常见有机化学反应及机理

合集下载

有机化学反应机理(整理版)

有机化学反应机理(整理版)

1.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。

3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例4.Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。

反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。

详细有机化学常见反应机理

详细有机化学常见反应机理

详细有机化学常见反应机理(共66页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见的有机反应机理Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

有机反应和反应机理

有机反应和反应机理

有机反应和反应机理(一)有机反应:在一定的条件下,有机化合物分子中的成键电子发生重新分布,原有的键断裂,新的键形成,从而使原分子中原子间的组合发生了变化,新的分子产生。

这种变化过程称为有机反应(organic reaction)。

一级反应:在动力学上,将反应速率只取决于一种化合物浓度的反应称为一级反应。

二级反应:在动力学上,将反应速率取决于两种化合物浓度的反应称为二级反应。

按化学键的断裂和生成分类协同反应:在反应过程中,旧键的断裂和新键的形成都相互协调地在同一步骤中完成的反应称为协同反应。

协同反应往往有一个环状过渡态。

它是一种基元反应。

自由基型反应:由于分子经过均裂产生自由基而引发的反应称为自由基型反应。

自由基型反应分链引发、链转移和链终止三个阶段:链引发阶段是产生自由基的阶段。

由于键的均裂需要能量,所以链引发阶段需要加热或光照。

链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。

链终止阶段是消失自由基的阶段,自由基两两结合成键,所有的自由基都消失了,自由基反应也就终止了。

离子型反应:由分子经过异裂生成离子而引发的反应称为离子型反应。

离子型反应有亲核反应和亲电反应,由亲核试剂进攻而发生的反应称为亲核反应,亲核试剂是对原子核有显著亲和力而起反应的试剂。

由亲电试剂进攻而发生的反应称为亲电反应。

亲电试剂是对电子有显著亲合力而起反应的试剂。

按反应物和产物的结构关系分类加成反应:两个或多个分子相互作用,生成一个加成产物的反应称为加成反应。

取代反应:有机化合物分子中的某个原子或基团被其它原子或基团所置换的反应称为取代反应。

重排反应:当化学键的断裂和形成发生在同一分子中时,会引起组成分子的原子的配置方式发生改变,从而形成组成相同,结构不同的新分子,这种反应称为重排反应。

消除反应:在一个有机分子中消去两个原子或基团的反应称为消除反应。

可以根据两个消去基团的相对位置将其分类。

有机化学反应机理+范例+原理

有机化学反应机理+范例+原理

1.A rndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。

3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例4.Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。

