420,,55EF ⎛⎫=-- ⎪⎝⎭u u u r .点G 到平面PCE的距离4PG EFd EFλ⋅===u u u r u u u r u u u r. PBC ∆中,1BC =,PC =,PB =PBC S ∆=. 三棱锥G PBC -的体积11133234PBC V S d λ∆=⋅===,所以34λ=.此时向量PG uuu r 的坐标为33,0,42⎛⎫- ⎪⎝⎭,PG =u u u r PG回顾总结。
立体几何解答题之---线面夹角
1.如图,在直三棱柱A 1B 1C 1-ABC 中,AC ⊥AB ,AC =AB =4,AA 1=6,点E 、F 分别为CA 1、AB 的中点.(1)证明://EF 平面11BCC B ;(2)求1B F 与平面AEF 所成角的正弦值.2.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.(1)求证:PD BQ ⊥;(2)求异面直线PC 与BQ 所成角的余弦值.3.如图,三棱锥P﹣ABC中,底面△ABC为直角三角形,AB=BC=2,D为AC的中点,PD=DB,PD⊥DB,PB⊥CD.(1)求证:PD⊥平面BCD;(2)求P A与平面PBC所成角的正弦值. 4.如图,三棱锥P-ABC的底面ABC和侧面P AB都是边长为4的等边三角形,且平面P AB⊥平面ABC,点E为线段P A中点,O为AB中点,点F为AB上的动点.(1)若PO∥平面CEF,求线段AF的长;(2)求直线CE与平面PBC所成角的正弦值.5.如图,三棱锥PABC 中,底面ABC 为直角三角形,2AB BC ==,D 为AC 的中点,PD DB PD DB =⊥,,PB CD ⊥. (1)求证:PD ⊥平面BCD ; (2)求PA 与平面PBC 所成角的正弦值.6.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ;(2)求AM 与平面1A MD 所成角的正弦值.7.四棱锥P ABCD-中,底面ABCD为矩形,PD⊥底面ABCD,2AD PD==,4CD=,,E F分别为,CD PB的中点.(1)求证:EF⊥平面PAB;(2)求直线AE与平面PAB所成的角.8.如图,在正方体1111ABCD A B C D-中,,,,E F G H分别是1111,,C,BC CC D A A的中点.求证:(1)求证:EG平面11BB D D(2)求异面直线BF与1HB所成角的余弦值.9.如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的一点. (1)求证:平面 PAC ⊥平面PBC ;(2)若2,1AB AC PA ===,求直线PA 与平面PBC 所成角的正弦值.10.如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1,点M 、E 分别是P A 、PD的中点(1)求证:CE //平面BMD(2)点Q 为线段BP 中点,求直线P A 与平面CEQ 所成角的余弦值.11.如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=12 PD.(1)证明:平面PQC⊥平面DCQ;(2)求直线D Q与面PQC成角的正弦值12.如图,在四棱锥E ABCD-中,底面ABCD为菱形,BE⊥平面ABCD,G为AC 与BD的交点.(1)证明:平面AEC⊥平面BED;(2)若60BAD∠=︒,AE EC⊥,求直线EG与平面EDC所成角的正弦值.13.如图,在三棱柱ABC A B C '''-中,A A '⊥平面ABC ,AC BC AA '==,90ACB ︒∠=,D ,E 分别为AB ,BB '的中点.(1)求证:CE A D '⊥;(2)求异面直线CE 与AC '所成角的余弦值.14.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 满足AD ∥BC ,且122 2.AB AD AA BD DC =====,(Ⅰ)求证:AB ⊥平面11ADD A ;(Ⅱ)求直线AB 与平面11B CD 所成角的正弦值.15.如图,在四棱锥P ABCD-中,四边形ABCD为正方形,PA⊥平面ABCD,PA AB=,M是PC上一点,且BM PC⊥.(1)求证:PC⊥平面MBD;(2)求直线PB与平面MBD所成角16.在正四棱柱1111ABCD A B C D-中,122AB BB==,P为11B C的中点.(1)求直线AC与平面ABP所成的角;(2)求异面直线AC与BP所成的角;(3)求点B到平面APC的距离.17.已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小. 18.如图,P ABC-是一个三棱锥,AB是圆的直径,C是圆上的点,PC垂直圆所在的平面,D,E分别是棱PB,PC的中点.(1)求证:DE⊥平面PAC;(2)若二面角A DE C--是45︒,4AB PC==,求AE与平面ACD所成角的正弦值.19.如图,在正方体1111ABCD A B C D 中, E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.。
直线与平面的夹角含答案
1下列命题中正确的是直线与平面的夹角、基础过关平面的一条斜线和这个平面所成角 0的范围是正方体 ABCD- A 1B1C 1D 1中,B i C 与平面 ABCD 所成的角是A . 90 °B . 30°C. 45° D . 60°3.正四面体 ABCD 中棱AB 与底面BCD 所成角的余弦值为 1 B.3C.^D.,'3 4 .在三棱柱ABC-A1B 1C 中,底面是棱长为1的正三角形,侧棱 AA i 丄底面ABC,点D 在棱BB 1 上,且 BD = 1,若AD 与平面 AA 1C1C 所成的角为 a,贝U sin a 的值是 ()A 撐B#寸D 严 5.正方体 ABCD-A 1B 1CD 1中,BB 1与平面ACDi 所成角的余弦值为 ( ) '2 '3 2代亏 Bg C 36 •如果平面的一条斜线与它在这个平面上的射影的方向向量分别是 a =(1,0,1), b =(0,1,1),那么这条斜线与平面所成的角是 二、能力提升 7 .已知三棱锥 S - ABC 中,底面 ABC 为边长等于2的等边三角形, SA 垂直于底面ABC, SA = 3,那么直线 AB 与平面SBC 所成角的正弦值为 A 汙B.严 D.4 8•如图,/ BOC 在平面a 内,OA 是平面 a 的一条斜线,若 / AOB / AOC = 60 ° OA = OB = OC = a , BC = V 2a , OA 与平面 角为 _________ . 9.在正三棱柱 ABC — A1B 1C 1中侧棱长为<2,底面边长为1,则 BGa 所成的 与侧面ACGA 1所成的角是10.在正四面体 ABCD 中,E 为棱AD 的中点,连接 CE 求CE 和平面BCD 所成角的 正弦值.A . 0° 0<90 °B . 0° 餐90° C. 0 ° 90 °D . 0° 0<180 °2.11如图所示,在四棱锥P—ABCD中,底面ABCD是正方形,PD丄平面ABCDPD= DC, E是PC的中点.求EB与平面ABCD夹角的余弦值.12如图,已知点P在正方体ABCD-A' B' C D'的对角线BD'上,/ PDA= 60 °⑴求DP与CC所成角的大小;(2)求DP与平面AA' D' D所成角的大小.三、探究与拓展13已知几何体EFG-ABCD如图所示,其中四边形ABCD, CDGFADGE均为正方形,且边长为1,点M在边DG上.⑴求证:BM丄EF;(2)是否存在点M,使得直线MB与平面BEF所成的角为45。
专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)
专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
高中数学直线与平面的夹角题库
3.2.3直线与平面的夹角3.2.4二面角及其度量学习目标 1.理解斜线和平面所成的角的定义,体会夹角定义的唯一性、合理性.2.会求直线与平面的夹角θ.3.掌握二面角的概念,二面角的平面角的定义,会找一些简单图形中的二面角的平面角.4.掌握求二面角的基本方法、步骤.知识点一直线与平面所成的角1.直线与平面所成的角2.最小角定理知识点二二面角及理解1.二面角的概念(1)二面角的定义:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.如图所示,其中,直线l叫做二面角的棱,每个半平面叫做二面角的面,如图中的α,β.(2)二面角的记法:棱为l ,两个面分别为α,β的二面角,记作α—l —β.如图,A ∈α,B ∈β,二面角也可以记作A —l —B ,也可记作2∠l .(3)二面角的平面角:在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角,如图所示.由等角定理知,这个平面角与点O 在l 上的位置无关.(4)直二面角:平面角是直角的二面角叫做直二面角. (5)二面角的范围是[0°,180°].2.用向量夹角来确定二面角性质及其度量的方法(1)如图,分别在二面角α—l —β的面α,β内,并沿α,β延伸的方向,作向量n 1⊥l ,n 2⊥l ,则〈n 1,n 2〉等于该二面角的平面角.(2)如图,设m 1⊥α,m 2⊥β,则角〈m 1,m 2〉与该二面角大小相等或互补.1.直线与平面所成的角α与该直线的方向向量与平面的法向量的夹角β互余.( × ) 2.二面角的大小范围是⎣⎡⎦⎤0,π2.( × ) 3.二面角的大小等于其两个半平面的法向量的夹角的大小.( × )题型一 求直线与平面的夹角例1 已知正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.解 建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (0,a,0),A 1(0,0,2a ),C 1⎝⎛⎭⎫-32a ,a 2,2a , 方法一 取A 1B 1的中点M , 则M ⎝⎛⎭⎫0,a2,2a ,连接AM ,MC 1, 则MC 1→=⎝⎛⎭⎫-32a ,0,0,AB →=(0,a,0),AA 1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC 1→⊥AA 1→, 则MC 1⊥AB ,MC 1⊥AA 1. 又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1.∴∠C 1AM 是AC 1与侧面ABB 1A 1所成的角. 由于AC 1→=⎝⎛⎭⎫-32a ,a 2,2a ,AM →=⎝⎛⎭⎫0,a 2,2a , ∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC 1→,AM →〉=9a 243a ×3a 2=32. ∵〈AC 1→,AM →〉∈[0°,180°],∴〈AC 1→,AM →〉=30°, 又直线与平面所成的角在[0°,90°]范围内, ∴AC 1与侧面ABB 1A 1所成的角为30°.方法二 AB →=(0,a,0),AA 1→=(0,0,2a ),AC 1→=⎝⎛⎭⎫-32a ,a 2,2a .设侧面ABB 1A 1的法向量为n =(λ,y ,z ), ∴n ·AB →=0且n ·AA 1→=0.∴ay =0且2az =0. ∴y =z =0.故n =(λ,0,0).∴cos 〈AC 1→,n 〉=n ·AC 1→|n ||AC 1→|=-λ2|λ|,∴|cos 〈AC 1→,n 〉|=12.又直线与平面所成的角在[0°,90°]范围内, ∴AC 1与侧面ABB 1A 1所成的角为30°.反思感悟 用向量法求线面角的一般步骤是先利用图形的几何特征建立适当的空间直角坐标系,再用向量的有关知识求解线面角.方法二给出了用向量法求线面角的常用方法,即先求平面法向量与斜线夹角,再进行换算.跟踪训练1 如图,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,P A ⊥底面ABCD ,且P A =AD =AB =2BC ,M ,N 分别为PC ,PB 的中点,求BD 与平面ADMN 所成的角θ.解 如图所示,建立空间直角坐标系Axyz ,设BC =1,则A (0,0,0),B (2,0,0),D (0,2,0),P (0,0,2) 则N (1,0,1), ∴BD →=(-2,2,0),AD →=(0,2,0), AN →=(1,0,1),设平面ADMN 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·AD →=0,n ·AN →=0得⎩⎪⎨⎪⎧y =0,x +z =0,取x =1,则z =-1,∴n =(1,0,-1),∵cos 〈BD →,n 〉=BD →·n |BD →||n |=-28·2=-12,∴sin θ=|cos 〈BD →,n 〉|=12.