PLC水箱液位控制设计

合集下载

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。

该系统常用于水处理、供水系统、工业生产等领域。

本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。

PLC作为控制器,能够实现对水位的监测、控制和保护。

首先,本设计将使用传感器来监测水箱的液位。

液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。

传感器将通过模拟信号将液位信息传输给PLC。

PLC将读取并处理传感器的信号,得到水箱的液位信息。

其次,PLC将根据液位信息来控制水泵的运行。

当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。

当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。

通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。

此外,本系统还将具备一定的保护功能。

当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。

同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。

为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。

程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。

同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。

最后,本设计将进行系统的仿真和调试。

通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。

在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。

通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。

同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。

PLC的液位控制设计

PLC的液位控制设计

南山学院毕业论文题目 PLC的液位控制设计姓名: ___ 解健 _______所在学院: ____ 自动化工程学院所学专业:电气工程及其自动化班级 ___ 电气工程2+2 学号 ___ 2指导教师: _____ 王选成 ____完成时间: ____2012年4月毕业论文(设计)任务书摘要自从三十多年前将PLC引进以来,PLC已经在广泛的工业领域中成为几十万控制系统的基础。

在众多生产领域中,经常需要对贮槽,贮罐,水池等容器中的液位进行监控,以往采用传统的继电器接触器控制,使用的硬件连接多,可靠性差,自动化程度不高,目前已有许多企业采用先进控制器对传统控制器进行改造,大大提高了控制系统的可靠性和自动化程度,为企业提供了更可靠的生产保障.本文介绍了基于信捷XC3型可编程控制器(PLC),组态软件的液位控制系统的设计方案.系统采用PID算法,实现液位的自动控制.利用组态软件设计人机界面,通过串行口和可编程控制器通信,实现控制系统的实时监控,现场数据的采集及处理,其结构简单,监控系统不仅自动化程度高,还具有在线修改功能,灵活性强.关键词: PLC 液位控制触摸屏变频器AbstractSince thirty years ago to the introduction of PLC, the PLC has become the basis of hundreds of thousands of control systems in a wide variety of industries. In many areas of production, often need to monitor the liquid level in the tank, tanks, pools and other containers, in the past using the traditional relay contactor control hardware used to connect multiple, poor reliability, and high degree of automation, the current many enterprises have advanced controller to transform the traditional controller, greatly improving the reliability and degree of automation of the control system to provide enterprises with a more reliable production.This article describes Nobukatsu XC3 programmable logic controller (PLC), the configuration software level control system design. System uses a PID algorithm to achieve automatic control of the level using the configuration software design man-machine interface, through the serial port and the programmable controller communication, real-time monitoring of the control system, field data acquisition and processing, its simple structure, the monitoring system is not only the degree of automation, but also has the online editing features and flexibility.Keywords: PLC level Control Touch Screen Inverter目录1 绪论 (1)1.1PLC的液位控制设计的背景 (1)1.2PLC的液位控制设计的内容 (1)1.3本课题设计的目的和意义 (1)2 系统控制方案的确定 (3)2.1采用PLC控制液位的优点 (3)2.1.1从控制速度上比较 (3)2.1.2从工作方式上比较 (3)2.1.3从可靠性,可维护性上比较 (3)2.2系统设计的基本步骤 (3)2.3系统控制方案 (4)3 系统硬件设计 (6)3.1可编程控制器(PLC)的选型 (6)3.1.1如何选购PLC产品 (6)3.1.2PLC的选型标准 (6)3.1.3 PLC机型的选择及特点 (7)3.2水泵选型 (9)3.3变频器选型 (9)3.4触摸屏选型 (10)3.4.1触摸屏的工作原理 (11)3.4.2触摸屏的主要类型 (11)3.4.3触摸屏的选择 (11)3.5硬件接线图 (12)4 系统软件设计 (13)4.1程序设计编程基本原则及注意问题 (13)4.1.1程序设计(梯形图)编程基本原则 (13)4.1.2程序设计注意问题 (13)4.2所用编程软件特点及界面操作 (13)4.2.1编程软件特点 (13)4.2.2信捷XCPPro编程软件操作 (14)4.3变频器参数定 (14)4.4触摸屏程序 (14)4.4.1屏幕保护画面 (14)4.4.2操作画面 (14)4.4.3参数设置画面 (15)结论 (16)致谢 (17)参考文献 (18)附录一系统硬件电路图 (19)1 绪论1.1 PLC的液位控制设计的背景20世纪20年代起,人们把各种继电器、定时器、接触器及其触点按一定的逻辑关系连接起来组成控制系统,控制各种生产机械,这就是大家所熟悉的传统继电接触器控制系统。