反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。

化学有机化合物的反应类型与反应机理

化学有机化合物的反应类型与反应机理

化学有机化合物的反应类型与反应机理化学有机化合物是指由碳-碳键和碳-氢键组成的化合物。

它们是化学反应的重要研究对象,掌握有机化合物的反应类型和反应机理对于理解和应用有机化学具有重要意义。

本文将讨论几种常见的有机反应类型及其机理。

一、取代反应取代反应是有机化学中最基本、最常见的反应类型之一。

它指的是在一个分子中,一个原子或官能团被另一个原子或官能团取代的化学反应。

取代反应可分为烷基取代反应和芳香族取代反应两种类型。

1. 烷基取代反应烷基取代反应是指在饱和碳链上,一个或多个氢原子被烷基基团或其他原子或官能团取代的反应。

常见的烷基取代反应有卤代烷的亲核取代、重氮化合物的替换、酸催化的碱性取代等。

2. 芳香族取代反应芳香族取代反应是指芳香化合物上的一个或多个氢原子被原子、官能团或离子取代的反应。

常见的芳香族取代反应有硝化反应、卤代反应、烷基化反应等。

二、加成反应加成反应是指两个或多个分子之间形成新的化学键的反应。

加成反应又可分为电子亲和性加成反应和亲核性加成反应两种类型。

1. 电子亲和性加成反应电子亲和性加成反应是指一个或多个亲电性反应物加到具有π电子体系的反应物上,形成新的共价键。

常见的电子亲和性加成反应有烯烃的与电子亲和性试剂的加成反应、炔烃的与电子亲和试剂的加成反应等。

2. 亲核性加成反应亲核性加成反应是指一个或多个亲核试剂加到具有电子云空间的反应物上,形成新的共价键。

常见的亲核性加成反应有醇的与醛或酮的加成反应、胺的与酰氯的加成反应等。

三、消除反应消除反应是指有机化合物中两个官能团之间失去一个分子或官能团的反应。

消除反应可分为β-消除反应和α-消除反应两种类型。

1. β-消除反应β-消除反应是指某个官能团的β-碳和相邻的官能团之间发生断键和形成新的π键,失去一个分子或官能团。

常见的β-消除反应有醇的脱水反应、卤代烃的脱氢反应等。

2. α-消除反应α-消除反应是指某个官能团的α-碳和相邻的官能团之间发生断键和形成新的π键,失去一个分子或官能团。

有机化学八大反应机理

有机化学八大反应机理

有机化学八大反应机理有机化学是研究有机分子结构和反应的分支化学。

它的研究方法包括反应机理研究,反应产物的分析和结构推断,以及计算机模拟技术的应用。

反应机理研究是有机化学的核心,它的研究方法包括实验证明、模型推断和计算机模拟。

在有机化学中,有八种主要的反应机理,这八种反应机理是有机反应的基础,它们共同构成了有机反应的复杂系统。

这八种反应机理是:酸催化反应、氢转移反应、羰基反应、缩合反应、氧化反应、环化反应、加成反应和复分解反应。

首先,酸催化反应是有机反应中最常见的反应机理,它是由一种有机酸催化剂引发的。

酸催化反应可以分为三类:羧基质子化反应、烷基质子化反应和烯基质子化反应。

它们的反应机理都是酸催化剂将原料中的电子富集,使其形成质子中心,从而引发了反应。

其次是氢转移反应,它是一种重要的有机反应机理,在此反应中,原料中的一个氢原子被转移到另一个原料上,从而形成新的分子结构。

氢转移反应可以分为四类:单位氢转移反应、双位氢转移反应、羰基氢转移反应和烯基氢转移反应。

第三是羰基反应,它是指一种反应机理,在此反应中,羰基会与另一个原料发生反应,形成新的化合物。

羰基反应可以分为两类:无水羰基反应和有水羰基反应。

无水羰基反应是指在无水条件下,羰基与另一个原料发生反应,而有水羰基反应又可分为水解反应和加水羰基化反应。

第四是缩合反应,它是指两个原料发生反应,形成新的化合物的反应机理。

缩合反应可以分为三类:烷基缩合反应、羰基缩合反应和烯基缩合反应。

它们的反应机理都是两个原料的原子发生相互作用,形成新的化合物。

第五是氧化反应,它是指一种反应机理,在此反应中,氧将原料中的一个原子氧化,形成新的分子结构。

氧化反应可以分为四类:氢氧化反应、羰基氧化反应、烯基氧化反应和烃氧化反应。

它们的反应机理都是将原料中的一个原子氧化,形成新的分子结构。

第六是环化反应,它是指一种反应机理,在此反应中,原料中的一个或多个原子被添加到另一个原料上,形成新的环状结构。

有机化学反应机理总结

有机化学反应机理总结

有机化学反应机理总结有机化学反应机理是有机化学研究的重要内容之一,它揭示了有机化合物在反应过程中的分子结构变化和反应速率规律。

通过对有机反应机理的研究,我们可以更好地理解和预测有机化学反应的发生过程,为有机合成化学和药物设计提供理论依据。

下面我们将对常见的有机化学反应机理进行总结和归纳。

1. 加成反应。

加成反应是有机化学中最基本的反应类型之一,它是指两个或多个单体分子中的双键或三键断裂,然后原子或原子团以共价键的方式结合形成新的分子。

加成反应可分为电子亲和性和电子排斥性两种机理。

电子亲和性加成反应是指亲电试剂攻击双键或三键,形成中间离子,最后被亲核试剂攻击生成产物。

电子排斥性加成反应是指亲核试剂攻击双键或三键,生成中间离子,然后被亲电试剂攻击生成产物。

2. 消除反应。

消除反应是有机化学中另一种重要的反应类型,它是指有机分子中的两个邻近原子或原子团通过共价键的方式脱离分子,生成双键或三键。

消除反应可分为β-消除、α-消除和γ-消除等不同机理,其中最常见的是β-消除反应。

β-消除反应是指邻位原子或原子团与相邻的氢原子脱离,生成双键或三键。

3. 取代反应。

取代反应是有机化学中最常见的反应类型之一,它是指有机分子中的一个原子或原子团被另一个原子或原子团取代。

取代反应可分为亲核取代和亲电取代两种机理。

亲核取代是指亲核试剂攻击有机分子中的一个原子或原子团,将其取代生成新的产物。

亲电取代是指亲电试剂攻击有机分子中的一个原子或原子团,将其取代生成新的产物。

4. 加成-消除反应。

加成-消除反应是一种复合反应类型,它是指有机分子中的双键或三键发生加成反应生成中间产物,然后再发生消除反应生成最终产物。

加成-消除反应的机理比较复杂,通常需要通过实验数据和理论计算来揭示其反应过程和产物结构。

总的来说,有机化学反应机理的研究对于我们理解和掌握有机反应规律具有重要意义。

通过深入学习和掌握有机反应机理,我们可以更好地设计和优化有机合成路线,提高有机合成的效率和选择性,为新药物的研发和合成提供理论指导。

有机化学反应机理+范例+原理

有机化学反应机理+范例+原理

有机化学反应机理+范例+原理1. Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。

3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例4.Birch 还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。