又0°≤θ≤90°,∴θ=30°. 题型二 求二面角例2 在底面为平行四边形的四棱锥P -ABCD 中,AB ⊥AC ,P A ⊥平面ABCD ,且P A =AB ,E 是PD 的中点,求平面EAC 与平面ABCD 的夹角.解 方法一 如图,以A 为原点,分别以AC ,AB ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Axyz .设P A =AB =a ,AC =b ,连接BD 与AC ,交于点O ,取AD 中点F ,连接EF ,EO ,FO ,则C (b,0,0),B (0,a,0).∵BA →=CD →, ∴D (b ,-a,0),P (0,0,a ), ∴E ⎝⎛⎭⎫b 2,-a 2,a 2,O ⎝⎛⎭⎫b2,0,0, OE →=⎝⎛⎭⎫0,-a 2,a 2,AC →=(b,0,0). ∵OE →·AC →=0,∴OE →⊥AC →,OF →=12BA →=⎝⎛⎭⎫0,-a 2,0,OF →·AC →=0. ∴OF →⊥AC →.∴∠EOF 等于平面EAC 与平面ABCD 的夹角. cos 〈OE →,OF →〉=OE →·OF →|OE →||OF →|=22.∴平面EAC 与平面ABCD 的夹角为45°. 方法二 建系如方法一, ∵P A ⊥平面ABCD ,∴AP →=(0,0,a )为平面ABCD 的法向量, AE →=⎝⎛⎭⎫b 2,-a 2,a 2,AC →=(b,0,0). 设平面AEC 的法向量为m =(x ,y ,z ). 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AC →=0,得⎩⎪⎨⎪⎧b 2x -a 2y +a 2z =0,bx =0. ∴x =0,y =z .∴取m =(0,1,1), cos 〈m ,AP →〉=m ·AP →|m ||AP →|=a 2·a =22.又平面EAC 与平面ABCD 所成角的平面角为锐角, ∴平面EAC 与平面ABCD 的夹角为45°.反思感悟 (1)当空间直角坐标系容易建立(有特殊的位置关系)时,用向量法求解二面角无需作出二面角的平面角.只需求出平面的法向量,经过简单的运算即可求出,有时不易判断两法向量的夹角的大小就是二面角的大小(相等或互补),但我们可以根据图形观察得到结论,因为二面角是钝二面角还是锐二面角一般是明显的.(2)注意法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角.跟踪训练2 若P A ⊥平面ABC ,AC ⊥BC ,P A =AC =1,BC =2,求锐二面角A -PB -C 的余弦值.解 如图所示建立空间直角坐标系Axyz ,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),故AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1), 设平面P AB 的法向量为 m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AP →=0,m ·AB →=0,即⎩⎪⎨⎪⎧z =0,2x +y =0,令x =1,则y =-2,故m =(1,-2,0). 设平面PBC 的法向量为n =(x ′,y ′,z ′), 则⎩⎪⎨⎪⎧n ·CB →=0,n ·CP →=0,即⎩⎪⎨⎪⎧2x ′=0,-y ′+z ′=0.令y ′=-1,则z ′=-1,故n =(0,-1,-1), ∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴锐二面角A -PB -C 的余弦值为33. 题型三 空间角中的探索性问题例3 如图,在四棱锥P -ABCD 中,ABCD 为矩形,平面P AD ⊥平面ABCD .(1)求证:AB ⊥PD ;(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P -ABCD 的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值. (1)证明 因为ABCD 为矩形,所以AB ⊥AD ; 又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面P AD ,故AB ⊥PD . (2)解 过点P 作PO ⊥AD 于点O .则PO ⊥平面ABCD ,过点O 作OM ⊥BC 于点M , 连接PM .则PM ⊥BC ,因为∠BPC =90°,PB =2,PC =2, 所以BC =6,PM =233,设AB =t ,则在Rt △POM 中, PO =43-t 2, 所以V P -ABCD =13·t ·6·43-t 2 =13-6⎝⎛⎭⎫t 2-232+83, 所以当t 2=23,即t =63时,V P -ABCD 最大为269.如图,此时PO =AB =63,且PO ,OA ,OM 两两垂直, 以OA ,OM ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Oxyz , 则P ⎝⎛⎭⎫0,0,63,D ⎝⎛⎭⎫-263,0,0, C ⎝⎛⎭⎫-263,63,0,B ⎝⎛⎭⎫63,63,0. 所以PD →=⎝⎛⎭⎫-263,0,-63, PC →=⎝⎛⎭⎫-263,63,-63,PB →=⎝⎛⎭⎫63,63,-63. 设平面PCD 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧-2x 1+y 1-z 1=0,-2x 1-z 1=0, 令x 1=1,则m =(1,0,-2),|m |=5; 同理设平面PBC 的法向量n =(x 2,y 2,z 2), ⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-2x 2+y 2-z 2=0,x 2+y 2-z 2=0,令y 2=1,则n =(0,1,1),|n |=2,设平面PBC 与平面DPC 的夹角为θ,显然θ为锐角, 所以cos θ=|m ·n ||m ||n |=25×2=105.即平面PBC 与平面DPC 夹角的余弦值为105. 反思感悟 利用空间向量解决空间角中的探索性问题,通常不需要复杂的几何作图,论证,推理,只需先假设结论成立,设出空间的坐标,通过向量的坐标运算进行推断,把是否存在问题转化为点的坐标是否有解的问题来处理.跟踪训练3 如图,已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,且AB ⊥AC ,点M 是CC 1的中点,点N 是BC 的中点,点P 在直线A 1B 1上,且满足A 1P →=λA 1B 1→.(1)证明:PN ⊥AM ;(2)当λ取何值时,直线PN 与平面ABC 所成的角θ最大?并求该角最大值的正切值.(1)证明 以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz ,则P (λ,0,1),N ⎝⎛⎭⎫12,12,0,M ⎝⎛⎭⎫0,1,12, 从而PN →=⎝⎛⎭⎫12-λ,12,-1, AM →=⎝⎛⎭⎫0,1,12, PN →·AM →=⎝⎛⎭⎫12-λ×0+12×1-1×12=0, 所以PN ⊥AM .(2)解 过点P 作PE ⊥AB 于E ,连接EN , 则PE ⊥平面ABC , 则∠PNE 为所求角θ, 所以tan θ=PE EN =1EN,因为当点E 是AB 的中点时,EN min =12.所以(tan θ)max =2,此时,λ=12.利用向量求二面角典例 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥EFDC ; (2)求二面角E -BC -A 的余弦值. 考点 向量法求平面与平面所成的角 题点 向量法求平面与平面所成的角(1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知AB ∥EF ,AB ⊄平面EFDC ,EF ⊂平面EFDC ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF , 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°, 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919. [素养评析] 试题以一个面为正方形的五面体为载体,分层设计问题,由浅入深,给不同基础的考生提供了想象的空间和展示才华的平台.第(1)问侧重对立体几何中线面垂直、面面垂直等基础知识的考查,题目比较简单.求解第(2)问的关键是充分运用直观想象,把握图形的结构特征,构建空间直角坐标系,并针对运算问题,合理选择运算方法,设计运算程序,解决问题.1.已知向量m ,n 分别是直线l 的方向向量和平面α的法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为( )A .30°B .60°C .120°D .150° 答案 A解析 设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12.∴θ=30°.2.正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成的角的正弦值为( ) A.24 B.23 C.63 D.32答案 C解析 建系如图,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),C 1(0,1,1),A (1,0,0),∴BC 1→=(-1,0,1),AC 1→=(-1,1,1),A 1B →=(0,1,-1),A 1D →=(-1,0,-1). ∴AC 1→·A 1B →=1-1=0, AC 1→·A 1D →=1-1=0.∴AC 1⊥A 1B ,AC 1⊥A 1D ,又A 1B ∩A 1D =A 1, ∴AC 1⊥平面A 1BD .∴AC 1→是平面A 1BD 的法向量. ∴cos 〈BC 1→,AC 1→〉=BC 1→·AC 1→|BC 1→||AC 1→|=1+12×3=63.∴直线BC 1与平面A 1BD 所成的角的正弦值为63. 3.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为__________. 答案 45°或135°解析 设二面角的平面角为θ,∵cos 〈m ,n 〉=11×2=22,∴θ=45°或135°.4.正四面体ABCD 中棱AB 与底面BCD 所成角的余弦值为________. 答案33解析 作AO ⊥底面BCD ,垂足为O ,O 为△BCD 的中心,设正四面体的棱长为a ,则OB =33a ,∠ABO 为所求角,cos ∠ABO =33.5.已知点A (1,0,0),B (0,2,0),C (0,0,3),则平面ABC 与平面xOy 所成锐二面角的余弦值为________. 答案 27解析 AB →=(-1,2,0),AC →=(-1,0,3).设平面ABC 的法向量为n =(x ,y ,z ).由n ·AB →=0,n ·AC→=0知⎩⎪⎨⎪⎧-x +2y =0,-x +3z =0.令x =2,则y =1,z =23.∴平面ABC 的法向量为n =⎝⎛⎭⎫2,1,23.平面xOy 的法向量为OC →=(0,0,3).所以所求锐二面角的余弦值cos θ=|n ·OC →||n ||OC →|=23×73=27.1.线面角可以利用定义在直角三角形中解决.2.线面角的向量求法:设直线的方向向量为a ,平面的法向量为n ,直线与平面所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a·n ||a||n |.3.二面角通常可通过法向量的夹角来求解,但一定要注意法向量的夹角和二面角的大小关系.一、选择题1.若直线l 的方向向量与平面α的法向量的夹角等于150°,则直线l 与平面α所成的角等于( ) A.π6 B.π3 C.5π6 D .以上均错 答案 B解析 直线l 与平面α所成的角范围是⎣⎡⎦⎤0,π2. 2.直线l 1,l 2的方向向量分别是v 1,v 2,若v 1与v 2所成的角为θ,直线l 1,l 2所成的角为α,则( ) A .α=θ B .α=π-θ C .cos θ=|cos α| D .cos α=|cos θ|答案 D解析 α=θ或α=π-θ,且α∈⎣⎡⎦⎤0,π2, 因而cos α=|cos θ|.3.已知在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值是( ) A.23 B.33 C.23 D.13答案 A解析 以D 为原点,分别以DA ,DC ,DD 1为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .