重复测量资料方差分析

合集下载

方差分析(重复测量)

方差分析(重复测量)
T 13024 时相测量患者的收缩压,试进行方差分析。
诱导
患者
方法
序号
T0
t3
A
1
120
A
2
118
A
3
119
A
4
121
A
5
127
B
6
121
B
7
122
B
8
128
B
9
117
B
10
118
C
11
131
C
12
129
C
13
123
C
14
123
C
15
125
麻醉诱导时相
t1 t2 t4
108
112
120
117
109
115
H uy nh-F eldt
2336.453
Low er-bound
2336.453
B * G RO U PS phericity A ssum ed 837.627
G reenhouse-G eisser 837.627
H uy nh-F eldt
837.627
Low er-bound
837.627
T es ts of Within-Sub je cts Effe cts
M easure: M E A S U RE _1
S ource
Ty pe III Sum of S quares
B
S phericity A ssum ed 2336.453
G reenhouse-G eisser 2336.453
Within SubjectsMEfafuecthly 's WC hi-Square

重复测量方差分析

重复测量方差分析

重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。

通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。

本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。

2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。

在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。

为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。

通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。

3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。

•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。

•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。

如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。

4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。

具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。

步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。

步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。

方差分析三重复测量资料方差分析

方差分析三重复测量资料方差分析
通过重复测量,可以减少实验误差,提高实验结果 的可靠性。
比较不同处理组之间的差 异
通过比较不同处理组之间的差异,可以了解 不同处理因素对实验结果的影响程度。
实验设计
处理因素
确定要研究的处理因素,并确保 其具有科学性和可行性。
重复测量
在相同的实验条件下,对实验对 象进行重复测量,以减少实验误 差,提高实验结果的可靠性。
方差分析三重复测量资料 方差分析
目录
• 引言 • 方差分析基本原理 • 三重复测量资料的方差分析 • 结果解释与结论 • 讨论与展望
01
引言
目的和背景
探讨不同处理因素对实验 结果的影响
通过方差分析三重复测量资料,可以分析不 同处理因素对实验结果的影响,从而为进一 步的研究提供依据。
提高实验结果的可靠性
方差齐性检验
使用Levene's test或 Bartlett's test检验各组方
差是否齐性。
假设检验
根据方差分析结果,进行 假设检验,判断各组均值
是否存在显著差异。
三重复测量资料的方差分析实例
数据来源
选取某实验组和对照组在不同时间点的观察 值作为三重复测量资料。
数据整理
整理数据,确保数据准确无误。
2

应用范围讨论
三重复测量资料方差分析不仅适用于生 物学、医学等领域的数据分析,还可广 泛应用于心理学、经济学、社会学等领 域。然而,由于该方法对数据的要求较 高,因此在应用时需要根据具体的数据 情况选择合适的数据处理和分析方法, 以确保结果的准确性和可靠性。
3
与其他方法的比较
除了三重复测量资料方差分析外,还有 其他多种统计分析方法可用于处理和分 析实验数据。每种方法都有其特点和适 用范围。在选择合适的分析方法时,需 要根据研究目的、数据特征和研究设计 等因素进行综合考虑。例如,对于非重 复测量数据,可以考虑使用独立样本t检 验或单因素方差分析等方法。

重复测量设计的方差分析

重复测量设计的方差分析
区组内实验单位彼此不独立。
u 随机区组设计 ●处理因素在区组内随机分配; 每个区组内实验单位彼此独立。
第二节
重复测量数据 的两因素两水平分析
高血压患者治疗前后的舒张压(mmHg)
处理组 a1
对照组(安慰剂组)a2
顺序号 治疗前 治疗后 合计(Mj) 顺序号 治疗前 治疗后 合计(Mj)
●处理因素在区组内随b机1分配; b2
118
124
-6
132
122
10
134
132
2
114
96
18
118
124
-6
128
118
10
118
116
2
132
122
10
120
124
-4
134
128
6
1248
1206
42
124.8
120.6
4.2
7.90
9.75
8.02
三、重复测同相量一关受的设试。计者的(单血样因重素复测)量的结果是高度
受试者血糖浓度(mmol/L)
214
17
118
明“服8药”有效; 138
122
260
18
132
重复测量设计与随机区组设计区别
降压药9物与安慰剂间疗12效6差别无统计学1意08义;
234
19
120
注若意球事 对1项称0 1性、质单不因能素满实足1验2,重4则复方测差量分数析据的1分F0析值6是偏大的,2增3大0了犯第一类错2误0 的概率。 134
重复测量设计的方差分析
讲课内容
第一节 重复测量资料的数据特征 第二节 重复测量数据的两因素两水平分析