由于它结构简单,容易掌握,价格便宜,在一定范围内能满足控制要求,因而使用面甚广,在工业控制领域中一直占主导地位。但是继电接触器控制系统有明显的缺点:设备体积大,可靠性差,动作速度慢,功能少,难及实现较复杂的控制,特别是由于它是靠硬连线逻辑构成的系统,接线复杂,当生产工艺或对象改变时,原有的接线和控制盘就要更换,所以通用性和灵活性较差。20世纪60年代末期,美国的汽车制造业竞争激烈,各生产厂家的汽车型号不断更新,它必然要求生产线的控制系统亦随之改变,以及对整个开展系统重新配置。为抛弃传统的继电接触器控制系统的束缚,适应白热化的市场竞争要求,1968年美国通用汽车公司公开向社会招标,对汽车流水线控制系统提出具体要求,归纳起来是:编程方便,可现场修改程序;维修方便,采用插件式结构;可靠性高于继电器控制装置;体积小于继电器控制盘;数据可直接送入管理计算机;成本可及继电器控制盘竞争;输入可以是交流150V以上;输出为交流115V,容量要求在2A以上,可直接驱动接触器,电磁阀等;扩展时原系统改变最小;用户存储器至少能扩张到4KB(适应当时汽车装配过程的需要)。十项指标的核心要求是采用软布线(编程)方式代替继电控制的硬接线方式,实现大规模生产线的流程控制。美国国际电工委员会(IEC)在1987年对可编程序控制器做出如下定义:可编程序控制器是一类专门为在工业环境下应用而设计的数字式电子系统,它采用了可编程序的存储器,用来在其内部进行存储执行逻辑运算、顺序运算、定时、记数和算术运算等功能的面向用户的指令,并通过数字式或模拟式的输入或输出,控制各种类型的机械或生产过程。可遍程序控制器及其相关外部设备,都应按照易于及工业控制系统联成一个整体,易于扩展其功能的原则而设计。1.2PLC的液位控制设计设计的内容本课题将在以下几方面对液位系统进行研究和论证:控制系统可以根据生产的需要对液位进行来设定,当液位低于设定限位时自动启动水泵进行加液,当液位到达设定值时停泵,操作人员可以通过触摸屏进行液位设定,控制监控等操作。1.3 PLC的液位控制设计的目的和意义可编程控制器(PLC)因为抗干扰能力强,可靠性好,控制系统结构简单,通用性强,编程方便,易于使用,设计、施工、调试、的周期短,体积小,维护操作方便,易于实现网络化,可实现三电一体化等优势已经成为应用面最广,最广泛的通用工业控制装置,成为当代工业自动化的主要支柱之一。通过PLC对程序设计,提高液位系统的控制水平。因此PLC在液位控制系统中应用非常广泛,具有很高的应用价值。2 系统控制方案的确定2.1 采用PLC控制液位的优点2.1.1从控制方式上比较用继电接触器控制完成一项控制工程,必须首先按工艺要求画出电气原理图,然后画出继电器屏的布置和接线图等,进行安装调试,以后修改起来十分不便。而采用PLC控制,由于其硬软件齐全,为模块化积木式结构,且已商品化,故仅需按性能、控制要求设计控制程序,而且在以后的修改中只需改变控制程序就可轻易改变逻辑或增加功能。2.1.2从工作方式上比较电器控制并行工作,而PLC串行工作,不受制约,I/O系统设计有完善的通道保护及信号调理电路;在结构上对耐热、防潮、防尘、抗震等都有周到的考虑。2.1.3从可靠性,可维护性上比较电器控制接触点多,会产生机械磨损和电弧烧伤,接线较多,可靠性,维护性差;而PLC无触点,采用密封、防尘、抗震的外壳封装结构,能适应工作现场的恶劣环境,使用寿命长,且有自我诊断功能,对程序执行的监控功能,现场调试和维护方便。2.2系统设计的基本步骤在液位控制系统的设计过程中主要考虑以下几点:深入了解和分析液位控制系统的工艺条件和控制要求;确定I/O设备;根据液位控制系统的功能要求,确定系统所需的输入,输出设备;根据I/O点数选择合适的PLC类型;分配I/O点,分配PLC的输入输出点,编制出输入输出分配表或者输入输出端子的接线图;设计液位控制系统的梯形图,根据控制要求设计出周密完整的梯形图程序,这是整个液位控制系统设计的核心工作;将程序输入PLC进行软件测试,查找错误,使系统程序更加完善;进行液位控制系统的整体联机调试,调试中发现的问题逐一排除,直至调试成功。具体系统设计步骤如图2-1所示。图2-1 系统设计步骤图2.3系统控制方案系统控制原理如图2-2所示,系统主要是由触摸屏、可变程序控制器变频器(PLC)、液位计、配电装置以及水泵等组成。触摸屏 PLC AD/DA变频器液位计水泵图2-2 系统控制图系统带有触摸屏显示装置,可以显示系统的工作状态、当前压力、贮水池水位、设定压力、压力曲线、变频器频率、等各种控制参数等。系统工作压力可以由触摸屏设置。变频器的作用是为三相水泵的电机提供可变频率的电源,实现电机的无级调速,从而使水管的水压连续变化。液位计的作用是检测当前液位压力。在PLC内部设定液压期望值,压力设定信号和压力反馈信号在输入可编程控制器后,经可编程控制器内部PID控制运算输出给变频器一个控制信号。图2-3系统原理图3 系统硬件设计3.1可编程控制器(PLC)的选型3.1.1如何选购PLC产品在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定及控制等,工业现场中的这些自动控制问题,若采用可编程序控制器(PLC)来解决自动控制问题已成为最有效的工具之一。硬件选购目前市场上的PLC产品众多,除国产品牌外,国外有:日本的OMRON、MITSUBISHI、FUJJ,德国的SIEMENS,韩国的LG等。近几年,PLC产品的价格有较大的下降,其性价比越来越高,这是众多技术人员选用PLC的重要原因。那么,如何选购PLC产品呢?首先,系统规模首先应确定系统用PLC单机控制,还是用PLC形成网络,由此计算PLC输入、输出点数,并且在选购PLC时要在实际需要点数的基础上留有一定余量(10%)。第二,确定负载类型根据PLC输出端所带的负载是直流型还是交流型,是大电流还是小电流,以及PLC输出点动作的频率等,从而确定输出端采用继电器输出,还是晶体管输出,或品闸管输出。不同的负载选用不同的输出方式,对系统的稳定运行是很重要的。第三,存储容量及速度,尽管国外各厂家的PLC产品大体相同,但也有一定的区别。目前还未发现各公司之间完全兼容的产品。各个公司的开发软件都不相同,而用户程序的存储容量和指令的执行速度是两个重要指标。一般存储容量越大、速度越快的PLC价格就越高,但应该根据系统的大小合理选用PLC产品。第四,编程器的选购PLC编程可采用三种方式:一种是用一般的手持编程器编程,它只能用商家规定语句表中的语句编程。这种方式效率低,但对于系统容量小,用量小的产品比较适宜,并且体积小,易于现场调试,造价也较低。还有一种是用图形编程器编程,该编程器采用梯形图编程,方便直观,一般的电气人员短期内就可应用自如,但该编程器价格较高。再一种是用IBM个人计算机加PLC软件包编程,这种方式是效率最高的一种方式,但大部分公司的PLC开发软件包价格昂贵,并且该方式不易于现场调试。因此,应根据系统的大小及难易,开发周期的长短以及资金的情况合理选购PLC产品。3.1.2PLC的选型标准世界上有很多厂商生产PLC,如德国的西门子、日本的三菱、松下,美国GE公司等完成系统的设计主要是选型和程序设计。但是由于PLC应用在不同场合,有不同的工艺流程,对控制功能有不同的要求,由于各程序难易程度不一样,因此有一定的选择标准,主要表现在:PLC机型选择主要考虑I/O点数。根据控制系统所需要的输入设备(如按钮、限位开关、转换开关等)、输出设备(如接触器、电磁阀、信号指示灯等)以及A/D、D/A转换的个数,确定I/O的点数。一般要留有一定裕量(约占10%),满足生产发展和工艺的改进;随着PLC功能日益完善,很多小型机也具有中、大型机的功能。对于PLC的功能选择,一般只要满足I/O点数,大多数机型也能满足。目前大多数PLC机型都具有I/O扩展模块、A/D、D/A转换模块,以及高级指令、中断能力及外设通信能力;PLC一般根据I/O点数的不同,内存容量会有相应的差别。在选择内存容量时同样应留有一定余量,一般时实际程序的25%。不应单纯追求大容量,以够用为原则;在PLC机型选取上要考虑控制系统及PLC结构功能的合理性。如果是单机系统控制,I/O点数不多,不涉及PLC之间的通信,但又要求功能更强,要求有处理模拟信号的能力,可选择整体式机,如松下FP0、FP1、FP-M系列,以及OMRON C200H系列等。