设AA 1=2AB =2,则B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,2), 故DB →=(1,1,0),DC 1→=(0,1,2),DC →=(0,1,0), 设平面BDC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0,令z =1,则y =-2,x =2, 所以n =(2,-2,1).设直线CD 与平面BDC 1所成的角为θ, 则sin θ=|cos 〈n ,DC →〉|=|n ·DC →||n ||DC →|=23.4.已知在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是DC 的中点,建立如图所示的空间直角坐标系Cxyz ,则AB 1与ED 1所成角的余弦值为( )A.1010 B.105C .-1010D .-105答案 A解析 ∵A (2,2,0),B 1(2,0,2),E (0,1,0),D 1(0,2,2), ∴AB 1→=(0,-2,2),ED 1→=(0,1,2), ∴|AB 1→|=22,|ED 1→|=5, AB 1→·ED 1→=0-2+4=2,∴cos 〈AB 1→,ED 1→〉=AB 1→·ED 1→|AB 1→||ED 1→|=222×5=1010,∴AB 1与ED 1所成角的余弦值为1010. 5.在边长为1的菱形ABCD 中,∠ABC =60°,将菱形沿对角线AC 折起,使折起后BD =1,则二面角B —AC —D 的余弦值为( ) A.13 B.12 C.233 D.32 答案 A解析 设菱形对角线AC 与BD 交于O 点,则∠BOD 为二面角B —AC —D 的平面角,由余弦定理可得cos ∠BOD =13.6.A ,B 是二面角α—l —β的棱l 上两点,P 是平面β上一点,PB ⊥l 于B ,P A 与l 成45°角,P A 与平面α成30°角,则二面角α—l —β的大小是( ) A .30° B .60° C .45° D .75° 答案 C解析 如图,作PO ⊥α于O ,连接AO ,BO ,则∠P AO 为P A 与平面α所成角,∠PBO 为二面角α—l —β的平面角,由∠P AO =30°,∠P AB =45°,取P A =2a ,则PO =a ,PB =2a ,∴sin ∠PBO =PO PB =22,∴∠PBO =45°.二、填空题7.平面α的一个法向量n 1=(1,0,1),平面β的一个法向量n 2=(-3,1,3),则α与β所成的角是________. 答案 90°解析 由于n 1·n 2=(1,0,1)·(-3,1,3)=0, 所以n 1⊥n 2,故α⊥β,α与β所成的角是90°.8.若二面角内一点到两个面的距离分别为5和8,两垂足间的距离为7,则这个二面角的大小是________. 答案 60°或120°解析 设二面角大小为θ,由题意可知 |cos θ|=|82+52-72|2×8×5=64+25-4980=12,所以cos θ=±12,所以θ=60°或120°.9.在矩形ABCD 中,AB =1,BC =2,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所成的角是________. 答案 30°解析 建立如图所示的空间直角坐标系Axyz ,则P (0,0,1),C (1,2,0),PC →=(1,2,-1),平面ABCD 的法向量为n =(0,0,1),所以cos 〈PC →,n 〉 =PC →·n |PC →||n |=-12,所以〈PC →·n 〉=120°,所以斜线PC 与平面ABCD 的法向量所在直线所成的角为60°,所以斜线PC 与平面ABCD 所成的角为30°.10.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面边长为1,则BC 1与侧面ACC 1A 1所成的角是________. 答案 π6解析 在正三棱柱ABC —A 1B 1C 1中,取AC 的中点O ,连接OB ,OB ⊥AC ,则OB ⊥平面ACC 1A 1,∴∠BC 1O 就是BC 1与平面AC 1所成的角.∵OB =32,BC 1=3, ∴sin ∠BC 1O =OB BC 1=12, ∴∠BC 1O =π6.三、解答题11.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,求该二面角的大小. 解 由题意知,CA →·AB →=0,AB →·BD →=0, CD →=CA →+AB →+BD →,∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD → =62+42+82+2×6×8cos 〈CA →,BD →〉=(217)2. ∴cos 〈CA →,BD →〉=-12,又〈CA →,BD →〉∈[0°,180°], ∴〈CA →,BD →〉=120°, ∴二面角的大小为60°.12.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,PD ⊥平面ABCD .PD =DC ,E 是PC 的中点.求EB 与平面ABCD 夹角的余弦值.解 取CD 的中点M ,则EM ∥PD , 又∵PD ⊥平面ABCD , ∴EM ⊥平面ABCD ,∴BE 在平面ABCD 上的射影为BM , ∴∠MBE 为BE 与平面ABCD 的夹角. 如图建立空间直角坐标系Dyxz , 设PD =DC =1,则P (0,0,1),C (0,1,0),B (1,1,0), ∴M ⎝⎛⎭⎫0,12,0,E ⎝⎛⎭⎫0,12,12, ∴BE →=⎝⎛⎭⎫-1,-12,12,BM →=⎝⎛⎭⎫-1,-12,0, cos 〈BM →,BE →〉=BE →·BM →|BE →||BM →|=1+1432× 52=306,∴EB 与平面ABCD 夹角的余弦值为306. 13.如图,在直棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.(1)证明 连接AC 1,交A 1C 于点F ,连接DF ,则F 为AC 1的中点,因为D 为AB 的中点, 所以DF ∥BC 1,又因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD . (2)解 由AA 1=AC =CB =22AB , 可设AB =2a ,则AA 1=AC =CB =2a ,所以AC ⊥BC ,又由直棱柱知CC 1⊥平面ABC ,所以以点C 为坐标原点,分别以CA ,CB ,CC 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Cxyz 如图.则C (0,0,0),A 1(2a ,0, 2a ),D ⎝⎛⎭⎫22a ,22a ,0,E ⎝⎛⎭⎫0, 2a ,22a ,CA 1→=( 2a,0, 2a ), CD →=⎝⎛⎭⎫22a ,22a ,0,CE →=⎝⎛⎭⎫0, 2a ,22a ,A 1E →=⎝⎛⎭⎫-2a ,2a ,-22a .设平面A 1CD 的法向量为n =(x ,y ,z ), 则n ·CD →=0且n ·CA 1→=0, 可解得y =-x =z ,令x =1,得平面A 1CD 的法向量为n =(1,-1,-1), 同理可得平面A 1CE 的法向量为m =(2,1,-2), 则cos 〈n ,m 〉=33,又因为〈n ,m 〉∈[0°,180°],所以sin 〈n ,m 〉=63, 所以二面角D -A 1C -E 的正弦值为63.14.如图所示,已知点P 为菱形ABCD 外一点,且P A ⊥平面ABCD ,P A =AD =AC ,点F 为PC 的中点,则二面角C BF D 的正切值为( )A.36 B.34 C.33 D.233 答案 D解析 如图所示,连接BD ,AC ∩BD =O ,连接OF .以O 为原点,OB ,OC ,OF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Oxyz .设P A =AD =AC =1,则BD = 3.所以B ⎝⎛⎭⎫32,0,0,F ⎝⎛⎭⎫0,0,12,C ⎝⎛⎭⎫0,12,0,D ⎝⎛⎭⎫-32,0,0.结合图形可知,OC →=⎝⎛⎭⎫0,12,0且OC →为平面BOF 的法向量,由BC →=⎝⎛⎭⎫-32,12,0,FB →=⎝⎛⎭⎫32,0,-12, 可求得平面BCF 的法向量n =(1,3,3).所以cos 〈n ,OC →〉=217,sin 〈n ,OC →〉=277, 所以tan 〈n ,OC →〉=233.15.直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G , 求AA 1与平面AED 夹角的正弦值.解 建立如图所示的空间直角坐标系Cxyz ,设CA =2a ,则A (2a,0,0),B (0,2a,0),D (0,0,1),A 1(2a,0,2),E (a ,a,1),G ⎝⎛⎭⎫2a 3,2a 3,13.从而GE →=⎝⎛⎭⎫a 3,a 3,23,BD →=(0,-2a,1),由GE ⊥BD ,得GE →·BD →=0,得a =1.∴DA →=(2,0,-1),DE →=(1,1,0)设n =(x ,y ,z )为平面AED 的法向量,则⎩⎪⎨⎪⎧ n ·DA →=0,n ·DE →=0,即⎩⎪⎨⎪⎧ 2x -z =0,x +y =0,即⎩⎪⎨⎪⎧z =2x ,y =-x , 令x =1,则y =-1,z =2,即n =(1,-1,2),又AA 1→=(0,0,2),设AA 1与平面AED 的夹角为θ,sin θ=|cos 〈AA 1→,n 〉|=|AA 1→·n ||AA 1→||n |=|4|6×2=63. ∴AA 1与平面AED 夹角的正弦值为63.。
6-2 微专题-线面角(对口招生、高职考(单考单招)数学总复习)
因为 AB=2BO,所以 cos∠ABO=BAOB=21,
所以∠ABO=60°. 【答案】:A
微专题——线面角
【跟踪练习4】.在正方体ABCD-A1B1C1D1中,BB1和平面ACD1所成角的余弦值为( )
【课堂自测】 1.如图,在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,则平面AD1E与平面 ABCD的交线与直线C1D1所成角的正切值为( )
【知识要点】
求斜线和平面所成的角的步骤 (1)作(或找):作(或找)出斜线在平面上的射影,作射影要过斜线上斜足以外的 一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的 位置要与题目中已知量有关,这样才能便于计算. (2)证:证明某平面角就是斜线和平面所成的角. (3)算:通常在垂线段、斜线和射影所组成的直角三角形中计算.
微专题——线面角
【真题+三年模拟】
1.(2023年浙江省职教高考研究联合体第一次调研考试)在正方体 ABCD ABCD
中,AC与平面ABCD 所成角的余弦值为
【解析】连接AC,易得 ACA 就是 AC与平面ABCD 所成的线面角。
设 AB a,则AC 2a, AC AA2 AC2 3a
所以 cos ACA AC 2a 6 【答案】 6
【解析】因为PA⊥平面ABC,所以AC为斜线PC在平面ABC上 的射影,所以∠PCA即为PC和平面ABC所成的角. 在 Rt△PAC 中,因为 AC=12AB=12PA, 所以 tan∠PCA=APAC=2. 【答案】:2
微专题——线面角
【跟踪练习3】若斜线段AB的长是它在平面α上的射影的长的2倍,则AB与平面α所 成的角是( )A.60° B.45° C.30° D.120°
专题5:向量法做立体几何的线面角问题(解析版)
专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。
线面夹角知识点及试题与答案
线面夹角知识点及试题与答案线面夹角知识点及试题与答案一、引言线面夹角是三维空间中两个向量之间角度的余弦值,是解决许多几何和工程问题的重要参数。
掌握线面夹角的概念、性质和计算方法对于理解空间几何关系和解决实际问题具有重要意义。
二、定义线面夹角是指直线与平面之间所成角度的余弦值,常用符号“<i>θ</i>”表示。
根据定义,线面夹角的范围在[0, 90°]之间,其中0°表示直线与平面平行,90°表示直线与平面垂直。
三、试题1及答案试题1:求直线l与平面π之间的夹角θ,已知直线l的方向向量s = (1, 2, 3),平面π的法向量n = (4, -3, 2),以及直线l上的点P(1, 2, 3)。
解:首先,根据点积公式,我们可以计算出直线l与平面π之间的法向量m = (4, -3, 2) × (1, 2, 3) = (-6, 9, -6)。
然后,根据线面夹角的公式,可计算夹角θ:sin(θ) = |(m · s) / (||m|| ||s||)| = |(-6 * 1 + 9 * 2 - 6 * 3) / (sqrt((-6)^2 + (9)^2 + (-6)^2) * sqrt(1^2 + 2^2 + 3^2))| = 0因为sin(θ) = 0,所以θ = 0°,即直线l与平面π平行。