反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。

有机化学反应机理详解

有机化学反应机理详解

有机化学反应机理详解有机化学是研究碳和碳之间的化学反应的科学,它是化学学科中的一个重要分支。

在有机化学中,了解反应机理对于理解和预测化学反应的过程至关重要。

本文将详细解析几种常见的有机化学反应机理,以帮助读者更好地理解这一领域的知识。

一、加成反应机理加成反应是指两个或多个分子中的原子或原子团结合形成一个新的分子的反应。

其中,最常见的加成反应是亲电加成和互变异构反应。

亲电加成是一种亲电试剂与亲核试剂发生反应的过程。

亲电试剂是电子亏损的化合物,亲核试剂则是电子富余的化合物。

在亲电加成反应中,亲电试剂首先与亲核试剂发生反应,形成一个中间产物,然后中间产物再与其他试剂发生反应,最终生成产物。

例如,氢氯酸与乙烯反应的机理如下:1. 氢氯酸中的氢离子(亲电试剂)攻击乙烯中的双键(亲核试剂),形成一个中间产物,即乙基氯化物。

2. 乙基氯化物再与其他试剂发生反应,例如水,生成乙醇。

互变异构反应是指两种异构体之间发生的反应。

异构体是指分子结构相同但空间结构不同的化合物。

在互变异构反应中,一个异构体通过断裂和重组键的过程转变为另一个异构体。

例如,顺丁烯二酸和反丁烯二酸之间的互变异构反应如下:1. 顺丁烯二酸中的双键与一分子的水发生加成反应,生成一个中间产物,即顺丁烯二酸酯。

2. 顺丁烯二酸酯再与另一分子的水发生反应,断裂酯键,生成反丁烯二酸。

二、消除反应机理消除反应是指一个分子中的两个官能团之间的原子或原子团发生脱离,形成两个新的分子的反应。

最常见的消除反应是酸催化的脱水反应和碱催化的脱卤反应。

酸催化的脱水反应是指酸作为催化剂促使一个分子中的氢原子和羟基发生脱离,形成一个新的分子和水。

这种反应常见于醇类和酚类化合物。

例如,乙醇发生酸催化的脱水反应如下:1. 酸催化剂(例如浓硫酸)与乙醇发生反应,形成乙醇中的羟基离子。

2. 羟基离子与另一个乙醇分子发生反应,断裂羟基上的氢原子和乙醇中的羟基,生成乙烯和水。

碱催化的脱卤反应是指碱作为催化剂促使一个分子中的卤素原子发生脱离,形成一个新的分子和卤化氢。

化学有机化学重要反应机理归纳

化学有机化学重要反应机理归纳

化学有机化学重要反应机理归纳化学中,有机化学是一个重要的分支领域,涉及到有机物的构造、合成和变化等方面。

而有机化学的重要反应机理也是学习有机化学的关键所在。

本文将对有机化学中的一些重要反应机理进行归纳和讨论。

一、亲核取代反应机理亲核取代反应是有机化学中常见的反应类型,其机理通常由亲核试剂与底物发生取代反应而引起。

最常见的机理是亲核试剂攻击底物中的部分正离子,形成一个烷基或烯基化合物。

这种反应在有机合成中广泛应用,常用于功能团的引入和官能团的转化。

例如,在醇的酸催化下,亲核试剂氯化氢(HCl)可以取代醇中的羟基,生成相应的氯代烷。

2.亲电取代反应机理亲电取代反应是有机化学中另一种常见的反应类型,涉及到亲电试剂与底物之间的电子转移。

亲电试剂通常是带有亲电性的分子,如卤代烷、酸或碱等。

在亲电取代反应机理中,亲电试剂攻击底物中的亲电中心,生成一个新的化学键。

例如,溴代烷和氢氧根离子之间的反应是一个典型的亲电取代反应。

在这个反应中,溴离子攻击了溴代烷中的溴原子,形成醇和氢溴酸。

3.自由基取代反应机理自由基取代反应是一类基于自由基的反应机理。

在这种反应中,自由基反应物首先通过光或热能输入得到激发,然后断裂键,生成具有活性的自由基。

这些自由基会与其他分子发生反应,以使反应系统达到稳定状态。

一个典型的自由基取代反应是溴代烃的氢(H)取代反应。

在紫外光的照射下,溴代烃被激发成溴自由基,然后溴自由基与氢气反应生成氢溴酸。

4.加成反应机理加成反应是一种常见的有机反应类型,涉及到底物中的多个亲核中心或亲电中心与试剂发生加成反应,形成一个新的化学键。

例如,烯烃和氢气之间的加成反应是合成烷烃的一种重要方法。

在该反应中,烯烃中的双键被氢气加成,生成相应的烷烃。

5.消除反应机理消除反应是一种将底物中的两个官能团除去并形成新的双键或多键的反应类型。

它涉及到一个亲核试剂和一个酸或碱试剂。

例如,醇与酸发生消除反应时,醇中的羟基与酸反应,失去一个分子的水并形成双键。

常见有机化学反应及机理

常见有机化学反应及机理

Beckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如反应实例Bouveault-Blanc还原反应机理反应实例Claisen-Schmidt反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实例Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应。

反应机理:反应实例:Cope 消除反应反应机理反应实例Cope重排1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应(Claisen重排)反应称为Cope重排。

这个反应30多年来引起人们的广泛注意。

1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。

Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。

例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3] -迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:反应实例Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。

对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。

反应实例Diels-Alder反应含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物:这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。