如果仅有开关量控制,可选择OMRON C系列P型机、西门子S7-200,三菱F1、FX 系列等;一个企业尽量选择同一类型的PLC, 同一机型PLC模块可互为利用,便于采购管理, 同一机型PLC的功能、编程方法相同,有利于技术人员水平的提高,同一机型PLC,其外围设备通用,资源共享,易于联网通信,及上位计算机配合可形成多级分布式的控制系统。3.1.3 PLC机型的选择及特点目前,国内众多的生产厂家生产了多种系列功能各异的PLC产品,使用户眼花缭乱。通过对输入输出点的选择,对存储容量的选择,对I/O响应时间的选择对PLC价格的考虑以及厂家的售后服务,决定使用无锡信捷科技有限公司生产的XC系列的XC3型号的可编程控制器,如图3-1所示。XC系列PLC的几大优势:阵容强大的全系列PLC,广泛适用于多种场合;具备3通道、80KHz、32位高速计数功能;24段高速计数中断功能;高达400KHz的脉冲输出,最多支持4路;强大的通讯和组网能力;业内首创的以C语言编写功能块指令;独创的I/O点切换功能;本体加入PID控制功能;中断功能;丰富的扩展性能。产品规格如表3-1:表3-1 模块规格端子说明:表 3-2 端子说明0V 24V.C1C0AI0VI1C2AI2VI3AI3C3VI2A11VI0.VO0.VO1AO1C1AO0C0端子信号:表 3-3 端子信号3.2水泵选型水泵有很多种,从原理上可以分为气压泵,离心泵,轴流泵,混流泵,螺旋泵等。气压泵是靠大气压提升水位。凭借活塞的运动,制造出一个近似真空,外部大气压将水压上来。这种泵液位依赖及大气压所以提升水的高度有限。离心泵的原理是离心现象,是依靠也叶轮叶片的转动产生离心的作用,将液体甩出。所以,输送效果依赖叶轮的转速,直径等因素。本课题将采用ISW系列卧式单级单吸离心泵如图3-4,该泵是在吸收国内外同类产品先进技术的基础上,采用国内通用离心泵之性能参数,自行研制开发的新一代节能、环保卧式离心泵。该系列泵性能优、可靠性高、寿命长、结构合理、外形美观,具有行业领先水平。产品特点有:运行平稳;滴水不漏;噪音低;故障率低维修方便;占地更省。3.3变频器选型变频器技术是一门综合性的技术,它建立在控制技术、电子电力技术、微电子技术和计算机技术的基础上。它及传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,有许多优点,如节电、容易实现对现有电动机的调速控制、可以实现大范围内的高效连续调速控制、实现速度的精确控制。容易实现电动机的正反转切换,可以进行高额度的起停运转,可以进行电气制动,可以对电动机进行高速驱动。完善的保护功能:变频器保护功能很强,在运行过程中能随时检测到各种故障,并显示故障类别(如电网瞬时电压降低,电网缺相,直流过电压,功率模块过热,电机短路等),并立即封锁输出电压。这种“自我保护”的功能,不仅保护了变频器,还保护了电机不易损坏。由于选用的是配带功率为3KW的水泵,所以将采用HLPA03D743B,其规格如表3-4所示表3-4海利普 HLPA03D743B变频器产品规格3.4触摸屏选型3.4.1触摸屏的工作原理为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。3.4.2触摸屏的主要类型从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。电阻触摸屏是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用;表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面,表面声波触摸屏一方面推出防尘型触摸屏,一方面建议别忘了每年定期清洁触摸屏;红外线式触摸屏价格便宜、安装容易、能较好地感应轻微触摸及快速触摸。但是由于红外线式触摸屏依靠红外线感应动作,外界光线变化,如阳光、室内射灯等均会影响其准确度。而且红外线式触摸屏不防水和怕污垢,任何细小的外来物都会引起误差,影响其性能,不适宜置于户外和公共场所使用;电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。3.4.3触摸屏的选择选用信捷TH765-M工业触摸屏,其特点是:7英寸显示屏幕,流线型外观设计;6万色TFT真彩,支持BMP、JPEG格式图片显示;丰富的3D图片素材库,画面更生动;灵活的部件选择空间,自定义动画轨迹设计;简单开关设置切换模式,精确的有触摸区校准功能;自定义的数据采集保存功能,支持时间趋势图,XY趋势图等多种形式的数据管理方式;提供3个USB接口,实现数据的快速传输和备份;双口独立通讯,可实现多屏一机。产品规格如下表3-5所示:表3-5 信捷TH765-M工业触摸屏3.5硬件接线图(见附录)4 系统软件设计4.1程序设计编程基本原则及注意问题4.1.1程序设计(梯形图)编程基本原则梯形图按自上而下,从左到右的顺序排列。每个继电器线圈为以逻辑行,又称为一个梯级。每个梯形图由多层逻辑行组成。每一逻辑行起于左母线,经触电、线圈终止于右母线;触电不能放在线圈的右边,即线圈及右母线之间不能有任何触电;线圈不能直接及左母线相接,如果需要,可通过一个没有使用的常闭触电或特殊继电器R9010相连接;触电可以任意串联、并联,而且同一触点可以无限次使用;输出线圈可以并联不能串联,同一输出线圈在同一程序中避免重复使用。4.1.2程序设计注意问题第一,PLC和上位机(或触摸屏)组成监控系统时,在画面上很多时候需要有"手动"“自动”等控制模式(一般都是多个只能一个时)。在程序里面可以用"MOV" 指令。如当选择"手动" 就将常数1存储到一个寄存器里面, 当选择"自动" 就将 2 存储到同一寄存器. 只要判断寄存器的数据是多少,就知道系统是那种控制方式。这样的思路好处是容易理解,不需要互锁之类的麻烦程序。第二,程序有模拟量控制时, 如果读取的模拟量基本上没误差, 可以采取时间滤波的方式,延时一段时间。如果读取的数据误差很大, 就需要采取其它的滤波方式。如算平均值等.可以查阅相关的资料。第三,在程序调试过程中(特别是设备改造时,你的程序是加入到原来设备的程序中时), 当程序语句中出现条件满足, 而输出线圈不接通时,可以检查你的这段程序是否是在这样的语句之间,还有一种可能就是在中断程序之后, 条件满足而没输出不接通,一般都是这段的程序不被扫描.第四,在设计程序的时候, 当出现工艺上的故障(非控制系统控制), 最好将故障现象保持,并有灯光声音报警。第五,当检查所设计的程序无误后,对所输入的程序进行调试和检测。4.2所用编程软件特点及界面操作4.2.1编程软件特点针对该课题地总体设计要求,我们应用的编程软件是信捷XCPPro。该软件的主要特点是: C语言编写功能;注释功能;查找功能;调试功能;监控功能;系统寄存器的置位、复位;I/O分配;打印功能等等。4.2.2信捷XCPPro编程软件操作标题栏:显示当前打开的文件名称。工具栏:将本软件中被认为是经常使用的功能制成按钮的形式,利用这些按钮可以更加快速的进行操作。当光标移至功能栏上按钮时,画面中将显示及按钮相对应的功能内容编辑画面:显示程序的画面。将此画面激活,进行创建、编辑或进行输入说明、监控等操作。功能键栏:显示输入程序时所使用的编辑元素的快捷键、各项功能的快捷键。通过单击视图中的功能栏,可以选择显示或隐藏。通过单击功能栏形式,可以改变显示的段数4.3变频器参数设定根据该系统的控制需要其变频器相关参数设定如下表4-1表4-1变频器参数设定4.4触摸屏程序4.4.1屏幕保护画面屏幕保护画面如下图所示,屏幕保护是为了保护显示器而设计的一种专门的程序。设计的初衷是为了防止触摸屏因无人操作而使显示器长时间显示同一个画面,导致老化而缩短显示器寿命。另外,有一定的省电作用。4.4.2 操作画面这是系统正常情况下选用的工作方式,在此工况下,人机界面首先显示系统主菜单,用户可以根据控制要求操作画面。4.4.3参数设置画面此画面可以设置PID参数,用手触摸一下数字,人机界面会弹出数字输入器,输入方式及一般计数器差不多,用户可直接按输入数据即可。结论随着科学技术发展的日新日异,可编程控制器(PLC)已经成为当今计算机应用中空前活跃的领域,在生活中可以说得是无处不在。