四、试题2及解析试题2:求直线m与直线n之间的夹角θ,已知直线m的方向向量s1 = (1, -1, 2),直线n的方向向量s2 = (2, 3, -1),且两直线在点P(1, 1, 1)相交。
解析:首先,根据点积公式,我们可以计算出过点P且与直线m平行的向量s'_1 = (0, 2, -1)。
同理,过点P且与直线n平行的向量s'_2 = (1, 4, 0)。
然后,根据点积公式,我们可以计算出这两个向量之间的法向量n = s'_1 × s'_2 = (5, -1, 3)。
人教版【高中数学】选修2-1第三章直线与平面的夹角讲义
案例(二)----精析精练课堂 合作 探究重点难点突被知识点一 公式cos θ=cos θ1·cos θ 2如右图,已知OA 是平面a 的一条斜线,AB⊥a,则OB 是OA 在平面a 内的射影,设OM 是a 内通过点O的任意一条直线,OA 与OB 所成的角为θ1,OB 与OM 所成的角为θ2,OA 与OM 所成的角为θ,则有cos θ=cos θ1·cos θ2,我们简称此公式为三余弦公式,它反映了三个角的余弦值之间的关系.在上述公式中,因为0≤cos θ2≤1,所以cos θ<cos θ1,因为θ1和θ都是锐角,所以θ1≤0,由此我们可以得到最小角定理:斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成的角中最小的角.知识点二 斜线和平面所成的角(1)定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角).(2)斜线和平面所成角的范围:(0,2π). (3)直线和平面所成角的范围:[O,2π],其中当一条直线与一个平面垂直时,这条直线与平面的夹角为,当一条直线与个平面平行或在平面内时,这条直线与平面的夹角为0.(4)直线和平面所成角的求法:①几何法:用几何法求直线和平面所成角的步骤:i)找(或作)出直线和平面所成的角;ii)计算,即解三角形;iii)结论,即点明直线和平面所成角的大小.②向量法:若直线AB 与平面a 所成的角为θ,平面a 的法向量为n,直线与向量n 所成的角为ϕ,则θ+ϕ=2π,利用向量的夹角公式求出cos ϕ再根据sin θ=|cos ϕ|求出θ③利用公式cos θ=cos θ1cos 2求解.典型例题分析题型1 几何法求直线和平面的夹角【例1】 如下图,在长方体ABCD-A 1B 1C 1D 1中,AB=4,BC=3,AA 1=5,试求B 1D 1与面A 1BCD 1所成角的正弦值解析 作出B 1点在平面A 1BCD 1上的射C 影,从而得到B 1D 1在平面上的射影.又因为平面 A 1B 1D⊥面A 1BCD 1,故只要过B 1作A 1B 的垂线,垂足就是B 1的射影.答案 作B 1E⊥A 1B,又因为A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥B 1E.由B 1E⊥A 1B 及B 1E⊥A 1D 1得知B 1E⊥面A 1BCD 1,所以,D 1E 就是D 1B 1在平面A 1BCD 1上的射影,从而∠B 1D 1E 就是D 1B 1与面A 1BCD 1所成的角.在Rt△B 1D 1E 中,有sin∠B 1D 1E=111B D EB 上的射影. 但D1B1=211211D A B A +=915+=5,又11BB A S ∆=21A 1B 1·EB 1=21A 1B 1·BB 1,A 1B=1625+=14,∴EB 1=4154⨯=420,∴sin∠B 1D 1E=54120=41414. 方法指导 如果随意地在直线B 1D 1上取一点,然后过这一点向平面A 1BCD 1作垂线,虽然也可以找出直线B 1D 1和平面A 1BCD 1所成的角,但面临的一个问题是如何求出这个角,因此“作、证、求”三者是紧密联系在一起的,必须系统地统筹考虑.【变式训练1】 已知直角三角形ABC 的斜边BC 在平面a 内,直角边AB,AC 分别和a 成30°和45°角.求斜边BC 上的高AD 与平面a 所成角的大小.答案 如下图,作AO⊥a,O 为垂足,连结OB,OC,OD,则∠ABO,∠ACO,∠ADO 分别为AB,AC,AD 与a 所成的角,则∠ABO=30°,∠ACO=45°.设AO=h,则AC=2h,AB=2h.∴BC=6h,∴AB=32=∙BC AB AC h. ∴Rt△AOD 中,sin∠ADO=23=AD AO ,∠ADO=60°. ∴AD 与平面a 所成的角的大小为60°.【例2】 如下图所示,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求直线AA 1与平面A 1BD 所成的角.解析 在确定A 在平面上的射影时,既可以利用线面垂直,也可以分析四面体A 1-ABD 的性质.答案 解法一:连结AC,设AC∩BD=O,连结A 1O,在△A 1AO 内作AH⊥A 1O,H 为垂足. ∵A 1A⊥平面ABCD,BD ⊂平面ABCD,∴A 1A⊥BD .又BD⊥AC,AC∩A 1A=A,∴BD⊥平面A 1AD,∴BD⊥AH .又AH⊥A 1O,A 1O∩BD=O,∴AH⊥平面A 1BD,∴∠AA 1H 为斜线A 1A 与平面A 1BD 所成的角.在Rt △A 1AO 中,A 1A=1,AO=22,∴A 1O=26. ∵:A 1A·AO=A 1O·AH,∴AH=332622111=⨯=∙O A AO A A . ∴sin∠A A 1H=331=A A AH .∠AA 1H=arc sin 33. ∴A 1A 平面A 1BD 所成角的大小为arc sin33. 解法二:∵AA 1=AD=AB,∴点A 在平面A 1BD 上的射影H 为△A 1BD 中心,连结A 1H,则A 1H 为正△A 1BD 外接圆半径, ∵正△A 1BD 边长为2,∴A 1H=33·2=36. Rt△AHA 1中,cos∠AA 1H=A A H A 11=36. ∵∠AA 1H 为AA 1与平面A 1BD 所成的角,∴A 1A 与平面A 1BD 所成角的大小为 arc sin 33. 解法三:同解法二分析,A 1H 为∠BA 1D 的平分线,∴∠BA 1H=30°,又∠AA 1B=45°,∴由最小角原理公式cos∠AA 1B=cos∠AA 1H·cos∠BA 1H,得cos∠AA 1H=︒︒=∠∠30cos 45cos cos cos 11H BA B AA =36 ∴∠AA 1H=arc cos 36方法指导 在研究空间图形时,基本元素的位置关系和数量关系是密不可分、相互转化的.解法二在数量关系AA 1=AD=AB 的基础上,得到A 在平面A 1BD 上的射影的性质,解法三在找到基本图形-----三棱锥A 1-ABD 后,利用最小角原理公式,最小角原理公式是立体几何的重要公式之一,解法三利用该公式,解法简捷明了.【变式训练2】 如下图,在四棱锥P 一ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD⊥DC,E 是PC 的中点.(1) 证明PA∥平面EDB ;(2) 求EB 与底面ABCD 所成的角的正切值.答案 (1)连结AC,AC 交BD 于O.连结EO.∵底面ABCD 是正方形,∴点O 是AC 的中点.在△PAC 中,EO 是中位线,∴PA∥EO .而EOC ⊂平面EDB 且PA ⊄平面EDB,所以PA∥平面EDB.(3) 作EF⊥DC 交DC 于F,连结BF,设正方形ABCD 的边长为a.∵PD⊥底面ABCD,∴PD⊥DC .∴EF∥PD,F 为DC 的中点∴EF⊥底面ABCD,BF 为BE 在底面ABCD 内的射影,故∠EBF 为直线EB 与底面ABCD 所成的 角.在Rt △BCF 中,BF=a a a CF BC 25)2(2222=+=+. ∴EF=21PD=2a ,∴在Rt △EFB 中,tan ∠EBF=55252==a aBF EF . 所以EB 与底面ABCD 所成的角的正切值为题型2 向量法求直线与平面的夹角【例3】 在以边长为1的正方体ABCD-A 1B 1C 1D 1中,E 和F 分别是BC 和C 1D 1上的点,BE=C 1F= 31,试求EF 与平面A 1BD 所成的角的余弦值. 解析 如下图建立恰当的空间直角坐标系,用坐标向量及平面的法向量求解. 答案 以A 为原点,分别以AB ,AD ,1AA 方向为x轴,y 轴,z 轴的正方向而建立坐标系,如上图所示,则A 1(0,0,1),B(1,0,0),D(0,1,0),C(1,1,1),E(1,31,0),F(32,1,1). 1AC =(1,1,1),B A 1=(1,0,-1),D A 1(0,1,-1).由于1AC ·B A 1=(1,1,1)·(1,0,-1)=1-1=0,∴1AC ⊥B A 1,1AC .D A 1=(1,1,1)·(0,1,-1)=1-1=0,∴1AC ⊥D A 1,∴1AC ⊥平面A 1BD,故1AC 是平面A 1BD 的法向量.又EF =(-31,32,1),EF ·1AC =(-31,32,1)·(1,1,1)=34,|EF |=314,|1AC |=3. 记ϕ为EF 与1AC 之间所成之角则cos ϕ=11AC EF =424331443=∙.以θ记EF 与平面A 1BD 所成之角,则θ=ϕπ-2,∴cos=θ=cos(2π-ϕ)=sin ϕ=21273211342161cos 12==-=-ϕ. 规律总结 利用向量法求直线与平面所成角的解题步粟可以分解为:①根据题设条件,图形特征建立适当的空间直角坐标系;②得到相关点的坐标,进而求出相关向量的坐标;③利用分式cos<a,b>=b a b a ∙,进行计算,其中向量a 是直线的方向向量,b 可以是平面的法向量,可以是直线在平面内射影的方向向量;④将(a,b)转化为所求的线面角.这里要注意的是:平面的斜线的方向向量与平面法向量所成的锐角是平面的斜线与平面所成角的余角.【变式训练3】 如下图所示,已知直角梯形ABCD,其中AB=BC=2AD,AS⊥平面ABCD,AD∥BC,AB⊥BC 且AS=AB.求直线SC 与底面ABCD 的夹角的余弦值.答案 由题设条件知,可建立以AD 为x 轴,AB 为y 轴,AS 为z 轴的空间直角坐标系,如下图所示,设AB=1,则A(0,0,0),B(0,1,0),C(1,1,0),D(21,0,0),S(0,0,1).∴AS =(0,0,1),CS =(-1,-1,1).显然AS 是底面的法向量,它与已知向量CS 的夹角β=90°-θ,故有sin θ=cos β33311=⨯=,于是 cos θ=36sin 12=-θ. 【例4】 如下图,在直三棱柱ABC-A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.求A 1B 与平面ABD 所成角的大小.(结果用反三角函数值表示)解析 求线面角关键在于找到平面的一个法向量,法向量与直线所在的向量夹角的互余的角,即为所求的角,因此结合图形的特征,可以先建立空间直角坐标系,求出平面ABD 的法向量,再按公式求解.答案 以C 为原点,CA 所在直线为x 轴建立空间直角坐标系,设AC 的长为a,则A(a,0,0),B(0,a,0)D(0,0,1)A1(a,0,2,)则点G(3a ,3a ,31),E(2a ,2a ,1).由于E 在面ABD 内的射影为G 点,所以GE⊥面ABD.又DA =(a,0,-1),AB =(-a,a,0)=(6a ,6a ,32),,由AB ·=0及 ·=0可得⎪⎪⎩⎪⎪⎨⎧=+-=-,066,0326222a a a 解得a=2. 取=(6a ,6a ,32)=(31,31,32,)为平面ABD 的法向量,B A 1=(-2,2,-2).设A 1B 和平面ABD 所成的角为θ,则sin θ=32222949191|343232|222=++++-+-. 故所求A1B 和平面ABD 所成的角为arin2方法指导 本题也可以不用向量方法求解,而用传统的几何方法求解,但处理的过程不像向量法简单直接.请读者用传统方法试着处理一下.规律 方法 总结(1)利用平面a 的法向量n 求斜线AB 与平面a 的夹角θ时,应注意关系,sin θ=|cos<AB ,n>),其中θ∈⎥⎦⎤⎢⎣⎡2,0π,不要认为<AB ,n>或<BA ,n>就是θ角; (2)求直线与平面夹角的常见方法:①当直线与平面垂直时,直线与平面所成的角为90°,当直线与平面平行或在平面内时,直线与平面所成的角为0°;②当直线与平面斜交时,用以下三种方法求角:方法一:定义法:在直线上任取不同于斜足的一点作面的垂线,确定射影,找出斜线与平面所成的角,通过解三角形求得;方法二:向量法:建立空间直角坐标系,求出平面的法向量,由向量夹角公式,求出法向量n 与斜线对应向量的夹角θ(锐角),则所求线面角为2π-θ; 方法三:由公式cos θ=cos θ1·cos θ2,求斜线与平面所成的角.定时 巩固 检测基础训练1.