方差分析三重复测量资料的方差分析

方差分析三重复测量资料的方差分析

缺点
实验成本高
需要进行多次测量,增加了实验成本和时间。
数据处理复杂
三重复测量资料的方差分析需要处理大量的数据,并且需要进行复 杂的统计分析,对数据分析的要求较高。
样本量要求高
为了获得更可靠的结果,需要较大的样本量,增加了实验难度。
06
三重复测量资料的方差分析的未来 发展
研究方向
1 2
拓展应用领域
通过比较组间方差和组内 方差的差异,判断各组之
间的差异是否显著。
01
02
03
04
05
1. 建立假设
确定要检验的原假设(H0) 和备择假设(H1)。
3. 计算方差
根据数据计算组间方差和 组内方差。
5. 解读结果
根据统计结果解释实验结 果,确定处理因素对实验 结果的影响是否显著。
03
三重复测量资料的方差分析
感谢您的观看
THANKS
5. 结果解释
根据模型的拟合结果, 解释三重复测量资料 的变化情况,并给出 相应的结论和建议。
04
三重复测量资料的方差分析实例
实例一:药物效果研究
总结词
药物效果研究是三重复测量资料方差分析的重要应用领域之一,主要用于评估药物治疗前后的效果差 异。
详细描述
在药物效果研究中,通常会对同一组受试者在药物治疗前、治疗中、以及治疗后的不同时间点进行测 量,以评估药物对受试者的影响。通过三重复测量资料的方差分析,可以比较不同时间点上受试者的 生理指标、症状改善程度等方面的差异,从而为药物的疗效提供科学依据。
02
方差分析概述
方差分析的定义
方差分析(ANOVA)是一种统计方 法,用于比较两个或多个组之间的平 均值差异是否显著。

重复测量数据方差分析

重复测量数据方差分析

74.4
77.0
75.2 77.4
82.6
80.4
81.2 79.6
68.6
65.0
63.2 63.4
79.0
77.0
73.8 72.5
69.4
66.8
64.4 60.8
72.6
71.0
68.2 70.2
72.4
72.6
72.8 72.6
75.6
73.4
73.4 72.2
80.0
78.0
76.4 74.8
7.90
9.75 8.02
经检验处理组与对照组的差值 d 方差不齐(F S12 / S22 6.58 , P 0.01),不符合两均数比较 t 检验的前提条件。
设置对照旳前后测量设计
前后测量数据间存在明显差别时,并不能阐明这种差 别是由前后测量之间施加旳处理所产生,还是因为存 在于前后两次测量之间旳时间效应所致。
比较
表9-2 两种措施对乳酸饮料中脂肪含量旳测定成果(%)
编号
1 2 3 4 5 6 7 8 9 10
哥特里-罗紫法
0.840 0.591 0.674 0.632 0.687 0.978 0.750 0.730 1.200 0.870
脂肪酸水解法
0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
受试 对象j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
剂型 k
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
服药后测定时间i(周)