有机化合物的反应类型与反应机理解析

有机化合物的反应类型与反应机理解析

有机化合物的反应类型与反应机理解析有机化合物是由碳和氢以及其他一些元素构成的化合物。

它们在自然界中广泛存在,是生命体的基础组分之一。

有机反应是指有机化合物之间或有机化合物与其他物质之间发生的化学反应。

本文将探讨有机化合物的反应类型和反应机理,以便更好地理解有机反应的本质。

一、取代反应取代反应是指有机化合物中的一个原子或基团被另一个原子或基团取代的反应。

取代反应是最常见的有机反应之一,也是有机合成中最重要的反应类型之一。

取代反应包括取代烷烃中的氢原子、取代芳香化合物中的氢原子以及取代醇、酸等官能团中的原子或基团。

取代反应机理多种多样,如亲核取代反应、电子亲合取代反应等。

二、加成反应加成反应是指两个或多个反应物相互加成形成一个单一的产物。

加成反应可以是在不饱和化合物之间发生的,也可以是在不饱和化合物与饱和化合物之间发生的。

加成反应机理的主要步骤是亲电或亲核加成,生成中间体,然后发生消除反应,得到最终产物。

加成反应广泛应用于有机合成中,可合成各种有机化合物。

三、消除反应消除反应是指有机化合物中的两个原子或基团之间的共价键断裂,形成一个双键或三键的反应。

消除反应可以是热力学控制的,也可以是动力学控制的。

消除反应机理一般涉及负电荷的迁移,生成中间体,然后失去一个离子得到最终产物。

消除反应在有机合成中也是一种重要的反应类型。

四、重排反应重排反应是指有机化合物中的原子或基团的重新排列,形成不同的化合物的反应。

重排反应可以是热力学控制的,也可以是动力学控制的。

重排反应机理复杂多样,常涉及质子迁移或碳骨架重构等步骤。

重排反应在有机合成和天然产物合成中具有重要的地位。

五、氧化还原反应氧化还原反应是指有机化合物中的电荷转移过程,其中一个物种被氧化,而另一个物种被还原。

氧化还原反应可以是有机物与无机物之间的反应,也可以是有机物之间的内部电子转移反应。

氧化还原反应机理涉及电荷转移、氧化剂和还原剂的参与等步骤。

氧化还原反应在有机合成和有机化学领域具有广泛应用。

经典有机化学反应机理大全

经典有机化学反应机理大全

O OH H
COOEt
-EtO-
O
H EtOOC
-H+
O
H+
O
-CO2
O
COOEt
H HOOC
22. Diels-Alder反应(共轭二烯与亲二烯体发生环加成得到六元环, 反应具有立体专一性)
MeOOC +
COOMe
H COOMe
MeOOC H
COOMe
H COOMe
反应机理
COOMe
H COOMe
+ Ts
23. Enamine(烯胺)反应(二级胺与具有α-H的醛, 酮发生反应)
O H3C
H +N
O H3O+ H3C
N H3C
Br
N
H3C
反应机理
O
H
CC + NR
H
R
OH CCNR HR
R NR
24. Eschweiler-Clark反应(将伯胺, 仲胺和甲醛及甲酸还原性甲 基化制备叔胺)
=R
EtOH e-
R HH
EtOH
HH
EtOH
-R
R
HH
HH
10. Bouveault-Blanc反应(酯在钠-醇体系中先还原成醛, 再进一步 还原为伯醇)
RCOOR'
Na RCH2OH
EtOH
反应机理
O R OR'
Na
O
EtOH OH
Na
OH EtOH
R OR'
R OR'
R OR'
H R OR'
重要的有机反应机理
1. Arndt-Eistert反应(重氮甲烷与酰氯作用形成 -重氮酮,在Ag离 子催化下酰基碳烯 重排得到烯酮。烯酮水解得到多一个碳的羧酸)

有机化学反应机理

有机化学反应机理

有机化学反应机理引言:有机化学反应机理是指有机化合物在特定条件下发生化学反应时,反应过程中各个分子之间发生的分子间和分子内的碰撞、解离、结合等变化的详细描述。

了解反应机理可以帮助我们理解反应的速率、产物的生成和副产物的形成,以及优化反应条件和设计新的反应方法。

本文将以酯化反应和亲电取代反应为例,介绍有机化学反应机理的基本概念和应用。

一、酯化反应机理酯化反应是一种有机合成中常见的重要反应,通过酸催化或酶催化,醇和羧酸反应生成酯。

酯化反应机理主要分为酸催化和碱催化两种情况。

1. 酸催化酯化反应机理:酸催化酯化反应机理主要包括以下几个步骤:(1) 酸催化下的醇解离:酸催化剂质子化醇分子,使其形成离子,离子与羧酸发生加成反应生成酯中间体。

(2) 酯中间体的解离:酯中间体质子化,发生解离反应生成产物酯和酸。

(3) 酸催化下的水解反应:反应体系中加入水,酸与水反应生成产物醇和酸。

2. 碱催化酯化反应机理:碱催化酯化反应机理主要包括以下几个步骤:(1) 碱催化下的醇解离:碱催化剂质子化醇分子,使其形成离子,离子与羧酸发生加成反应生成酯中间体。