(完整版)PLC水箱液位控制系统毕业设计

(完整版)PLC水箱液位控制系统毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。

摘要本次毕业设计的课题是基于PLC的液位控制系统的设计。

在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。

本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过控制指令PID指令来控制水箱水位。

关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。

The liquid level control system based on PLCABSTRACTThe subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge.Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC , the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction.Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.目录中文摘要.......................................................................................................................................英文摘要.......................................................................................................................................1 绪论 ............................................................................................................................................1.1 PLC的产生、定义及现状 .................................................................................................1.1.1PLC的产生、定义....................................................................................................1.1.2PLC的发展现状........................................................................................................1.2过程控制的发展 ..................................................................................................................1.3本文研究的目的、主要内容 ..............................................................................................1.3.1本文研究的目的、意义 ...........................................................................................1.3.2本文研究的主要内容 ...............................................................................................2 FX2系列PLC和控制对象介绍 ................................................................................2.1 三菱PLC控制系统 ...........................................................................................................2.1.1 CPU模块 ..................................................................................................................2.1.2 IO模块......................................................................................................................2.1.3电源模块 ...................................................................................................................2.2 过程建模 .............................................................................................................................2.2.1 一阶单容上水箱对象特性 ......................................................................................2.2.2 二阶双容下水箱对象特性 ......................................................................................3 PID调节及串级控制系统..........................................................................................3.1 PID调节的各个环节及其调节过程...................................................................................3.1.1比例控制及其调节过程 ...........................................................................................3.1.2比例积分调节 ...........................................................................................................3.1.3比例积分微分调节 ...................................................................................................3.2 串级控制 .............................................................................................................................3.2.1串级控制系统的结构 ...............................................................................................3.2.2串级控制系统的特点 ...............................................................................................3.2.3串级控制系统的设计 ...............................................................................................3.3 扩充临界比例度法 .............................................................................................................3.4 三菱FX2系列PLC中PID指令的使用 .........................................................................3.5在PLC中的PID控制的编程............................................................................................3.5.1回路的输入输出变量的转换和标准化....................................................................3.6变量的范围 ..........................................................................................................................4 控制方案设计.......................................................................................................................4.1 系统设计 .............................................................................................................................4.1.1上水箱液位的自动调节 ...........................................................................................4.1.2上水箱下水箱液位串级控制系统............................................................................4.2 硬件设计 .............................................................................................................................4.2.1检测单元 ...................................................................................................................4.2.3控制单元 ...................................................................................................................4.3软件设计 ..............................................................................................................................5 运行 ............................................................................................................................................5.1 上水箱液位比例调节 .........................................................................................................5.2 上水箱液位比例积分调节 .................................................................................................5.3 上水箱液位比例积分微分调节 .........................................................................................致谢 ............................................................................................................................................参考文献.......................................................................................................................................论文原创性声明1 绪论1.1 PLC的产生、定义及现状1.1.1PLC的产生、定义一、可编程控制器的产生20世纪60年代,在世界技术改造的冲击下,要求寻找一种比继电器更可靠、功能更齐全、响应速度更快的新型工业控制器。

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计PLC水箱液位控制系统是一种基于可编程逻辑控制器(PLC)的自动控制系统,用于监测和调节水箱中的液位。

这个系统可以应用于各种场景,比如工业生产中的水箱液位控制、建筑物的水池液位控制等。

在本篇文章中,将详细介绍PLC水箱液位控制系统的设计和实现。

首先,我们需要对PLC水箱液位控制系统的硬件进行设计。

其中包括传感器模块、执行器模块和PLC控制器。

传感器模块用于监测水箱中的液位,可以选择合适的液位传感器,如浮球开关、超声波传感器等。

执行器模块用于控制水箱中的液位,可以选择水泵或阀门等执行器。

PLC控制器用于接收传感器模块的信号,根据预设的控制策略来控制执行器模块的工作。

同时,还需要考虑电源模块、通信模块等其他辅助模块。

接下来,我们需要对PLC水箱液位控制系统的软件进行设计。

PLC控制器通常使用Ladder Diagram(梯形图)进行编程。

在本设计中,我们可以根据液位传感器的信号来控制执行器的开关。

当液位低于一定阈值时,PLC控制器可以启动水泵或打开阀门,以增加水箱中的液位。

当液位高于一定阈值时,PLC控制器可以停止水泵或关闭阀门,以减少水箱中的液位。

同时,我们还可以增加一些安全措施,如设置最大液位和最小液位报警,当液位超出范围时,PLC控制器可以发出警报信号或采取相应的措施。

在实际应用中,我们还可以通过人机界面(HMI)来对PLC水箱液位控制系统进行监控和操作。

通过HMI,我们可以实时查看水箱中的液位,修改控制策略,记录操作日志等。

同时,我们还可以将PLC水箱液位控制系统与上位机进行通信,实现远程监控和控制。

最后,我们需要对PLC水箱液位控制系统进行实验验证。

在实验中,我们可以模拟不同的液位情况,观察PLC控制器的响应和执行器的工作情况。

通过实验,我们可以测试系统的稳定性、精度和可靠性,并对系统进行优化和改进。

总结而言,PLC水箱液位控制系统是一种自动控制系统,用于监测和调节水箱中的液位。

基于S7-1200PLC的水箱液位控制系统的设计

基于S7-1200PLC的水箱液位控制系统的设计

基于S7-1200PLC的水箱液位控制系统的设计重庆科技学院摘要水箱液位控制系统是一种用于监测、控制水箱液位的自动化设备。

它通过搭载传感器、控制器和执行机构等组件,实现对水箱液位的实时监控和自动控制。

通常,水箱液位控制系统由传感器,控制器,执行机构。

水箱液位控制系统的使用范围广泛,包括建筑物、工业生产、农业灌溉、城市给排水和环保等领域。

它具有结构简单、安装方便、实时性强等特点,该系统能够提高水资源的利用效率、减少用水浪费和防止水源的污染。

本文基于S7-1200 PLC实现水箱液位控制系统设计。

该系统由硬件和软件两部分组成,硬件包括PLC、人机界面触摸屏、传感器、执行器等;软件实现传感器数据处理、PID稳态控制、安全等功能;关键词:液位控制 PLC PID 传感器重庆科技学院本科生毕业设计 3水箱液位控制系统硬件设计1绪论在工业领域,几乎在各个行业都会或多或少的涉及到液位的检测等问题,然而液位变量具有延迟滞后性,参数不稳定,复杂多变等问题,因此,这就需要本文采取更为精确的控制器去实现液位变量的检测。