第十四章 重复测量的资料方差分析

第十四章  重复测量的资料方差分析

编号
治疗前
治疗后
差值
1
130
114
16
2
124
110
14
3
136
126
10
4
128
116
12
5
122
102
20
6
118
100
18
7
116
98
18
8
138
122
16
9
126
108
18
10
124
106
18
X
126.2
110.2
16.0
S
7.08
9.31
3.13
比较
表3-3 两种方法对乳酸饮料中脂肪含量的测定结果(%)
SS
MS
F
P
总变异
14 0.5328
处理间
2 0.2280 0.1140 11.88 <0.01
区组间
4 0.2284 0.0571 5.95 <0.05
误差
8 0.0764 0.0096
2.重复测量设计区组内即同一受试者 的重复测量数据是高度相关的。例如,计 算表 12-3 中各时间点数据间的相关系数 结果见表 12-6。
表12-4 表 12-3数据的方差分析表
变异来源 自由度 SS MS F
P
总变异
31 5.751
区组(受试者)
7
2.828 0.361 27.77 <0.01
放置时间
3
2.959 0.986 75.85 <0.01
误差
21 0.264 0.013
表12-7 表12-3数据“球对称”检验结果

第三讲重复测量资料的方差分析

第三讲重复测量资料的方差分析

第三讲 重复测量资料的方差分析一、重复测量资料的概念例2—1 测量8例受实试者在餐后不同时间的血糖值,以研究血糖的变化规律。

见表2-1 表2-1 不同受试者在不同时间的餐后血糖(mmol/L)code 餐后 餐后30分钟 餐后60分钟 餐后90分钟1 5.32 5.32 4.98 4.652 5.32 5.26 4.93 4.703 5.94 5.88 5.43 5.044 5.49 5.43 5.32 5.045 5.71 5.49 5.43 4.936 6.27 6.27 5.66 5.267 5.88 5.77 5.43 4.938 5.32 5.15 5.04 4.48上述研究中对每一个观察单位重复进行4次观测,每一次观察同一个指标,这样所获得的资料称之为重复测量的资料一般说来,研究设计中考虑到以下问题时应采用重复测量研究设计及其方差分析:1、研究主要目的之一是考察某指标在不同时间的变化情况。

如考察某种减肥药的疗效,需随访研究对象在一段时间内休重的变化。

2、研究个体间变异很大,应用普通研究设计的方差分析时,方差分析表中的误差项值将很大,即计算F值时的分母很大,对反应变量有作用的因素常难以识别。

应用重复测量设计时可将受试者内变异从普通方差分析表的误差项中分离出来,减小误差项。

如以家庭为观察单位,考察家庭中每一成员对某类食品的喜爱程度;以窝别为观察单位,观察一窝仔鼠食用某种饲料后体重增加情况;以人为观察单位,观察牙齿中患龋齿的个数;以某集团公司为观察单位,考察其旗下上市子公司股票价格表现等等。

所有这些类型的资料都存在一个共性,即观察结果相互之间存在一定程度的内在相关性,即不满足方差分析、线性模型应用的前提条件,即各观测结果间相互独立。

重复测量仍然应用方差分析的基本思想,将反应变量的变异分解成以下四个部分:1、研究对象内的变异,又称为组内效应,即测量时间点(或测量条件下)的效应2、研究对象间的变异,有称为组间效应,即处理因素(treatment)的效应3、上述两者的交互作用,组内效应和组间效应的交互作用,表现为在不同时间点(测量条件),处理因素的效应不同。