(2) 酯中间体的解离:酯中间体质子化,发生解离反应生成产物酯和醇。

(3) 碱催化下的水解反应:反应体系中加入水,碱与水反应生成产物醇和酸。

二、亲电取代反应机理亲电取代反应是有机化学中常见的一类反应,以亲电试剂与亲核试剂之间的反应为特点。

以卤代烷与亲核试剂反应为例,介绍亲电取代反应机理。

1. 亲电取代反应机理:亲电取代反应机理主要包括以下几个步骤:(1) 亲电试剂的活化:亲电试剂在反应条件下被激活,如卤代烷在碱性条件下质子化。

(2) 亲电试剂与亲核试剂的反应:亲电试剂中的亲电中心与亲核试剂发生亲电取代反应,生成产物。

(3) 产物的解离:产物质子化或去质子化,发生解离反应生成最终产物。

三、应用和意义了解有机化学反应机理有助于我们理解和预测反应的性质和行为,提高有机合成的效率和选择性。

化学中的有机合成反应原理及机理

化学中的有机合成反应原理及机理

化学中的有机合成反应原理及机理有机化学是化学的分支,主要研究有机物,即碳氢化合物及其衍生物。

在有机合成中,合成反应是最基本的实验操作之一,也是实现有机分子结构设计和构建的关键。

有机合成反应原理有机合成反应原理可以大致分为三类:加成反应、消除反应和取代反应。

1、加成反应(Addition Reaction)加成反应是指在化合物中两个原子团之间发生相互作用,形成一个新的化学键,通常产生了对于原有分子来说更大的分子量。

加成反应是有机化学最基本、最常见的反应类型之一,主要包括π键的加成反应和偶极加成反应。

(1)π键的加成反应π键的加成反应是指当烯烃与其他原子团相遇时,它们之间的π键可以发生开裂,两个不饱和的单元分别与加成的原子团结合,形成一个新的化合物。

例如,乙烯与氢气反应生成乙烷,如下所示:C2H4 + H2 → C2H6(2)偶极加成反应偶极加成反应是指存在偶极矩的化合物与另一个带有相反偶极矩的化学物质结合,形成键合物,且偶极矩消失。

例如,醛或酮与硫酸铵反应,生成席夫酸盐。

RCOR' + NH4HSO4 → RCOOCH3 + H2SO4 + NH32、消除反应(Elimination Reaction)消除反应是指某个分子中的一个基团离开后,该分子的反应物结构发生变化。

例如,醇在酸性溶液中加热,可以进行脱水反应。

R-OH → R-OH2+ → R+ + H2O3、取代反应(Substitution Reaction)取代反应是有机化学中最基本的反应类型之一,指一种化合物中的原子团或基团被另一种原子或基团所取代的反应。

取代反应可以分为有机物中的芳香取代反应和脂肪族烷基取代反应。

(1)芳香取代反应芳香取代反应是指原有芳环中的氢原子被取代或加成另一个基,通常反应发生在带有空位的或能通过羟基、氨基、羟基苯甲酸等配体引发的机制中,如下所示:C6H6 + Cl2 → C6H5Cl + HCl(2)脂肪族烷基取代反应脂肪族烷基取代反应是指有机物中的烷基或类似物中的某个氢原子被取代或加成另一个基团的反应,通常发生在角化反应中。