平面的一条斜线和这个平面所成角θ的范围是 ( )A.0°<θ<90°B.0°≤θ≤90°C.0°<θ≤90D.0°<θ<180°【答案】 A(点拨:由与平面相交但不垂直的直线为平面的斜线知0°<θ<90°.)2.一条直线与平面a 所成的角为30°,则它和平面a 内所有直线所成的角中最小的角是 ( )A.30°B.60°C.90°D.150°【答案】 A(点拨:本题考查最小角定理,斜线与平面所成的角是斜线与平面内直线所成角中最小的角.)3.如下图,正方体ABCD-A 1B 1C 1D 1中BC 1与对角面BB 1D 1D 所成的角是 ( )A.∠C 1BB 1 B∠C 1BD C.∠C 1BD 1 D.∠C 1BO【答案】 D(点拨:∵O 是点C 1在平面BB 1D 1D 上的射影,∴BO 为BC 1在平面BB 1D 1D 内的射影.∵∠C1BO 为所求.)4.PA,PB,PC 是从P 点引出的三条射线,每两条夹角都为60°,则直线PC 与平面APB 所成角的余弦值为 ( )A. 21 B.36 C.33 D.23 【答案】 C(点拨,设PC 与平面APB 所成角为θ,则由cos60°=cos θ·cos30°得cos θ=33.) 5.正方体ABCD-A 1B 1C 1D 1中,O 为侧面BCC 1B 1的中心,则AO 与平面ABCD 所成角的正弦值为( ) A.33 B.21 C.66 D.23 【答案】 C(点拨:取BC 中点M,连AM,OM,易知∠OAM 即为AO 与平面ABCD 所成的角,可求得sin∠OAM=66.) 能力提升 6.如右图所示,点P 是△ABC 所在平面外的一点,若PA 、PB 、PC 与平面a 所成的角均相等,则点P 在平面a 上的射影P′是△ABC 的 ( )A.内心B.外心C.重心D.垂心【答案】 B(点拨:由于PA 、PB 、PC 与平面a 所成的角均相等,所以这三条由点P 出发的平面ABC 的斜线段相等,故它们在平面ABC 内的射影P ′A 、P ′B 、P ′C 也都相等,故点P 是 △ABC 的外心,因此,应选B.)7.从同一点O 引出不共面的三条射线OA,OB,OC 且两两成60°角,OA 与平面BOC 的夹角为 .【答案】 arc cos 33(点拨:设OA 与平面BOC 的夹角为θ,由上述分析可得co s60°=c os θ·c o s30°,即cos θ=33,所以OA 与.平面BOC 的夹角为arc cos 33.) 8.已知正方体ABCD-A 1B 1C 1D 1中,M 、N 分别是AB 、C 1D 1的中点,求A 1B 1与平面A 1MCN 所成角的大小.【答案】 法一:分别以DA,DC,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如上图,设正方体的棱长为1,则A 1(1,0,1),M(1,21,1),N(0,21,1),B 1(1,1,1),所以11B A =(0,1,0),M A 1=(0,21,-1),N A 1=(-1,21,0).设平面A 1MCN 的一个法向量为n=(x,y,z),则有⎪⎩⎪⎨⎧⊥⊥,,11M A n A n 得⎪⎪⎩⎪⎪⎨⎧=-=+-.021,021z y y x 即⎪⎪⎩⎪⎪⎨⎧==y z y x 2121, 令y=2,则x=z=1,所以n=(1,2,1).cos<11B A ,n)=6121111⨯=∙∙n B A n B A =36. 所以直线A 1B 1与平面A 1MCN 所成的角为arc cos 36. 法二:连接MN,B 1C,A 1D,A 1C,如右图、所示,由三垂线定理可得MN⊥A 1B 1,MN⊥B 1C,所以MN⊥平面A 1B 1CD,又MN ⊂平面A 1MCN,所以平面A 1MCN⊥平面A 1B 1CD,又平面A 1MCN 与平面A 1B 1CD 的交线是A 1C,故点B 1在平面A 1MCN 内的射影在直线A 1C 上,所以∠B 1A 1C 就是A 1B 1与平面A 1MCN 所成的角,在Rt△B 1A 1C 中,tan∠B 1A 1C=111B A C B =2,即A 1B 1与平面A 1MCN 所成的角的大小是arc tan 2.9.如右图在矩形ABCD 中,2AB=BC,沿对角线AC 将△ACB 折起到ACB ′的位置,使平面ADB ′⊥平面ACD.(1)求证:平面ACB ′⊥平面CBD ;(2)求AD 与平面ACB ′所成角的大小. 【答案】 (1) ⎪⎭⎪⎬⎫='⊥'⊥AD ACD B AD ACD B AD ADCD 平面平面平面平面 ⇒CD ⊥平面ADB ′⎪⎭⎪⎬⎫=''⊥'⇒⊥'C C B CD C B B A CD B A ⇒⎭⎬⎫'⊂''⊥'B AC B A D B C B A 平面平面 ⇒平面ACB ′⊥平面CB ′D.(2) 作DE ⊥B ′C 于E,连接AE.如图,由(1)知平面ACB ′⊥平面CB ′D,所以DE ⊥平面ACB ′.所以∠DAE 为AD 与平面ACB ′所成的角.设CD=1,则BC=2,在Rt △B ′DC 中,∠CDB ′=90°,B ′C=BC=2,CD=1,所以B ′D=3,所以DE=′CD BD ′CB ∙=23所以在R △AED 中,sin ∠DAE=AD DE =223=43,故直线AD 与平面ACB ′所成的角为 arcsin=43. 10.P 是△ABC 所在平面外一点,PA,PB,PC 两两互相垂直,且PA=10,PB=8,PC=6,求PA 与平面ABC 所成的角.【答案】∵AP ⊥PB,PA ⊥PC,∴PA ⊥平面PBC,PA ⊥BC,过A 作AD⊥BC 于D,连接PD,那么BC ⊥平面PAD,过P 作PO ⊥AD 于O.∴PO ⊥AD;BC ⊥PO,∴PO ⊥面ABC,∠PAO 就是PA 与面ABC 所成的角,∵PB=8,PC=6,∴BC=10,PD=BC PC PB ∙=524,tan ∠PAD=10524=2512, 因此PA 与面ABC 所成的角为arctan 2512. 11.如下图,在四棱锥P 一ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD,且PA=AD=AB=2BC,M 、N 分别为PC 、PB 的中点.求:CD 与平面ADMN 所成的角.【答案】建立如下图所示的空间直角坐标系Axyz,设PA=2,则P(0,0,2),B(2,0,0),D(0,2,0),C(2,1,0),则=(2,0,-2),=(0,2,0),=(2,-1,0).因为PB ·AD =(2,0,-2)·(0,2,0)=0,所以PB ⊥AD.又因为由三垂线定理可得PB ⊥DM,所以PB ⊥平面ADMN.因此<,>的余角即是CD 与平面ADMN 所成的角.因为cos(,=510,所以CD 与平面ADMN 所成的角为arcsin 510.。
用空间向量研究夹角问题
【答案】2 1530
2
,Q 为 PC 的中点,则直线 PC 与平面 BDQ 所成角的正
【解析】建立如图所示坐标系
设 DC=2 ,则 PD=AB=AD=1, = 5
0,0,1 , 0,2,0 , 1,1,0 , 0,1,
1
2
1
= 0,2, −1 , = 1,1,0 , = 0,1,
2
×
12 + −1
2
+ 22
2 30
=
15
3.在正方体 − ′ ′ ′ ′ 中,二面角 − ′ − ′ 的余弦值是(
1
A.
2
【答案】C
B.
1
2
1
C.
3
D.
1
3
)
【解析】如图,建立空间执教坐标系,设正方体的棱长为 1,
有 0,0,0 , 1,0,0 , 0,1,0 , ′ 1,1,1 , ′ (0,0,1)
设平面1 的法向量 = (, , ),
则
⋅ 1 = 3 − 2 = 0
,取 = 2,得 = ( 2, 1, 3),
⋅ 1 = 6 − 2 = 0
易知平面的法向量 = 0,0,1 ,
设平面1 与平面夹角为,
| ⋅ |
则cos = | |⋅| | =
所以 = 1,0,1 , = 1, −1,0 , ′′ = (1,1,0)
设平面′ 的一个法向量为 = , , ,
平面′′的一个法向量为 = , ,
则
⋅ ′ = + = 0
, ⋅ ′ = + = 0
⋅ = − = 0
专题7 立体几何中直线与平面的夹角几何法(解析版)-2021年高考数学立体几何中必考知识专练
专题7:立体几何中直线与平面的夹角几何法(解析版)线面成角:斜线与它在平面上的射影成的角,取值范围:(0。
,90。
]. 如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。
1.如图,ABCD 是正方形,直线PD ⊥底面ABCD ,PD DC =,E 是PC 的中点.(1)证明:直线//PA 平面EDB ;(2)求直线PB 与平面ABCD 所成角的正切值. 【答案】(1)证明见解析;(2)22; 【分析】(1)连接AC ,由三角形中位线可证得//EO PA ,根据线面平行判定定理可证得结论; (2)根据线面角定义可知所求角为PBD ∠,且tan PDPBD BD∠=,由长度关系可求得结果. 【详解】(1)连接AC ,交BD 于O ,连接EO四边形ABCD 为正方形 O ∴为AC 中点,又E 为PC 中点 //EO PA ∴EO ⊂平面BDE ,PA ⊄平面BDE //PA ∴平面BDE(2)PD ⊥平面ABCD ∴直线PB 与平面ABCD 所成角即为PBD ∠PD BD ⊥ tan PDPBD BD∴∠=设PD DC a ==,则222BD a a a =+= 2tan 22a PBD a∴∠== 【点睛】本题考查立体几何中线面平行关系的证明、直线与平面所成角的求解;证明线面平行关系常采用两种方法:(1)在平面中找到所证直线的平行线;(2)利用面面平行的性质证得线面平行.2.如图,四棱锥P ABCD -中,底面四边形ABCD 为菱形,3DAB π∠=,ADP ∆为等边三角形.(Ⅰ)求证:AD PB ⊥; (Ⅱ)若2AB =,6BP =PB 与平面ABCD 所成的角.【答案】(Ⅰ)见解析 (Ⅱ)4π. 【分析】(Ⅰ)取AD 中点E ,连结PE ,BE ,由已知可得PE AD ⊥,BE AD ⊥,又PE BE E ⋂=,即可证AD ⊥平面PEB ,从而可得PB AD ⊥.(Ⅱ)先证明PE EB ⊥,可得PE ⊥平面ABCD ,由线面角定义即可知PBE ∠即为所求. 【详解】(Ⅰ)因为四边形ABCD 为菱形,且BAD ∠=3π所以ADB 为等边三角形.取线段AD 的中点E ,连接BE PE 、,则BE AD ⊥. 又因为PAD 为等边三角形,所以PE AD⊥.因为PE ⊂平面PBE ,BE ⊂平面PBE ,且PE BE E ⋂=, 所以直线AD ⊥平面PBE ,又因为PB PBE ⊂面,所以AD PB ⊥. (Ⅱ)因为,PAD BAD 为等边三角形,且其边长为2,所以3PE BE ==又6PB =222PE BE PB +=,所以PE EB ⊥.因为,PE AD AD BE E ⊥⋂=, 所以PE ⊥面ABCD ,所以PBE ∠为直线PB 与平面ABCD 所成的角. 在PBE 直角中,PE BE =,所以4PBE π∠=故直线PB 和平面ABCD 所成的角为4π. 【点睛】本题主要考查了直线与平面垂直的性质及线面角求法,属于基础题 . 3.如图,在棱长均为1的直三棱柱ABC ﹣A 1B 1C 1中,D 是BC 的中点.(1)求证:平面ADC 1⊥平面BCC 1B 1; (2)求直线AC 1与面BCC 1B 1所成角的正弦值. 【答案】(1)证明见详解;(26【分析】(1)利用线面垂直的判定定理证出AD ⊥平面BCC 1B 1,再利用面面垂直的判定定理即可证明.(2)连接1C D ,可得1AC D ∠为直线AC 1与面BCC 1B 1所成的角,在1Rt AC D 中即可求解. 【详解】(1)直三棱柱ABC ﹣A 1B 1C 1中,1BB ⊥面ABC ,1BB AD ∴⊥,又AB AC =,D 是BC 的中点,AD BC ∴⊥,1BCBB B =,∴ AD ⊥平面BCC 1B 1,又AD ⊂面ADC 1,∴平面ADC 1⊥平面BCC 1B 1.(2)连接1C D ,由(1)AD ⊥平面BCC 1B 1,则1AC D ∠为直线AC 1与面BCC 1B 1所成的角, 在1Rt AC D 中,3AD =12AC = 116sin AD AC D AC ∠==, 所以直线AC 1与面BCC 1B 16【点睛】本题考查了面面垂直的判定定理、求线面角,考查了逻辑推理能力以及计算求解能力,属于基础题.。
线面夹角知识点及试题与答案(整理)
h t w : /p w .x jk t y g .c o m /w /x c h t w : /p w .x jk t y g .c o m /w /x c h t w : /p w .x jk t y g .c o m /w /x c w x @ c k t 1 2 .c o 6 m w x @ c k t 1 2 .c o 6 m w x @ c k t 1 2 .c o 6 m
∴ a ⊥平面 POA
(1)三垂线定理描述的是 PA(斜线),AO(射影), a (直线)之间的垂直关系. (2) a 与 PA 可以相交,也可以异面.