传统控制具有很多缺陷:比如精度低、速度慢、灵敏度低等。

一个稳定的液位系统,可以保证安全可靠的工业生产、高效的生产效率、充分合理的利用能源等,大大提高了工业生产的经济价值。

日益激烈的市场竞争,要求本文的控制技术必须更加先进,此前的控制技术已落伍,显然无法满足需求,这种对先进技术的需求加速了可编程逻辑控制器的问世。

引入PLC控制器后,能够使控制系统变得更集中、有效、及时。

2水箱液位控制总体方案设计2.1水箱液位控制系统实际应用特征水箱液位控制系统是一种广泛应用于水箱的自动化控制系统,常见于民用和工业领域。

实际应用中,水箱液位控制系统具有以下特征:①实时性强:系统能够实时检测水箱内的液位信息,并根据液位变化及时控制水泵的启停,保证水位稳定。

②可靠性高:系统通过各类安全措施确保水泵的正常启停,不会出现过量或不足的水位情况,避免因为水位变化带来的安全隐患。

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计液位控制系统是一种自动控制系统,用于控制液体在容器中的液位。

PLC(可编程逻辑控制器)被广泛应用于液位控制系统中,因为它具有可编程性、易于安装和维护以及可靠性高的特点。

在本文中,我们将基于PLC设计一个液位控制系统。

首先,我们需要选择适合的PLC设备。

根据液位控制系统的规模和需求,我们可以选择不同型号和品牌的PLC,例如西门子、施耐德等。

一个PLC系统通常包括CPU、输入和输出模块、通信模块等组成部分。

根据液位控制系统的需求,我们可以选择适当的输入和输出模块来连接传感器和执行器。

接下来,我们将设计液位传感器和执行器的布置。

液位传感器用于检测液位的高度,并将信号传输给PLC系统。

常用的液位传感器包括浮球传感器、压力传感器等。

根据液位控制系统的需求,我们可以将传感器布置在不同的位置和高度。

执行器用于控制液位,例如开关泵来增加液位或者打开泄水阀来降低液位。

然后,我们需要设计PLC的逻辑控制程序。

PLC的逻辑控制程序决定了液位控制系统的工作方式。

我们可以使用PLC编程语言(如ladder diagram)来编写逻辑控制程序。

在程序中,我们可以定义液位的上下限,并根据实际液位与设定值之间的偏差来控制执行器的开关状态。

例如,当液位低于设定值时,PLC会启动泵来增加液位;当液位高于设定值时,PLC会打开泄水阀来降低液位。

最后,我们需要测试和调试液位控制系统。

在测试过程中,我们可以使用仿真工具来模拟真实情况,并验证PLC的逻辑控制程序是否正确。

如果发现问题,我们可以对逻辑控制程序进行修改或优化。

一旦测试通过,我们就可以将液位控制系统部署到实际环境中,并进行调试。

在调试过程中,我们需要确保PLC系统能够稳定地控制液位,并及时响应外部输入和输出信号。

总结起来,基于PLC的液位控制系统设计包括选择PLC设备、设计液位传感器和执行器布置、编写逻辑控制程序以及测试和调试系统等步骤。

通过合理设计和调试,PLC可以有效地控制液位,提高系统的自动化程度和稳定性。

PLC课程设计单容水箱液位控制系统的设计

PLC课程设计单容水箱液位控制系统的设计

目录封面--------------------------1 目录--------------------------2 引言--------------------------3 一、总体设计方案--------------4基本任务----------------------4 基本要求----------------------4 主要性能指标------------------ 4 扩展功能----------------------4 控制方法选择------------------ 4 系统组成----------------------5 二、控制系统设计-------------- 5控制程序流程图----------------- 5 控制程序设计思路--------------- 6 系统变量定义及分配表----------- 6 系统接线图设计----------------- 6 三、系统调试及结果分析--------7系统调试-----------------------7 结果分析-----------------------8 结束语---------------------8 参考文献-------------------8 附录:源程序图-----------------9引言在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。

由于液体本身的属性及控制机构的摩擦、噪声等的影响,控制对具有一定的纯滞后和容量滞后的特点,液位上升的过程缓慢,呈非线性。

因此液位控制装置的可靠性与控制方案的准确性是影响整个系统性能的关键,因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

毕业设计开题报告1. PID 简述简述 过程控制通常是指石油、化工、冶金、轻工、纺织、制药、建材等工业生产过程中的自动控制程中的自动控制,它是自动化技术的一个极其重要的方面。

本次毕业设计是基于PLC 的液位控制系统的设计,它的控制对象是水箱的液位,是过程控制中经常遇到热工参数。

本人在这次设计中主要负责控制策略——PID 算法的确定,就在次将PID 算法作个简要的介绍。

算法作个简要的介绍。

在生产过程自动控制的发展历程中在生产过程自动控制的发展历程中,PID ,PID 控制是历史最久、生命力最强的基本控制方式。

它简单实用制方式。

它简单实用,,易于实现易于实现,,适用范围广适用范围广,,鲁棒性好鲁棒性好,,在现今的工业过程中获得了广泛的应用广泛的应用..据统计据统计,,目前工业控制器中约有90%90%仍是仍是PID 控制器。

PID 控制器的设计及其参数整定一直是控制领域所关注的问题。

其设计和整定方法得到国内外广泛研究, 著名的如Ziegler-Nichols 法、基于内模控制的方法及基于误差的积分的优化方法。

基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因,,在PID 优化设计中被广泛采用。

(1)在工业生产过程控制中,模拟量的模拟量的 PID (比例、比例、积分、积分、微分)调节是常见的一种控制方式,这是由于这是由于PID 调节不需要求出控制系统的数学模型,至今为止,很难求出许多控制对象准确的数学模型,对于这一类系统,使用使用PID 控制可以取得比较令人满意的效果,同时同时PID 调节器又具有典型的结构,可以根据被控对象的具体情况,采用各种PID 的变种,有较强的灵活性和适用性。

在模拟量的控制中,经常用到经常用到PID 运算来执行来执行PID 回路的功能,PID 回路指令使这一任务的编程和实现变得非常容易。

如果一个果一个 PID 回路的输出回路的输出M ( t)是时间的函数,则可以看作是比例项、积分项和微分项三部分之和(2),即:,即:dt de K M edt K e K t M C tc C *+++*=⎰00)( 式中式中 e ——偏差;——偏差;T i ——积分常数;——积分常数;T d ——微分常数;——微分常数;K c ——放大倍数(比例系数)——放大倍数(比例系数)M 0——偏差为零时的控制值,有积分环节存在,此项也可不加——偏差为零时的控制值,有积分环节存在,此项也可不加以上各量都是连续量,第一项为比例项,最后一项为微分项,中间两项为积分项。