有机反应机理和反应类型

有机反应机理和反应类型

有机反应机理和反应类型有机反应机理是研究有机化合物在反应过程中发生的变化的一种方法。

它揭示了反应底物与产物之间的化学变化,以及反应中可能涉及的中间体和过渡态。

有机反应类型则是根据反应中的特定特征和机制将反应分类的方法。

一、酯化反应酯化反应是一种有机反应,通过酸催化或酶催化,醇与酸酐之间的酯结合,生成酯化合物。

该反应的机理包括酸催化步骤、裂解步骤和酯化步骤。

酸催化步骤中,酸负责质子化醇,并使酸酐发生裂解,生成酸和酰氧离子。

裂解步骤中,酸酐的酰氧离子与醇的质子化醇发生求核取代反应,形成酯和酸。

酯化步骤中,酸催化下,酸与醇发生质子化和水解反应,生成酯。

二、亲电取代反应亲电取代反应是一种有机反应,通过亲电试剂与有机物中的亲核试剂之间的相互作用,进行化学变化。

该反应包括亲电试剂的进攻和亲核试剂的离开,生成产物。

亲电取代反应的机理可以分为两步:亲电试剂进攻和亲核试剂离开。

在第一步中,亲电试剂通过与反应物的亲电中心之间的相互作用,形成中间体。

在第二步中,亲核试剂攻击中间体,将原来的反应物的基团替换为新的基团。

三、自由基反应自由基反应是一种有机反应,通过自由基与有机物中的亲核试剂之间的相互作用,进行化学变化。

该反应的机理包括自由基的产生、自由基的进攻和自由基的消除。

在产生自由基的步骤中,常使用氧化剂或光照射来打断反应物的化学键,产生自由基。

在自由基进攻的步骤中,自由基通过与反应物中的亲电中心之间的相互作用,形成中间体。

在自由基消除的步骤中,反应产物中的两个自由基相互结合,生成较稳定的产物。

四、环加成反应环加成反应是一种有机反应,通过酸催化或碱催化,烯丙基复合物与具有亲核性的试剂之间的反应,生成环化合物。

该反应的机理包括烯丙基离子的形成、环中间体的形成和中间体的断裂。

在烯丙基离子的形成步骤中,烯丙基复合物通过酸催化或碱催化,生成带正电荷的烯丙基离子。

在环中间体的形成步骤中,烯丙基离子与具有亲核性的试剂发生求核取代反应,生成环中间体。

有机化学四大反应类型

有机化学四大反应类型

有机化学四大反应类型有机化学四大反应类型是有机化学中最基本且重要的四种反应类型,分别是取代反应、消除反应、加成反应和重排反应。

本文将详细介绍这四种反应类型的定义、机理和应用。

一、取代反应取代反应是指一个原子、基团或官能团被另一个原子、基团或官能团所取代的反应。

这种反应常见于醇、酸、醛、酮等有机化合物中,通常涉及到亲核试剂和电子受体之间的反应。

取代反应的机理可以分为亲核取代和电子受体取代两种。

亲核取代反应中,亲核试剂攻击电子亏损的反应物,形成碳正离子中间体,并最终生成新的化合物。

常见的亲核试剂有氢氧根离子、卤素离子、氨基离子等。

电子受体取代反应中,电子富集的反应物攻击亲电子试剂,形成碳负离子中间体,并最终生成新的化合物。

常见的亲电子试剂有卤代烃、烯烃、芳香族化合物等。

二、消除反应消除反应是指有机化合物中发生键的断裂,生成双键或三键的过程。

消除反应通常涉及到酸碱催化剂和高温条件。

消除反应的机理可以分为β消除和α消除两种。

β消除反应中,发生消除的反应物中的β碳和邻位原子之间的键被断裂,生成双键。

β消除反应常见于醇、酮、酯等化合物中。

α消除反应中,发生消除的反应物中的α碳和邻位原子之间的键被断裂,生成双键或三键。

α消除反应常见于醇、酸、醛等化合物中。

三、加成反应加成反应是指两个或多个反应物中的原子或基团结合在一起,生成一个新的化合物。

加成反应通常涉及到亲电试剂和亲核试剂之间的反应。

加成反应的机理可以分为亲电加成和亲核加成两种。

亲电加成反应中,亲电试剂攻击亲核试剂,生成一个带正电荷的中间体,并最终生成新的化合物。

常见的亲电试剂有卤代烃、烯烃、芳香族化合物等;常见的亲核试剂有氢氧根离子、卤素离子、氨基离子等。

亲核加成反应中,亲核试剂攻击亲电试剂,生成一个带负电荷的中间体,并最终生成新的化合物。

常见的亲电试剂有卤代烃、酰卤、酸酐等;常见的亲核试剂有氢氧根离子、氨基离子、醇等。

四、重排反应重排反应是指有机化合物中的原子或基团在分子内或分子间发生位置变化的反应。

有机反应机理知识点归纳

有机反应机理知识点归纳

有机反应机理知识点归纳
有机反应机理是有机化学中非常重要的一部分,它描述了有机分子之间发生化学反应的详细过程。

下面是一些常见的有机反应机理知识点归纳:
1. 反应类型:
- 加成反应:两个单体结合形成一个新的化合物。

- 消去反应:一个大分子分解成两个或更多小分子。

- 变位反应:分子内原子或基团的位置重新排列。

- 取代反应:一个原子或基团被另一个原子或基团取代。

2. 反应机理的步骤:
- 初始步骤:包括反应物的活化和生成中间体。

- 中间体的转化:中间体经历一系列的转化步骤,最终形成产物。

- 生成产物:最终产物生成并结束反应。

3. 催化剂的作用:
- 催化剂可以加速反应速率,降低活化能。

- 酶是生物体内常见的催化剂。

4. 反应速率与反应底物浓度的关系:
- 当反应底物浓度增加时,反应速率也会增加。

- 反应速率与浓度之间的关系可以通过速率方程式表示。

5. 质子转移反应:
- 质子可以从一个分子转移到另一个分子,形成质子化和去质子化产物。

- 质子转移反应在有机化学中非常常见。

6. π电子的参与:
- π电子可以作为电子云,参与化学反应中的电子迁移。

以上是有机反应机理的一些常见知识点归纳,希望对您有所帮助。

有机化学反应机理

有机化学反应机理

有机化学反应机理一、引言有机化学反应机理是研究有机化合物在反应过程中发生的分子转化和反应速率的原理和规律的科学。

它对于揭示有机反应的本质、预测反应产物和优化反应条件具有重要意义。

本文将以几种常见有机化学反应为例,介绍其反应机理及相关特点。

二、酯化反应酯化反应是有机化学中一种重要的酸催化反应。

它通过酸催化剂使酯酸酐与醇发生取代反应,生成酯和水。

酸催化剂通常是质子酸,如硫酸、磷酸等。

反应机理包括亲核进攻、质子化、质子转移和亲核消除等步骤。

该反应机理的研究可以为酯化反应条件的优化和产物选择提供理论依据。

三、氧化反应氧化反应是有机化学中常见的重要反应类型之一。

它通过氧化剂使有机物中的氢原子被氧原子取代,生成相应的氧化产物。

氧化反应的机理复杂,常涉及自由基、电子转移和氧化还原等过程。

例如,醇的氧化常用氧气或过氧化氢作为氧化剂,生成相应的醛或酮。

氧化反应机理的研究可以为氧化反应条件的控制和产物选择提供理论指导。

四、加成反应加成反应是有机化学中一类重要的反应类型,指两个或多个反应物中的原子团通过共价键形成新的化学键。

加成反应的机理多样,常见的有电子亲和性反应、亲核性反应、自由基反应等。

例如,醛和酮与亲核试剂发生加成反应,生成相应的醇或酮。

加成反应机理的研究可以为反应条件的优化和产物选择提供理论支持。

五、消除反应消除反应是有机化学中一种重要的反应类型,指通过断裂一个碳-碳键和一个碳-氢键,生成一个新的双键或三键。

消除反应的机理多样,常见的有β-消除、酸催化消除、碱催化消除等。

例如,卤代烷和碱发生消除反应,生成烯烃。

消除反应机理的研究可以为反应条件的控制和产物选择提供理论指导。

六、总结有机化学反应机理的研究对于理解有机反应的本质、预测反应产物和优化反应条件具有重要意义。

本文以酯化反应、氧化反应、加成反应和消除反应为例,介绍了它们的反应机理及相关特点。

希望通过对这些反应机理的了解,能够提高我们对有机化学反应的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Beckma nn 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰 氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:环己酮月亏己内酰胺Bouveault -Bia nc 还原反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反 位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