1
(3)三垂线定理的实质是空间内的一条斜线和平面内的一条直线垂直的判定定理. 关于三垂线定理的应用,关键是找出平面(基准面)的垂线. 至于射影则是由垂足,斜足来确定的,因 而是第二位的. 从三垂线定理的证明得到证明 a⊥b 的一个程序:一垂, 二射,三证.即 第一,找平面(基准面)及平面垂线,定理中四条线均针对同一平面而言 第二,找射影线,这时 a,b 便成平面上的一条直线与一条斜线. 第三,证明射影线与直线 a 垂直,从而得出 a 与 b 垂直. 总结:一面四线三垂直 (2)三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在 平面内的射影垂直. 【如图即:若 AB⊥BD,DC⊥BC,得 AB⊥BC(三垂线定理的逆定理) 】 6. 求线面夹角的步骤如下: ①找出或作出线面夹角; ②证明其确实是所求的线面夹角; ③计算角的值,一般均在三角形中进行。
例 4:已知棱长为 1 的正方体 ABCD-A1B1C1D1 中,E 是 A1B1 的中点, 求直线 AE 与平面 ABC1D1 所成的角的正弦值。 解:如图建立空间直角坐标系, A1
复习讲义—线面角与面面角(含答案)
诚西郊市崇武区沿街学校高二数学〔下〕复习讲义〔1〕线面角与面面角一、知识与方法要点:1.斜线与平面所成的角就是斜线与它在平面内的射影的夹角。
求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。
假设垂足的位置难以确定,可考虑用其它方法求出斜线上一点到平面的间隔。
2.二面角的大小用它的平面角来度量,求二面角大小的关键是找到或者者作出它的平面角(要证明)。
作二面角的平面角经常要用三垂线定理,关键是过二面角的一个面内的一点向另一个面作垂线,并确定垂足的位置。
假设二面角的平面角难以作出,可考虑用射影面积公式求二面角的大小。
3.断定两个平面垂直,关键是在一个平面内找到一条垂直于另一个平面的直线。
两个平面垂直的性质定理是:假设两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.二、例题例1.正方体ABCD-A1B1C1D1中,M为C1D1中点.(1)求证:AC1⊥平面A1BD.(2)求BM与平面A1BD成的角的正切值.解:(1)连AC,∵C1C⊥平面ABCD,∴C1C⊥BD.又AC⊥BD,∴AC1⊥BD.同理AC1⊥A1B∵A1B∩BD=B.∴AC1⊥平面A1BD .(2)设正方体的棱长为a ,连AD1,AD1交A1D 于E ,连结ME ,在△D1AC1中,ME∥AC1,∵AC1⊥平面A1BD .∴ME⊥平面A1BD .连结BE ,那么∠MBE 为BM 与平面A1BD 成的角.在Rt MEB ∆中,1322AC ME==, 22262BE a a ⎛⎫=+= ⎪ ⎪⎝⎭,∴2tan 2ME MBE BE ∠==.例2.如图,把等腰直角三角形ABC 以斜边AB 为轴旋转,使C 点挪动的间隔等于AC 时停顿,并记为点P . 〔1〕求证:面ABP⊥面ABC ;〔2〕求二面角C-BP-A 的余弦值. 证明〔1〕 由题设知AP =CP =BP .∴点P 在面ABC 的射影D 应是△ABC 的外心, 即D∈AB.∵PD⊥AB,PD ⊂面ABP , 由面面垂直的断定定理知,面ABP⊥面ABC . 〔2〕解法1 取PB 中点E ,连结CE 、DE 、CD . ∵△BCP 为正三角形,∴CE⊥BD.△BOD 为等腰直角三角形,∴DE⊥PB.∴∠CED 为二面角C-BP-A 的平面角. 又由〔1〕知,面ABP⊥面ABC ,DC⊥AB,AB =面ABP∩面ABC ,由面面垂直性质定理,得DC⊥面ABP .∴DC⊥DE.因此△CDE 为直角三角形.设1BC =,那么32CE =,12DE =,132cos 332DE CED CE ∠===. 例3.如下列图,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC .(1)求证:1BE EB =;(2)假设111AA A B =,求平面1A EC 与平面111A B C所成二面角(锐角)的度数.证明:在截面A1EC 内,过E 作EG⊥A 1C ,G 是垂足,如图,∵面A 1EC⊥面AC 1,∴EG⊥侧面AC 1.取AC 的中点F ,分别连结BF 和FC ,由AB =BC 得BF⊥AC. ∵面ABC⊥侧面AC 1,∴BF⊥侧面AC 1,得BF∥EG.BF 和EG 确定一个平面,交侧面AC 1于FG . ∵BE∥侧面AC 1,∴BE∥FG,四边形BEGF 是,BE =FG .∴BE∥AA 1,∴FG∥AA 1,△AA 1C∽△FGC. 解:(2)分别延长CE 和C1B1交于点D ,连结A 1D . ∵∠B 1A 1C 1=∠B 1C 1A 1=60°,∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即DA 1⊥A 1C 1. ∵CC 1⊥面A 1C 1B 1,由三垂线定理得DA 1⊥A 1C ,所以∠CA 1C 1是所求二面角的平面角.且∠A 1C 1C =90°. ∵CC 1=AA 1=A 1B 1=A 1C 1,∴∠CA 1C 1=45°,即所求二面角为45°. 说明:假设改用面积射影定理,那么还有另外的解法.三、作业: 1.平面的一条斜线a 与平面成角,直线b,且a,b 异面,那么a 与b 所成的角为〔A 〕A .有最小值,有最大值2π B .无最小值,有最大值2π。
线线角、线面角、二面角知识点及练习
线线角、线面角、面面角专题一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。
2.角的取值范围:090θ<≤︒;垂直时,异面直线当b a ,900=θ。
例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角2.角的取值范围:︒︒≤≤900θ。
例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。
(2)SC 与平面ABC 所成的角的正切值。
BMH S CA_1_A一、 二面角:1. 从一条直线出发的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
2. 二面角的取值范围:︒︒≤≤1800θ 两个平面垂直:直二面角。
3.作二面角的平面角的常用方法有六种:1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。
2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。
3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。
二面角就是该夹角或其补角。
二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。
例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值.A 1D 1B 1C 1 EDBCA巩固练习1.若直线a 不平行于平面α,则下列结论成立的是( )A.α内所有的直线都与a 异面;B.α内不存在与a 平行的直线;C.α内所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )A.030B.045C.060D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条A.3B.4C.6D.84.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为( )A.300B.450C.600D.9005.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD .(2)平面EFC ⊥平面BCD .6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.ABC D A 1B 1C 1D 17.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,求点A到平面SBD的距离;。
立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)
【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题21立体几何之夹角、距离问题目录一览一、典型例题讲解二、梳理必备知识三、基础知识过关四、解题技巧实战五、跟踪训练达标(1)面面夹角(2)线面夹角(3)点到线的距离(4)点到面的距离六、高考真题衔接1.空间中的角(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为二、梳理必备知识l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.2.空间中的距离求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为 n ,这时分别在,a b 上任取,A B 两点,则向量在 n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅= n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||n n ⋅⋅=⋅=⋅<>=⋅ AB AB AH AB AB AB n AB AB θ,||||⋅= AB n d n 三、解题技巧实战1.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.在△CDO 中,易得222OC CD DO =+-又23PC =,∴222OC PO PC +=,∴PO则D (0,0,0),()22,0,0A ,(0,22,0B ∴()22,2,2CP =- ,()22,0,0CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22220220x y z x ⎧-+=⎪⎨=⎪⎩,取∴1212cos ,212n n ==⨯ ,∴平面APD 和平面CEP 的夹角的余弦值为【点睛】方法点拨利用向量法求二面角的方法主要有两种:(平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的范围;两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.2.如图,已知多面体111ABC A B C -中,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠= ,14A A =,111,2C C AB BC B B ====.请用空间向量的方法解答下列问题:求直线1AC 与平面1ABB 所成的角的正弦值.由题意知()(0,3,0,1,0,0A B -设直线1AC 与平面1ABB 所成的角为可知()(10,23,1,1,AC AB == 设平面1ABB 的法向量(,n x = 则10,0,n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩ 即30,20,x y z ⎧+=⎪⎨=⎪⎩令1y =,则3,0x z =-=,可得平面111sin cos ,AC AC n AC θ⋅∴==⋅ ∴直线1AC 与平面1ABB 所成的角的正弦值是3.在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,M 为BB 1的中点,N 为BC 的中点.(1)求点M 到直线AC 1的距离;(2)求点N 到平面MA 1C 1的距离.则A(0,0,0),A1(0,0,(1)直线AC1的一个单位方向向量为故点M 到直线AC1的距离(2)设平面MA1C1的法向量为则1111·0·0n A C n A M ⎧=⎪⎨=⎪⎩ ,即202y x z =⎧⎨-=⎩不妨取x =1,得z =2,故因为N(1,1,0),所以MN 故N 到平面MA1C1的距离222102102MN n d n -+-==++ 四、跟踪训练达标面面夹角1.(2023·全国·浮梁县第一中学校联考模拟预测)如图,在四棱锥P ABCD -中,E 为棱AD 上一点,,PE AD PA PC ⊥⊥,四边形BCDE 为矩形,且13,,//4BC PE BE PF PC PA ==== 平面BEF .(1)求证:PA ⊥平面PCD ;(2)求二面角F AB D --的大小.因为//PA 平面BEF ,平面PAC 又//BE CD ,所以AF AF DE BC GC ==则(1,0,0),(0,3,0),(3,0,0),A B D F -设平面ABF 的一个法向量为(m = 则7330444030AF m x y AB m x y ⎧⎧⋅=-++⎪⎪⇒⎨⎨⋅=⎪⎪⎩-+=⎩又平面ABD 的一个法向量为(0,0,1)n = 故二面角F AB D --的大小为π4.2.(2023·辽宁大连·校联考模拟预测)已知多面体ABCDEF 中,AD BC EF ∥∥,且4AD CD DE ===,2BC EF ==,π3BCD FED ∠∠==(1)证明:AD BF ⊥;(2)若BF =C AF B --的余弦值.在BCD △中,4DC =,2BC =2222cos BD BC DC BC DC =+-⋅⋅同时AD ∥BC ,可得DB AD ⊥因为BD AD ⊥,DF AD ⊥,且所以AD ⊥平面BDF ;又因为BF ⊂平面BDF ,所以AD (2)在BDF V 中,2BD FD ==即222BD FD BF +=,所以BD ⊥以D 为原点,,,DA DB DF 的方向分别为建立空间直角坐标系如图.