水箱液位控制系统设计设计

水箱液位控制系统设计设计

水箱液位控制系统设计设计一、系统概述水箱液位控制系统是一个智能化的系统,用于控制水箱液位并保持在设定的范围内。

该系统由传感器、控制器和执行器组成,通过传感器检测水箱液位,并将液位信号传输给控制器,控制器根据设定的参数进行判断和控制,最终通过执行器完成控制动作。

二、系统组成1.传感器:使用浮球传感器或超声波传感器来检测水箱液位。

传感器将液位转化为电信号,并传输给控制器。

2.控制器:控制器是系统的核心部分,它接收传感器的信号,并进行处理和判断。

控制器可以根据设定的参数来判断液位是否达到目标范围,并通过输出信号来控制执行器的动作。

此外,控制器还需要具备人机界面,方便用户进行参数设置和监测。

3.执行器:执行器根据控制器的控制信号,完成相应的动作。

例如,当液位过高时,执行器可以控制水泵关闭或排水阀打开,以降低液位;当液位过低时,执行器可以控制水泵开启或进水阀打开,以提高液位。

4.电源:为整个系统提供电能。

三、系统设计思路1.确定液位控制的范围:根据实际需求,确定水箱液位的上限和下限。

一般情况下,液位控制范围应在50%至85%之间。

2.选择合适的传感器:根据水箱的结构和液位控制要求,选择合适的传感器。

浮球传感器适用于小型水箱,超声波传感器适用于大型水箱。

3.设计控制器:控制器的主要功能是接收传感器的信号、处理和判断液位,并输出控制信号。

在设计控制器时,需要考虑如下几个方面:-信号处理:传感器的信号可能存在噪声,需要进行滤波处理,保证信号的准确性。

-参数设置:控制器应提供人机界面,方便用户根据实际需求设置参数,例如液位上下限、启停时间等。

-控制算法:根据设定的参数,控制器需要实现相应的控制算法,例如比例控制、积分控制等。

-控制输出:控制器根据判断结果输出控制信号,控制执行器的动作。

4.选用适配的执行器:根据液位控制要求,选择适合的执行器,例如水泵、进水阀、排水阀等。

5.系统集成与调试:将传感器、控制器和执行器进行连接和集成,进行系统调试和性能测试。

基于PLC的三容水箱液位串级控制系统设计

基于PLC的三容水箱液位串级控制系统设计

基于PLC的三容水箱液位串级控制系统设计
本系统的主要功能是实现三个水箱之间液位的串联控制,保证三个水箱中的水位保持平衡。

该系统采用PLC作为控制器,通过读取水位传感器获取水箱中的液位,经过控制算法对泵进行控制,保持水箱中水位的均衡。

下面是该系统的具体设计步骤:
1. 系统硬件设计
系统硬件包括三个水箱、水位传感器、PLC控制器、三个水泵和连接线路等。

其中,水位传感器放置在每个水箱内部,用于实时监测液位高度。

三个水泵用于对水箱进行加水或抽水操作,保持水箱内的液位相同。

2. PLC程序设计
PLC程序主要包括以下几个部分:
a. 采集水箱液位信号,根据液位信号实现控制算法,并输出控制信号控制泵的运行。

b. 根据液位的设定值与当前液位的差值,来确定是否需要打开或关闭泵。

c. 如果液位超出了安全范围,需要发出警报并停止泵的运行。

3. 系统测试
搭建好系统后,需要进行系统测试,检验系统在不同液位高度情况下的控制效果。

具体测试方法为在水箱中放入不同数量的水,观察系统是否能够在不同的液位条件下正常工作。

以上就是基于PLC的三容水箱液位串级控制系统设计的具体步骤。

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

2024年7月16日
11
基于PLC的液位控制系统设计
液位控制系统的硬件组成
计算机液位控制系统电路图如图所示。在本控制系统中、用计算机实现控 制算法, PLC控制系统带有A/D模块SM331和D/A模块SM332。电动调节阀作为 执行机构。
控制系统硬件电路连接图
2024年7月16日
12
基于PLC的液位控制系统设计
液位变送器 : 采用液位变送器 BP800采用工业用的扩散硅压力变送器, 含不绣钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补 偿 。压力传感器用来对上水箱和下水箱的液位进行检测,变送器为二 线制,故工作时需串接24VDC电源 。
电动调节阀 : 采用智能型电动调节阀,用来进行控制回路流量的调节。。 电动调节阀号为: QSVP-16K。具有精度高、技术先进、体积小、重量轻、 推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作 方便等优点,控制信号为4—20mADC或1—5VDC,输出4—2OmADC的阀位信 号,使用和校正非常方便。
2
基于PLC的液位控制系统设计
建立数学模型
被控对象的数学模型 :
将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型 就是h与Q1之间的数学表达式。根据动态物料平衡关系有:
2024年7月16日
3
基于PLC的液位控制系统设计
表示为增量形式:
式中: ΔQ1,ΔQ2,Δh分别为偏离某一平衡状态的增量;A为水箱截 面积。
基于PLC的液位控制系统设计
本文设计的主要目的是控制下水箱的液位。使下水箱的 液位在某一比较小的范围变化。
研究对象是双容水箱的串级系统。 液位控制系统的组成:
控制器 电动调节阀 上水箱、下水箱 液位变送器等 电动调节阀用于调节上水箱的进水量大小,液位变送器 用于检测上水箱和下水箱的液位。控制器的输出量用于控制 调节阀的开度。

plc水箱水位控制课程设计

plc水箱水位控制课程设计

plc水箱水位控制课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理和工作过程。

2. 学生能掌握水箱水位控制系统的组成、功能及相互关系。

3. 学生能了解并运用水位传感器进行水位信号的采集和处理。

技能目标:1. 学生能运用PLC编程软件进行水箱水位控制程序的编写和调试。

2. 学生能通过实际操作,完成水箱水位控制系统的搭建和故障排查。

3. 学生能运用相关工具和仪器进行水位控制系统的性能测试和优化。

情感态度价值观目标:1. 培养学生热爱科学,积极探索PLC技术在工程领域的应用。

2. 培养学生团队协作意识,学会与他人共同解决问题,提高沟通与交流能力。

3. 增强学生的环保意识,了解水位控制技术在节能减排方面的重要性。

分析课程性质、学生特点和教学要求,将课程目标分解为以下具体学习成果:1. 学生能独立完成水箱水位控制系统的设计方案。

2. 学生能运用所学知识,编写并调试PLC程序,实现水位控制功能。

3. 学生能通过实验报告、口头汇报等形式,展示水箱水位控制系统的搭建过程及成果。

4. 学生在课程结束后,能对PLC技术在水处理、化工等领域的应用进行初步分析,并提出自己的见解。

二、教学内容本课程教学内容主要包括以下几部分:1. PLC基本原理与结构:介绍PLC的组成、工作原理、性能指标等,使学生了解PLC的基础知识。

关联教材章节:第一章PLC概述。

2. 水箱水位控制系统组成:讲解水箱水位控制系统的各个组成部分,包括水位传感器、执行器、PLC等,并分析它们之间的相互关系。

关联教材章节:第二章PLC控制系统设计。

3. PLC编程软件的使用:教授PLC编程软件的基本操作,包括程序编写、调试和下载等,使学生掌握PLC编程的基本技能。

关联教材章节:第三章PLC编程技术。

4. 水位控制程序编写与调试:指导学生编写水位控制程序,并进行调试,实现水箱水位的自动控制。

关联教材章节:第四章PLC应用实例。

PLC水箱水位控制课程设计 论文

PLC水箱水位控制课程设计  论文

PLC水箱水位控制课程设计
1. 设计概述:
1.有传感器,3个贮水水箱,每个水箱有2个液位,S1,S3,S5(动合触
电)用于指示每个水箱的“满”;S2,S4,S6(动断触点)用于指示每个
水箱的“空”。