R II 1ST、OH + H H 2O N=C —R -OH 2 R F —N=C —RR F —NHC —R迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如 CH 3CH 2t-Bui .. CH3 H2SO4 CH 3CH 2XOIIc IIEt^O—NHCCH 3N H rX OH反应实例 H 2SO 4C6H 5y CH 3CII*OHO__一 C5H5NH -C - CH 3脂肪族竣酸酯可用金属钠和醇圧原得一级醇。

氏不饱和竣酸酯 还原得相应的饱和醇°芳香酸酯也可进行本反应,但收率较低,本法 在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共辄的双键可 不受影响9OEtOHR —C —OR 1 + 皿■ RCH 3OH + RQH反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中 夺取一个质子转变为自由基,再从钠得到一个电子生成负离子,泊除 烷细基成为醛,醛再经过相同的步骤还原咸醇钠,再酸化得到相应的 醇。

□O-EtCHR —C —OR' + Na ------------------------- — R^C —OR 1 _— R —C —OR 1_R —CH —OR* ------------ R —CH-OR ---------------------- R —C —H■ R —C —HiEtCHR —G —H ----------------Na +FCH 2OH反应实例醛酮也可以用本法还賦 得到相应的醇;Claisen- Schmidt 反应一个无:一氢原子的醛与一个带有:一氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇 溶液存在下发生缩合反应,并失水得到:汀;不饱和醛或酮:反应机理NaR —CH 3(CHi )10CO^tNa EtOHCH/CH^KCHaOH 75%EtO 2C(CH^CO^t ——_■ EtOH HOCH XCH 抚CH 例畑CHgH^CHOC 哄⑴沖・叭如皿0HCH=CH-CHO 亠 H 2OClaise n 酯缩合反应含有僅-氢的酯在酚钠等碱性缩合剂作用下发生缩合作用,失去一分子 醇得到E 番同酸it 如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合 得到乙麻乙酸乙酯。

2CH 3CO a C2Hj -------------- -- CH^CH jOO^Hs 75%二元羧酸酯的分子内酯缩合见 Dieckmann 缩合反应。

反应机理:CH 3CHOOHOH反应实例10% NaOII水醇濬液oCH=CH-C-C6H 5 + H 2OH 2O?H-C H2CHO竺CH-CH ;CHO-H 2OCH=CHCHOCH3COCH 3CH3COC6H5(3)CH3COCH3N0OH 水濬液 N 妞OH 水溶液OCH=CH-i?-CH 3乙酸乙酯的a-氢酸性很弱C p^a ^24 5).而乙醇钠又是一个相对■较 弱的碱(乙醇的疋s ,因此,乙酸乙酯与乙醇钠作用所形成的负离 子在平衡体系中是很少的。

但由于最后产物乙猷乙酸乙酯是一亍比较强的 酸,能与乙醇钠作用形成很稳定的负离子,从而使平衡朝产物方向移动“ 所以,尽管反应体系中的乙酸乙酹负离子浓度很低,但一形成后,就不断 地反应,结果反应还是可以顺利完成。

■CHaCOjC^ + C :aH 3OHCH 3 — c —CHiCO 2C a H 5氢廳用零瞬刑缔翳碱翻噹鑒醐严、反应实例:如果酯的旷碳上只有一个氢原子,由于酸性丈弱,用乙醇钠难于形成 负离子,需要用较强的碱才能把酯变为负离子。

如异丁酸乙酯在三苯甲基 钠作用下.可以进行缩合.而在乙醇钠作用下则不能发生反应,aiJTH ^CHCO 2C 2H 5 + (C 6H 5)3C~Na+Eta° *■ tpH3)2CH-C-CCO 3C 2Hj +Q 川銅CH CHj两种不同的酯也能发生酯缩合,理论上可得到四种不同的产物,称为混 合酯缩合,在制备上没有丈大意义。

但如果其中一个酯分子中既无。

-氢原 子.而且烷氧魏基文比较活泼时,则仅生成一种缩合产物。

如苯甲酸酯、 甲酸酯、草酸酯、碳酸酯等,与其它含4-氢原子的酯反应时,都只生成一 种缩合产物。

oCH 3—C —CH/?O 2C 2H 5-7」3oCH 3—C^CHCC 2C 2H 5 + C 2H 5OH|H +CH^—Q-OCjHiCH a CO 3C 2HjCH 3—C — CH 2CO/?2H 5CHaCOaCjH^qHgH - 8彳5再CO a C a Hj实际上这个反应不限于酯类自身的缩合,醋与含活泼亚甲基的化合物都 可以发生这样的缩合反应,这个反应可以用下列通式耒示二£ I殳|尺=8心比R-C-OC 2H 5 + -CH-R 1 ---------------------------------- -- R_H Y -住CN CORCope 消除反应产叙山化物热钢生成烯轻和心n 代乘实际上只需将烦胺与氧化剂旅在一起.不需分离出氧化叔胺即可继续 进行反应,例如在干燥的二甲亚飙或四氫吠喃中这个辰应可在室焉进行* 此反应条件温和、副反应少*反应过程中不发生重排,可用来制备许多烯 區 当氧化叔胺的一牛绘基上二个◎位有氢原子存在时,消除得到的烯烧 是混合物,但段血finann 产物为主;如得到的烯妊有顺反异构时.一般以 E-型为主。