其中(4,0,0),(0,23,0),(0,0,23),(2,23,0)A B F C -,所以()()()4,23,0,4,0,23,6,23,0AB AF AC =-=-=- 设向量(,,)n x y z = 为平面ABF 的法向量,满足0423004230n AB x y n AF x z ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ ,不妨令3x =,则2y z ==,故(3,2,2)n = ,设向量(,,)m p q r =为平面ACF 的法向量,满足0423006230m AF p r m AC p q ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ 不妨令3p =,则2,3r q ==,故(3,3,2)m = 131311cos ,||||44114m n m n m n ⋅〈〉===⨯ 由图可知二面角为锐角,所以二面角C AF B --的余弦值为131144.3.(2023·云南昆明·统考一模)如图,直四棱柱1111ABCD A B C D -中,ABC 是等边三角形,AB AD ⊥(1)从三个条件:①AC BD ⊥;②120ADC ∠=︒;③2BD AD =中任选一个作为已知条件,证明:1BC DC ⊥;(2)在(1)的前提下,若13AB AA =,P 是棱1BB 的中点,求平面1PDC 与平面1PDD 所成角的余弦值.【答案】(1)证明见详解(2)710对②:∵180ADC ABC ∠+∠=又∵AB AD ⊥,即90BAD ∠=可得90BCD ∠=︒,即BC CD ⊥又∵1CC ⊥平面ABCD ,BC ∴1BC CC ⊥,且1CD CC =I 故BC ⊥平面11CDD C ,注意到1DC ⊂平面11CDD C ,故对③:∵AB AD ⊥,即BAD ∠在Rt BAD 中,则sin ABD ∠故30,ABD CBD AB ∠=∠=︒=故90BCD BAD ∠=∠=︒,即BC 又∵1CC ⊥平面ABCD ,BC4.(2023·辽宁·鞍山一中校联考模拟预测)刍甍(chúméng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”,如图,在刍甍ABCDEF中,四边形ABCD是正方形,平面BAE和平面CDE交于EF.(1)求证://AB EF ;(2)若平面CDE ⊥平面ABCD ,4AB =,2EF =,ED FC =,AF =,求平面ADE 和平面BAE 所成角余弦值的绝对值.5.(2023·山西·校联考模拟预测)如图,直三棱柱111ABC A B C -的所有棱长均相等,D 为1AA 的中点.(1)证明:11B D BC ⊥;(2)设,M N 分别是棱,AC BC 上的点,若点1,,,B D M N 在同一平面上,且ABC 的面积是CMN 的面积的3倍,求二面角1A B M N --的正弦值.【答案】(1)证明见解析(2)217【分析】(1)方法一:延长B 11B C BC ⊥可证得1BC ⊥平面方法二:结合垂直关系可以C 得结论;AB 设2AB = ,则()3,1,1D ,(0,2,0B ()13,1,1DB ∴=- ,(10,2,2BC =- 方法三:1AA ⊥ 平面ABC ,AB 10AA AB ∴⋅= ,10AA AC ⋅= ;则()3,1,0A ,232,,033M ⎛⎫ ⎪ ⎪⎝⎭,31,,033MA ⎛⎫∴= ⎪ ⎪⎝⎭ ,12MB ⎛=- ⎝ 设平面1AMB 的法向量(1,m x y = 则11111131033234233MA m x y MB m x y z ⎧⋅=+=⎪⎪⎨⎪⋅=-++⎪⎩设平面1B MN 的法向量(2,x n y =,线面夹角6.(2023·北京·校考模拟预测)如图,在三棱柱111ABC A B C-中,D,E,G分别为11,,AA AC BB的中点,11A C 与平面1EBB交于点F,AB BC==,12AC AA==,1C C BE⊥.(1)求证:F为11A C的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线FG与平面BCD所成角的正弦值.条件①:平面ABC⊥平面1EBB;条件②:13BC=.注:如果选择条件①和条件②分别解答,按第一个解答计分.由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩ ,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为选条件②,因为5AB BC ==,AC由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为7.(2023·全国·模拟预测)如图,在几何体ABCDEF 中,四边形CDEF 是边长为2的正方形,AD DE ⊥,AB CD ∥,6AE =,1AB BD ==.(2)求直线BC与平面BEF所成角的正弦值.则()0,0,0D ,()1,0,0B ,E所以()0,2,0= EF ,(1,0,BE =- 设平面BEF 的法向量为n = 取1z =,得2x =,所以可取设直线BC 与平面BEF 所成的角为则sin cos ,BC BC n BC θ⋅== 所以直线BC 与平面BEF 所成角的正弦值为8.(2023春·甘肃张掖·高三高台县第一中学校考阶段练习)如图,在四棱锥P ABCD -中,PAD 为等边三角形,四边形ABCD 为平行四边形,PAB PDC ∠=∠.(1)证明:四边形ABCD 为矩形;(2)若2PA AB ==,当四棱锥P ABCD -的体积最大时,求直线PB 与平面PDC 所成角的正弦值.【答案】(1)证明见解析(2)64【分析】(1)取AD 的中点线面垂直,再证得线线垂直即可建立空间直角坐标系,利用空间向量法求(2)由题意知,当平面PAD ⊥平面(1)知AB AD ⊥,所以以O 为原点,空间直角坐标系,因为2PA AB ==,则()0,0,0O ,B 设平面PDC 的法向量为(,,n x y z = 令3x =,则()3,0,1n =- .又()1,2,3PB =- ,设直线PB 与平面则sin cos ,23n PB n PB n PBθ⋅=== 所以直线PB 与平面PDC 所成角的正弦值为9.(2023·四川凉山·二模)如图,在直三棱柱111ABC A B C -中,点E ,F 分别是BC ,11A C 中点,平面11ABB A平面AEF l =.(1)证明:l EF ∥;(2)若AB AC ==,平面11ACC A ⊥平面11ABB A ,且1AB EF ⊥,求直线l 与平面11A B E 所成角的余弦值.∵E ,G 分别是BC ,AB 又∵1A F AC ∥且112A F AC =∴四边形1EGA F 为平行四边形,∴又EF ⊄平面11ABB A ,1AG ∵EF ⊂平面AEF ,平面(2)由三棱柱为直棱柱,∴平面设1AA a =,则1(0,22,0)B ,F 所以1(0,22,)AB a =- ,(0,EF = 又1AB EF ⊥,则10AB EF ⋅= ,解得所以(2,2,2)E ,(0,0,2)A ,则设平面11A B E 法向量为(,,n x y = 所以11100n A B n A F ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222x ⎧⎪⎨+⎪⎩由(1)知直线EF l ∥,则l 方向向量为设直线l 与平面11BCC B 所成角为则sin cos ,n EF n EF n EF α⋅===⋅ 所以直线l 与平面11BCC B 所成角的余弦值为10.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B⊥平面1AB C;(2)点P在线段1A E上(异于点1A,E),AP与平面1A BE所成角为π4,求1EPEA的值.点到线的距离11.(2022·全国·高三专题练习)如图,在四棱锥P −ABCD 中,AD BC ,190 1.2ADC PAB BC CD AD ∠=∠==== ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90︒.(1)在平面PAB 内是否存在一点M ,使得直线CM 平面PBE ,如果存在,请确定点M 的位置,如果不存在,请说明理由;(2)若二面角P −CD −A 的大小为45︒,求P 到直线CE 的距离.点E 为AD 的中点,AE ED ∴=1,2BC CD AD ED BC ==∴= ,AD BC ∥ ,即ED BC ∥,∴四边形BCDE 为平行四边形,即,,AB CD M M CD CM ⋂=∴∈∴ BE ⊂ 平面,PBE CM ⊂平面PBE CM ∴ 平面PBE ,,M AB AB ∈⊂ 平面PAB ,M ∴∈平面PAB ,故在平面PAB 内可以找到一点M (2)如图所示,ADC PAB ∠∠= 且异面直线PA 与CD 所成的角为又,,AB CD M AB CD ⋂=⊂平面AD ⊂ 平面,ABCD PA AD ∴⊥,又,,AD CD PA CD AD PA ⊥⊥⋂=CD \^平面PAD ,PD ⊂ 平面,PAD CD PD ∴⊥.因此PDA ∠是二面角P CD A --PA AD ∴=.因为112BC CD AD ===.以A 为坐标原点,平行于CD 的直线为⎫⎪⎭12.(2023·全国·高三专题练习)如图,已知三棱柱111ABC A B C -的棱长均为2,160A AC ∠=︒,1A B =(1)证明:平面11A ACC ⊥平面ABC ;(2)设M 为侧棱1CC 上的点,若平面1A BM 与平面ABCM 到直线11A B 距离.轴,建立空间直角坐标系,-中,底面四边形ABCD 13.(2022秋·天津河东·高三天津市第七中学校考阶段练习)如图,在四棱锥P ABCD为菱形,E为棱PD的中点,O为边AB的中点.(1)求证:AE //平面POC ;(2)若侧面PAB ⊥底面ABCD ,且3ABC PAB π∠∠==,24AB PA ==;①求PD 与平面POC 所成的角;②在棱PD 上是否存在点F ,使点F 到直线OD 的距离为21,若存在,求DF DP 的值;若不存在,说明理由.(2)①在平面PAB 内过点O 作Oz 菱形ABCD 中3ABC π∠=,则OC ⊥以O 为原点,分别以,,OB OC Oz 所在直线为()()(1,0,3,0,23,0,4,23,0P C D --(1,0,3)OP =- ,(0,23,0)OC = ,设平面POC 的一个法向量为(,n x y = 则30230n OP x z n OC y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取=3x ,得设直线PD 与平面POC 所成的平面角为n PD ⋅ 4②设[],0,1DF DP λλ=∈14.(2022秋·山东青岛·高三统考期中)如图,已知长方体1111ABCD A B C D -的体积为4,点A 到平面1BC D 的.(1)求1BC D 的面积;(2)若2AB BC ==,动点E 在线段1DD 上移动,求1AEC 面积的取值范围.则(2,0,0)A ,1(0,2,1)C 设(0,0,)(01)E t t ≤≤,则(2,0,EA = 则直线1AC 的单位方向向量为u =r 则点E 到直线1AC 的距离为d EA = 所以1AEC 的面积1112AEC S AC =⋅△所以1AEC 面积的取值范围为32⎡⎢⎣15.(2022·全国·高三专题练习)在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1AC 与平面1A ED 所成角的正弦值;(2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.则1(2A ,0,2),(0C ,4,0),(2E ,1,所以11(2,4,2),(2,0,2),(2,1,0)A C DA DE =--==设平面1A ED 的法向量为(,,)n x y z = ,则有100n DA n DE ⎧⋅=⎨⋅=⎩,即22020x z x y +=⎧⎨+=⎩,令1x =,则=2y -,1z =-,故(1,n =- 所以111||2|cos ,|3||||A C n A C n A C n ⋅<>== ,故1AC 与平面1A ED 所成角的正弦值为23点到面的距离16.(2022秋·四川·高三四川省岳池中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥平面,120,3,ABC AB BC ABC PA D ∠==== 为线段PC 上一点,且BC BD ⊥.(1)在线段AC 上求一点M ,使得平面BPC ⊥平面BDM ,并证明;(2)求点C 到平面ABD 的距离.则33(0,,0),(,0,0),(0,22A B C -设PD PC λ= ,其中01λ≤≤,则BD BP PD BP PC λ=+=+ 因为BC BD ⊥,所以BC BD ⋅ 设平面BPC 的法向量为m = 则33022330m BC x y m PC y z ⎧⋅=-+=⎪⎨⎪⋅=-=⎩ 设33(0,,0),22M b b -≤≤,MB17.(2023春·广东揭阳·高三校联考阶段练习)如图所示的四棱锥P ABCD -中,底面ABCD 为直角梯形,AB CD ,AD AB ⊥,22DC AD a ===,PA PD =,二面角P AD B --的大小为135︒,点P 到底面ABCD 的距离为2a .(1)过点P 是否存在直线l ,使直线l ∥平面ABCD ,若存在,作出该直线,并写出作法与理由;若不存在,请说明理由;(2)若2PM MC = ,求点M 到平面PAD 的距离.平面,建立空间直角坐标系,由条件(2)取线段AD 的中点为O ,线段连接,OE OP ,因为ABCD 为直角梯形,AB CD 所以//OE AB ,又AD AB ⊥,所以AD OE ⊥,因为PA PD =,所以PO AD ⊥,又PO OE O = ,,PO OE ⊂平面POE 所以AD ⊥平面POE ,过点O 在平面POE 内作直线ON ⊥则直线,,OA OE ON 两两垂直,以O 为原点,,,OA OE ON 为,,x y z 过点P 作//PF NO ,交直线OE 于点因为,ON OA ON OE ⊥⊥,,OA OE 所以ON ⊥平面ABCD ,故PF ⊥平面又点P 到底面ABCD 的距离为2a ,所以因为OE AD ⊥,OP AD ⊥,18.