S1—S6通过模拟器自动检测给出信号。

3个贮水水箱放水
开关S7,S8,S9在PLC外部操作设定,通过认为的方式,按随机的顺序
将水箱放空。

只要检测到水箱“空”的信号,系统就自动的向水箱注水,直到检测到水箱“满”的信号为止。

2.电磁阀Y1,Y2,Y3分别是用于3个水箱的注水操作;电磁阀Y4,Y5,
Y6分别是用于3个水箱的放空操作。

贮水水箱系统的示意图如下。

3.水箱注水的顺序要与水箱放空的顺序相同,例如水箱放空顺序是2-1-3,
水箱注水的顺序也应当是2-1-3。

4.每次只能对1个水箱进行注水操作。

图1-1 注水水箱系统示意图
2. I/O口分配表:
2.1本次设计采用S7-300系列PLC完成控制任务,I/O口分配情况及作用如下:
输出/输入I/O口地址分配表
2.2 其他编程元件的地址分配如下:
其他编程元件的地址分配表
2.3 梯形图控制程序框图
图2-1梯形图控制程序框图3.梯形图程序。

基于PLC的液位控制系统设计设计

基于PLC的液位控制系统设计设计

基于PLC的液位控制系统设计设计一、设计背景:液位控制系统是工业自动化领域中常见的一种工艺控制系统,用于控制容器内液体的液位。

液位控制系统在化工、冶金、电力、制药等行业中广泛应用,对于保证生产过程中液位的稳定和控制具有重要意义。

基于PLC的液位控制系统可以实现对液位的精确控制和自动化操作,提高生产效率和产品质量。

二、设计原理:三、系统组成:1.传感器:用于检测容器内液体的液位变化,并将液位信号转换为电信号,传输给PLC;2.信号处理模块:对传感器传输过来的信号进行调理和处理,将处理后的信号传输给PLC;3.PLC:作为控制核心,接收信号处理模块传输过来的信号,并根据事先设定的控制策略进行逻辑控制;4.执行机构:根据PLC控制信号对容器内液体进行加输或排泄操作,以控制液位的变化;5.人机界面:通过触摸屏或键盘等控制输入设备,实时监控和调整液位控制系统的参数,以及实施手动控制。

四、设计步骤:1.确定液位控制系统的控制目标和要求:根据具体的应用场景,确定液位的目标值、控制精度、稳定性要求等;2.选择合适的传感器:根据液体的性质和工业环境,选择适合的液位传感器,如浮子式液位传感器、压力式液位传感器等;3.确定信号处理模块:根据传感器输出的信号特点,确定合适的信号处理模块,对传感器信号进行调理和处理,以适应PLC输入信号的要求;4.PLC逻辑控制程序设计:根据液位控制系统的控制目标和要求,设计PLC的逻辑控制程序,包括液位目标设定、控制策略、输出控制信号等;5.确定执行机构:根据液体的加输或排泄要求,选择适当的执行机构,如电动阀门、气动阀门等;6.进行系统的连接和调试:将传感器、信号处理模块、PLC、执行机构按照设计要求进行连接,并进行系统的调试和测试,确保系统的功能正常;7.人机界面设计和实施:根据液位控制系统的需要,设计合适的人机界面,以实现参数设置、控制操作、故障诊断等功能。

五、优势与应用:1.精度高:PLC控制系统可以实现对液位的精确控制,提高控制精度和稳定性;2.自动化程度高:PLC可以根据设定的控制策略进行自动化控制操作,减少人工操作,提高生产效率;3.可靠性强:PLC控制系统具有较强的抗干扰能力,能够稳定运行,并且具有自动故障诊断功能,便于维护和排除故障;4.灵活性好:PLC控制系统可以根据实际需求进行灵活配置和调整,适应不同的液位控制要求。

PLC水箱自动水位控制器设计

PLC水箱自动水位控制器设计
四、所用设备及软件
三菱PLC(核心控制部件),高低位水箱的水位检测电路(由两个浮球液位开关将高低水位信号传送给PLC),水泵电动机控制电路(PLC控制启停及主备切换);所用软件为GX WORK2和组态王。
五、系统设计方案
5.1系统总体设计
系统总体结构框图见附录1。
5.2系统工作原理
水箱水位自动控制系统由三菱PLC(核心控制部件),高低位水箱的水位检测电路(高低水位信号传送给PLC),水泵电动机控制电路(PLC控制启停及主备切换)组成;通过水位检测电路测得水箱的水位信号交由PLC处理,再由PLC对水泵电动机控制电路进行控制,该过程可由上位机的组态软件进行监控,本次设计在传统的水塔、水箱供水的基础上,加入了PLC及液压变送器等器件.利用PLC和组态软件来实现水塔水位的控制.提供了一种实用的水箱水位控制方案。系统启动时,关闭出水口,控制输入控制液体阀,使水位达到满水位的75%,然后打开出水口,这种切换由一个输入的数字量控制,水池也有两个检测装置,得到的相关信息可对PLC进行调节。
随着工业生产的迅速发展,市场竞争的激烈,产品更新换代的周期日益缩短,工业生产从大批量、少品种,向小批量、多品种转换,继电器—接触器控制难以满足市场要求,此问题首先被美国通用汽车公司(GM公司)提了出来。通用汽车公司为适合汽车型号的不断翻新,满足用户对产品多样性的需求,公开对外招标,要求制造一种新的工业控制装置,取代传统的继电器—接触器控制。
(2)EPROM(Erasable Programmable Read Only Memory)这是一种可擦除只读存储器。断电情况下,存储器内所有内容保持不变。紫外线连续照射下可擦除存储器内容)
(3)EEPROM(Electrical Erasable Programmable Read Only Memory)这是一种电可擦除只读存储器。使用编程器就能很容易对其所存储内容进行修改。

基于PLC的液位控制系统毕业设计论文

基于PLC的液位控制系统毕业设计论文

基于PLC的液位控制系统毕业设计论文目录1. 内容概述 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)1.4 国内外研究现状 (5)1.5 论文结构 (6)2. PLC控制系统基础 (7)3. 液位控制系统需求分析 (9)3.1 系统概述 (10)3.2 系统功能需求 (11)3.3 系统性能指标 (12)3.4 系统设计约束 (14)4. 液位控制系统硬件设计 (15)4.1 硬件组成及连接方式 (17)4.2 传感器选型及安装方式 (18)4.3 执行器选型及安装方式 (20)4.4 PLC选型及安装方式 (22)4.5 电气接线及调试 (24)5. 液位控制系统软件设计 (24)5.1 软件架构设计 (26)5.2 控制算法设计 (28)5.3 PLC程序编写 (29)5.4 仿真与调试 (31)6. 系统集成与测试 (33)6.1 系统集成方案设计 (34)6.2 系统测试与验证 (36)6.3 结果分析与讨论 (37)7. 结论与展望 (38)7.1 研究成果总结 (39)7.2 进一步研究方向建议 (40)1. 内容概述本毕业设计论文旨在深入研究和探讨基于可编程逻辑控制器(PLC)的液位控制系统设计与实现。

通过系统化的设计流程,结合理论分析与实际应用,全面阐述PLC在液位控制中的关键作用及其优化策略。

随着工业自动化技术的不断发展,液位控制作为工业生产过程中的重要环节,其精确性和稳定性对于保障产品质量和生产效率具有至关重要的作用。

PLC作为一种高效、可靠的工业控制设备,在液位控制领域得到了广泛应用。

本研究将围绕基于PLC的液位控制系统展开深入研究。

PLC具有强大的数据处理能力,能够实时监控液位变化,并根据预设的控制算法输出相应的控制信号。

PLC的可靠性高、抗干扰能力强,能够在恶劣的工业环境下稳定运行。

PLC还具有易于扩展和维护的特点,便于用户根据实际需求进行系统升级和改造。

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是现代工业控制的重要组成部分,广泛应用于工业生产和日常生活中。