例如=CH 3CH=CHCH 3 4- CH 3CH i CH = CH 2 E-^21% gN-型 12%反应机理过蠹聽餾熾护过程中"5环要产生这样的环狀结构,氨基和卩-氢原子必须处于同一侧,并且在 形成五员环过渡态时,加乖原子上的原子或基团呈重盏型,这样的 述?谖态需桑较咼的诂化能*形应启也很木倉正*易干迸仃消除反血Q反应实例HCOiC 3H 5 + CH *0疋出5OHCCH 2CO 2C 2H 5C €H^CH 5CO 2CH 3 + &0疋申3 ------ H 亠C&HQI_占一C6C 夙 ■吃© -CO^H,SO ■- 15CfCQ^NRa-90%+ R^NOHCope 重排1,5-二烯类化合物受热时发生类似于0-烯丙基重排为C-烯丙基的重排反应(Claisen 重排)反应称为Cope 重排。

这个反应30多年来引起人们的广泛注意。

1,5-二烯在150— 200°C 单独加热短时间就容易发生重排,并且产率非常好。

R R 1YI |/ H?C=CHYH —c —CH=C 岂R M込(65-90%)R n R 1 n R" = H n Aik ; Y, Z = CO^Et , CM , C 6H 5Cope 重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。

例如: 内消旋一3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是 (Z, E )-2,6辛二烯:反应机理Cope 重排是[3,3];二迁移反应,反应过程是经过一个环状过渡态进行的协同反应: ~200°CEt100%olt50*CCH 2 + (CH I )2NOHCH^—N(CH£)2CO^E t在立体化学上,表现为经过椅式环状过渡态:反应实例Clemme nsen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。

对酸不稳定而对碱稳定的化合物可用 鸣龙反应还原。

反应实例225 °C120 °C120 &CZri-HgHC1—CH 2—十H 2OWolff-Kishner-黄咂-二乙烯基坏丙谍Diels -Alder 反应含有一个活泼的双键或叁键的化合物1,4-加成,生成六员环状化合物:(亲双烯体)与共轭二烯类化合物(双烯体)发生这个反应极易进行并且反应速度快, 应用范围极广泛,是合成环状化合物的一个非常重要的方法。

带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利。

常用的亲双烯体有:丁烘二竣醛F 列基团也能作为亲双烯体发生反应:君0%OH口)Zn-HgHOI顺丁烯二酸軒 丙烯醛 丙•烯酸醃CO 2HC IIIcCO.2H对苯酉昆 OO企P-不饱和硝基 化含物II*C —OR 11C二C 二N — ,—N=0 3 CH2=0 > 0=0, 0v£=O反应机理:这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形成一个环 状过渡态,然后逐渐转化为产物分子:厂I —匸丁「、反应是按顺式加成方式进行的, 反应物原来的构型关系仍保留在环加成产物中。

例如:正常的Diels-Alder 反应主要是由双烯体的 H0M0(最高已占轨道)与亲双烯体的LUM0(最 低未占轨道)发生作用。

反应过程中,电子从双烯体的 HOMO 流入”亲双烯体的LUMO 。

也有由双烯体的 LUMO 与亲双烯体的 HOMO 作用发生反应的。

反应实例:常用的双烯体有:r^\NHC0a HHHOMO LUMOLUMO HOMO当双烯体上有给电子取代基、亲双烯体上有不饱和基团如:, —COOH , —COOR ,—CN , —NO?与烯键(或炔键)共轭时,优先生成内型(endo)加成产物: 型加成产物 是指双烯体中的C(2) — C(3)键和亲双烯体中与烯键(或炔键)共轭的不饱和基团处于连接平面同侧时的生成产物。

两者处于异侧时的生成物则称为外型产物:本反应具有很强的区域选择性, 取代基处于邻位或对位的产物:当双烯体与亲双烯体上均有取代基时, 主要生成两个CH 3CO 2OH 3邻位%主OCH 3OCHi内型产物外型产物Favorskii 重排卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸; 则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯C(2)-C(3)O连接平面与烯怪共觇的不饱和基团C(2)-C (3)与烯桂共铤的不饱和基团如为环状:•-卤代酮,X = F, Cl, Br, I卤代烃反应的活泼性顺序为: RF > RCI > RBr > RI ;当烃基超过3个碳原子时,反应过程中易发生重排。

反应机理:首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:反应实例:(1)⑵NaOHIICH 3—CH —C-CH 3BrBrKHCO 3--------------- CH 3—CH=CH —CO2HFriedel — Crafts 烷基化反应芳烃与卤代烃、醇类或烯类化合物在 HF 等)存在下,发生芳环的烷基化反应。

相关文档
最新文档