(2023·云南红河·统考二模)如图,在几何体ABCDEF中,菱形ABCD所在的平面与矩形BDEF所在的平面互相垂直.(1)若M 为线段BF 上的一个动点,证明:CM ∥平面ADE(2)若60BAD ∠=︒,2AB =,直线CF 与平面BCE F 到平面BCE 的距离.()3,1,0B ,()0,2,0C ,(0,0,E a19.(2023·北京·北京市八一中学校考模拟预测)如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A CD E --为60°,DE CF ∥,CD DE ⊥,2AD =,3DE DC ==,6CF =.(1)求证:CD AE ⊥;(2)求直线DE 与平面AEF 所成角的正弦值.(3)直接写出λ的值,使得CG CF λ=,且三棱锥B ACG -【答案】(1)证明见解析CD AD ⊥ ,CD DE ⊥,ADE ∴∠即为二面角A CD F --的平面角,即∴(0,1,3)A ,(0,0,0),(0,3,0),(3,6,0)D E F ∴(0,2,3),(3,5,3),AE AF DE =-=-设平面AEF 的法向量为(,,)n x y z =,230,3530.n AE y z n AF x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ 令2z =,则所以(3,3,2)n =-,∴3330cos ,10310DE n DE n DE n ⋅===20.(2023·江西九江·统考二模)如图,在三棱柱111ABC A B C -中,AC ⊥平面11AA B B ,13ABB ∠=,1AB =,12AC AA ==,D 为棱1BB 的中点.(1)求证:AD ⊥平面11AC D ;(2)若E 为棱BC 的中点,求三棱锥1E AC D -的体积.则()0,0,0A ,1,1,02E ⎛⎫⎪⎝⎭,1,0,2D ⎛ ⎝所以1,1,02AE ⎛⎫= ⎪⎝⎭ ,1,0,2AD ⎛= ⎝ 设(),,n x y z =r为平面1AC D 的一个法向量,则10n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即1302223x z x y ⎧+=⎪⎨⎪-++⎩所以点E 到平面1AC D 的距离d =则三棱锥1E AC D -的体积13S V =1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 五、高考真题衔接的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.则()2,0,0A 、()2,2,0B 、(2,0,2C 则10,,12EF ⎛⎫= ⎪⎝⎭,易知平面ABC 的一个法向量为EF ⊄ 平面ABC ,故//EF 平面2.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩ 可取()1,0,1m =-,3.(2021·天津·统考高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值.(III )求二面角11A A C E --的正弦值.4.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.。
点线面关系知识总结和练习题(有答案)
最新整理//a α//a b点线面位置关系总复习知识梳理一、直线与平面平行 1.判定方法(1)定义法:直线与平面无公共点。
(2)判定定理:(3)其他方法://a αββ⊂2.性质定理://a a bαβαβ⊂⋂=二、平面与平面平行 1.判定方法(1)定义法:两平面无公共点。
(2)判定定理:////a b a b a b Pββαα⊂⊂⋂=//αβ(3)其他方法:a a αβ⊥⊥ //αβ; ////a γβγ//αβ 2.性质定理://a bαβγαγβ⋂=⋂=三、直线与平面垂直(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。
(2)判定方法 ① 用定义.//a b a b αα⊄⊂//a α//a b最新整理//a b ② 判定定理:a b a cb c A b c αα⊥⊥⋂=⊂⊂ a α⊥③ 推论://a a bα⊥ b α⊥ (3)性质 ①a b αα⊥⊂ a b ⊥ ②a b αα⊥⊥四、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。
(2)判定定理a a αβ⊂⊥ αβ⊥ (3)性质①性质定理la a lαβαβα⊥⋂=⊂⊥ αβ⊥② l P PA A αβαβαβ⊥⋂=∈⊥垂足为 A l ∈④ l P PA αβαβαβ⊥⋂=∈⊥ PA α⊂“转化思想”面面平行 线面平行 线线平行 面面垂直 线面垂直 线线垂直●求二面角1.找出垂直于棱的平面与二面角的两个面相交的两条交线,它们所成的角就是二面角的平面角.2.在二面角的棱上任取一点O,在两半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角的平面角例1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC于D,交SC于E,又SA=AB,SB=BC,求以BD为棱,以BDE和BDC为面的二面角的度数。
●求线面夹角定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角)方法:作直线上任意一点到面的垂线,与线面交点相连,利用直角三角形有关知识求得三角形其中一角就是该线与平面的夹角。
线面夹角练习题
线面夹角练习题一、选择题1. 线面夹角是指:A. 直线与平面的交角B. 直线与平面的夹角C. 平面与平面的夹角D. 直线与直线的夹角2. 在空间几何中,线面夹角的取值范围是:A. [0°, 90°]B. [0°, 180°]C. [90°, 180°]D. [0°, 360°]3. 如果直线l与平面α的夹角为θ,那么直线l在平面α上的投影与平面α的夹角是:A. θB. 90° - θC. 180° - θD. 无法确定4. 直线l与平面α垂直,则线面夹角为:A. 0°B. 90°C. 180°D. 无法确定5. 直线l与平面α平行,则线面夹角为:A. 0°B. 90°C. 180°D. 无法确定二、填空题6. 若直线l与平面α的夹角为45°,则直线l在平面α上的投影与平面α的夹角为________。
7. 若直线l与平面α的夹角为30°,则直线l在平面α上的投影与平面α的夹角为________。
8. 当直线l与平面α相交时,线面夹角的计算公式为________。
9. 当直线l与平面α垂直时,直线l在平面α上的投影长度为________。
10. 当直线l与平面α平行时,直线l在平面α上的投影长度为________。
三、判断题11. 线面夹角总是小于90°。
()12. 线面夹角的计算可以通过直线上的一点到平面的距离来确定。
()13. 当直线l与平面α的夹角为锐角时,直线l在平面α上的投影长度小于直线l的实际长度。
()14. 直线l与平面α平行时,线面夹角为0°。
()15. 直线l与平面α垂直时,线面夹角为90°。
()四、简答题16. 简述如何确定直线与平面的夹角。
17. 描述直线l在平面α上的投影长度与线面夹角之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
O
的斜线 斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段 ⑶射影 BO 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影,垂
王新敞
奎屯 新疆
足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影
王新敞
奎屯 新疆
直线与平面平行,直线在平面由射影是一条直线 直线与平面垂直射影是点 斜线任一点在平面内的射影一定
空间角-求线面夹角
一、线面夹角的定义: 1、定义:平面的斜线和它在这平面内的射影所夹的锐交叫做这条斜线和这个平面所成的角。 【斜线和它在平面内 的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角) 】 2、直线与平面所成的角的范围是 [0,
] 。平面的垂线和这平面所成的角规定为直角。在平面内的直线或与平面 2
C
∠SBA=45°,∠SBC=60°, M 为 AB 的中点, 求(1)BC 与平面 SAB 所成的角。 (2)SC 与平面 ABC 所成的角。 解: (1) ∵SC⊥SB,SC⊥SA, ∴SC⊥平面 SAB; 故 SB 是斜线 BC 在平面 SAB 上的射影, ∴∠SBC 是直线 BC 与平面 SAB 所成的角为 60°。 (2) 连结 SM,CM,则 SM⊥AB,又∵SC⊥AB,∴AB⊥平面 SCM, ∴面 ABC⊥面 SCM;过 S 作 SH⊥CM 于 H, ∴CH 即为 SC 在面 ABC 内的射影。 sin∠SCH= 则 SH⊥平面 ABC
∴ a ⊥平面 POA
(1)三垂线定理描述的是 PA(斜线),AO(射影), a (直线)之间的垂直关系. (2) a 与 PA 可以相交,也可以异面.
1
(3)三垂线定理的实质是空间内的一条斜线和平面内的一条直线垂直的判定定理. 关于三垂线定理的应用,关键是找出平面(基准面)的垂线. 至于射影则是由垂足,斜足来确定的,因 而是第二位的. 从三垂线定理的证明得到证明 a⊥b 的一个程序:一垂, 二射,三证.即 第一,找平面(基准面)及平面垂线,定理中四条线均针对同一平面而言 第二,找射影线,这时 a,b 便成平面上的一条直线与一条斜线. 第三,证明射影线与直线 a 垂直,从而得出 a 与 b 垂直. 总结:一面四线三垂直 (2)三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在 平面内的射影垂直. 【如图即:若 AB⊥BD,DC⊥BC,得 AB⊥BC(三垂线定理的逆定理) 】 6. 求线面夹角的步骤如下: ①找出或作出线面夹角; ②证明其确实是所求的线面夹角; ③计算角的值,一般均在三角形中进行。
②过 ABC 的顶点 B 引射线 BH 和 BA 、 BC 成相等的锐角时,则 BH 在平面 ABC 内的射影 BK 是 ABC 的平分线(或平分线的反向延长线) 。
2
线面角的三种常用求法
1、直接法 : 平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段, 斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例 1: 如图所示,四面体 ABCS 中,SA,SB,SC 两两垂直,
平行的直线和这平面所成的角规定为 0。 【直线垂直于平面,所成的角是直角;直线平行于平面或在平面内,所成角为 0角】 3、斜线,垂线,射影 ⑴垂线 AO 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂
A
足间的线段叫做这点到这个平面的垂线段. ⑵斜线 AB
王新敞
奎屯 新疆
一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面
王新敞
奎屯 新疆
在斜线的射影上
王新敞
奎屯
新疆
4.射影长相等定理: 从平面外一点向这个平面所引的垂线段和斜线中: ⑴射影相交两条斜线相交;射影较长的斜线段也较长 ⑵相等的斜线段射影相等,较长的斜线段射影较长 ⑶ 垂线段比任何一条斜线段都短 OB=OCAB=AC AB=ACOB=OC OAAB, 5.三垂线定理: OBOCABAC ABACOBOC OAAC
王新敞
奎屯 新疆
A
王新敞
奎屯
新疆
B O
C
(1)三垂线定理定义:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜 线垂直. 【即:若 PO ⊥ , a ⊥ AO ,得 a ⊥ PA (三垂线定理) 】 已知:如图,PA 在 上的投影 OA 垂直于直线 a 求证:AP⊥ a 证明:过 P 做 P0 垂直于平面 ∵PO⊥ 又 a ⊥OA ∴PO⊥ a OA∩PA=A ∴ a ⊥OP O a A P
注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若 为线面角, 为斜 线与平面内任何一条直线所成的角,则有 ; 确定点的射影位置有以下几种方法: ①斜线上任意一点在平面上的射影必在斜线在平面的射影上; ②如果一个角所在的平面外一点到角的两边距离相等, 那么这一点在平面上的射影在这个角的平分线上;如 果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上; ③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上; ④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置: a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心; b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的 内心(或旁心); c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心; 求线面夹角常用的方法如下: ①作出线在面内的射影,根据线面夹角定义来求。 ②有时可以转化为面面夹角来求。 (如果线所在的面与待求夹角的那个面相 交,且交线正好垂直于待求夹角的那条线,就可以使用此法。 ) 关于线线夹角和线面夹角,下面两个结论经常用到: ①如图, PA 平面 , PB = B , BC , 则 cos ABC cos ABP cos PBC 。 A C B P