本文将就基于PLC的水箱液位控制系统进行毕业设计进行介绍。

本文毕业设计的目标是设计并实现一个基于PLC的水箱液位控制系统,实现水箱的液位控制和监测。

系统包括液位传感器、PLC控制器、水泵和电磁阀等组成。

首先,设计师需要根据实际需求选择合适的液位传感器,并将其与PLC控制器进行连接。

液位传感器用于监测水箱中的液位,根据液位的变化输出相应的信号给PLC控制器。

接下来,设计师需要使用PLC编程软件编写相应的PLC控制程序。

程序的主要功能是根据液位传感器的信号,控制水泵和电磁阀的开启和关闭。

当水箱的液位低于一些设定值时,PLC控制器会开启水泵将水箱填满;当液位超过一定设定值时,PLC控制器会关闭水泵,同时开启电磁阀,将多余的水排出。

除了基本的液位控制功能外,设计师还可以在PLC控制程序中添加其他功能,如报警功能。

当水箱的液位异常高或异常低时,PLC控制器可以通过声音或灯光等方式发出警报,提醒操作人员进行处理。

在整个系统的设计和实现过程中,设计师需要考虑如何提高系统的可靠性和安全性。

例如,可以在PLC控制程序中设置容错机制,确保系统在出现异常情况时能够正常运行;同时,在选择和配置水泵和电磁阀时,要考虑其工作负荷和可靠性,以确保系统的稳定运行。

在毕业设计完成后,设计师需要对系统进行测试和调试。

首先,需要检查液位传感器的安装和连接是否正常,确保其能够准确地监测水箱的液位变化;然后,利用测试仪器对PLC控制器的输出和输入进行测试,确保其能够按照预期进行控制。

总结而言,基于PLC的水箱液位控制系统是一项非常具有实用价值的毕业设计。

通过该设计,不仅可以提高水箱的自动化程度,还可以提高水资源的利用效率,减少人工操作错误的可能性。

同时,本设计也为进一步研究和开发更先进的基于PLC的控制系统提供了宝贵的经验和借鉴。

基于PLC的液位控制系统毕业设计论文

基于PLC的液位控制系统毕业设计论文

基于PLC的液位控制系统毕业设计论文随着工业自动化水平的不断提高,液位控制系统在工业领域中得到了
广泛的应用。

液位控制系统是通过感知到液体的高度来实现对液位的控制,常用于储罐、水塔等场所,以确保液位在安全范围内。

本篇毕业设计论文将基于PLC(可编程逻辑控制器)设计一个液位控
制系统。

PLC是一种专门用于工和生产过程中的自动化控制的计算机控制
系统。

本设计将通过PLC来实现对液位的检测和控制,并结合开关、传感
器和执行器等设备实现自动液位控制。

在设计过程中,首先需要对液位控制系统的硬件架构进行规划。

本设
计将使用PLC作为控制核心,并结合液位传感器、执行器和HMI(人机界面)等设备来完成整个系统。

同时,需要对传感器和执行器的选型进行讨论,并确定合适的设备参数。

其次,将进行软件编程工作。

通过PLC的编程软件,将液位传感器与PLC进行连接,并设置液位控制的逻辑程序。

根据液位高度的变化,PLC
将实时采集并处理液位信号,然后通过输出信号控制执行器,实现液位的
自动控制。

同时,将设计一个简单直观的人机界面,能够实时显示液位的
变化情况,方便操作和监控。

最后,需要进行液位控制系统的测试和验证。

通过模拟液位的变化情况,测试液位控制系统的响应速度和准确性。

根据测试结果,进行相应的
调整和改进,使其达到设计要求。

综上所述,本设计将通过PLC实现液位控制系统的设计和开发,并通
过对硬件和软件的完善,使其具备良好的稳定性、响应速度和准确性。


设计具有一定的实用价值,可在工业领域中得到广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PLC水箱液位控制设计
水箱液位控制是工程和工业应用中的一个重要任务,受到工业生产和
生活的影响。

PLC(可编程逻辑控制器)被广泛应用于自动化控制系统中。

在这里,我们将讨论PLC在水箱液位控制中的设计和应用。

一、设计要求
1.自动控制水箱液位:根据需要自动控制水箱液位,以保持水箱液位
在合适的范围内。

2.液位传感器:使用能够准确测量液位的传感器,例如超声波、浮子
或电容传感器等。

3.控制阀门:根据液位传感器的信号,控制阀门的开关来调节进出水
的流量。

4.安全保护:设置安全保护机制,如最高和最低液位报警,以防止水
箱溢出或干涸。

二、系统设计
1.硬件设计:选择适当的液位传感器、PLC和执行器,如电磁阀,来
实现水箱液位的控制。

2.软件设计:编写PLC的控制程序,包括液位传感器读取、液位控制
算法和输出控制信号给执行器的逻辑。

3.输入输出设计:将传感器连接到PLC的输入模块,并将执行器连接
到PLC的输出模块。

4.安全保护设计:为了确保系统的安全性,设计液位报警机制,当液
位低于最低限制或高于最高限制时,触发报警信号。

三、工作原理
1.初始状态:水箱液位低于最低限制,控制系统开始工作。

2.传感器读取:PLC读取液位传感器的信号,并将其转换为数字量进
行处理。

3.液位控制算法:根据传感器信号,PLC计算水箱液位的偏差,并决
定相应的动作,如开启或关闭阀门。

4.输出控制信号:根据液位控制算法的结果,PLC将控制信号发送到
执行器(电阀)以调节进出水量。

5.液位报警:如果液位低于最低限制或高于最高限制,PLC将触发报
警信号以提醒操作员。

四、实施细节
1.选择合适的液位传感器:液位传感器的选择取决于应用场景和预算。

超声波传感器具有高精度和无接触的特点,但价格较高。

浮子和电容传感
器价格较低,但精度较低。

2.选择适当的PLC:根据应用要求选择适当的PLC。

考虑到通信接口、输入输出数量和处理速度等因素。

3.选择适当的执行器:根据流量要求选择适当的执行器,例如电磁阀。

4.编写PLC控制程序:根据应用要求编写PLC控制程序。

包括读取传
感器数据、计算液位偏差、控制阀门开关和处理液位报警等逻辑。

5.安装和调试:将传感器、PLC和执行器正确安装并连接。

使用调试工具检查传感器和执行器的工作状态,调整液位控制算法参数,确保系统正常运行。

6.测试和验证:测试系统在不同液位条件下的控制性能,验证系统是否满足设计要求。

五、总结
PLC水箱液位控制设计利用PLC的强大功能和灵活性,实现了对水箱液位的自动控制。

通过合适的硬件和软件设计,以及安全保护机制,可以确保水箱液位在合适的范围内,并提供可靠的控制性能。

这种设计方法可广泛应用于工业和生活中的液位控制任务中。

相关文档
最新文档