5 重复测量设计资料的方差分析

5 重复测量设计资料的方差分析

SPSS分析结果:
球型性检验结果, P = 0.178>0.1 ,说明满足条件, 不需进行校正。
SPSS分析结果:
SPSS分析结果:
SPSS分析结果:ຫໍສະໝຸດ 前提条件z z z z
独立性; 正态性; 方差齐性; 球形性(复合对称性)-球形性检验。
如果不满足球形性的条件,可以对自由度进行校正,也 可以采用多变量方差分析(MANOVA)。
变异分解
SS总= SS受试对象间 + SS受试对象内
=(SS处理+SS个体间误差)+(SS时间+ SS处理*时间交互+SS个体内误差) ν总= ν受试对象间 + ν受试对象内
=(ν处理+ν个体间误差)+(ν时间+ ν处理*时间交互+ν个体内误差)
基本步骤
• 建立检验假设,确立检验水准 • 计算检验统计量 • 确定P值,下结论
医学统计学
重复测量资料的方差分析
施红英 主讲 温州医学院预防医学系
重复测量资料
重复测量资料:是同一受试对象的同一观察指标 在不同时间点上进行多次测量所得的资料,常用 来分析该观察指标在不同时间点上的变化特点。
案 例
• 将手术要求基本相同的 15 名患者随机分 3 组,在手术过程中分别采用 A , B , C 三种 麻 醉 诱 导 方 法 , 在 T0 ( 诱 导 前 ) 、 T1 、 T2、T3,T4 五个时相分别测量患者的收缩 压。数据见下表。试进行方差分析。 • Data:rebp.sav
重复测量资料与随机区组设计资料的区别: • 重复测量资料中同一受试对象的数据高度相关; 其处理因素在受试对象间可以随机分配、但受试 对象内的各时间点往往是固定的,不能随机分 配。 • 随机区组设计资料中每个区组内的受试对象彼此 独立,处理只在区组内随机分配,同一区组内的 受试对象接受的处理各不相同。

定量数据重复测量的方差分析

定量数据重复测量的方差分析

定量数据重复测量的方差分析引言。

在科学研究中,我们经常需要对同一组对象进行多次测量,以便得到更加准确和可靠的数据。

在这种情况下,我们需要进行方差分析来确定测量结果的差异是否显著。

本文将介绍定量数据重复测量的方差分析方法及其应用。

一、方差分析的基本原理。

方差分析是一种用于比较两个或多个组之间差异的统计方法。

在定量数据重复测量的情况下,我们通常使用重复测量方差分析(Repeated Measures ANOVA)来分析数据。

重复测量方差分析可以用于比较同一组对象在不同时间点或不同条件下的测量结果之间的差异。

重复测量方差分析的基本原理是利用组内变异和组间变异之间的比较来判断测量结果的差异是否显著。

组内变异是指同一组对象在不同时间点或不同条件下的测量结果之间的差异,而组间变异是指不同组对象之间的测量结果之间的差异。

通过比较组内变异和组间变异的大小,我们可以判断测量结果的差异是否由于不同时间点或不同条件引起。

二、重复测量方差分析的假设。

在进行重复测量方差分析时,我们需要满足以下几个假设:1. 同质性方差假设,不同组对象在不同时间点或不同条件下的测量结果的方差相等;2. 正态分布假设,测量结果符合正态分布;3. 独立性假设,不同组对象在不同时间点或不同条件下的测量结果相互独立。

如果以上假设不成立,我们需要采取相应的方法来处理数据,例如进行变换或者使用非参数方法进行分析。

三、重复测量方差分析的步骤。

进行重复测量方差分析的步骤如下:1. 确定研究设计,确定需要比较的组别以及重复测量的时间点或条件;2. 收集数据,收集不同组对象在不同时间点或不同条件下的测量结果;3. 检验假设,对数据进行正态性检验和同质性方差检验,如果假设不成立,则需要进行相应的数据处理;4. 进行方差分析,利用统计软件进行重复测量方差分析,得出组间变异和组内变异的比较结果;5. 进行事后检验,如果方差分析结果显著,我们需要进行事后检验来确定具体哪些组别或时间点之间存在显著差异;6. 结果解释,根据方差分析和事后检验的结果,对测量结果的差异进行解释和讨论。

重复测量资料的方差分析

重复测量资料的方差分析

重复测量资料的方差分析什么是重复测量资料?重复测量资料是指在同一物件上,经过多次测量所得的一组数据。

它可以用于评估测量装置或人员的准确度和可靠性,或对同一样品在不同时间或不同实验条件下的实验测量结果进行比较。

方差分析方差分析是一种分析比较不同组别之间差异的统计方法,它可以判断一个因素对实验结果的影响是否显著。

在重复测量资料的分析中,方差分析可以用于确定是否存在个体之间的显著差异。

重复测量资料的方差分析方法在重复测量资料的方差分析中,采用的是双因素重复测量资料的方差分析方法。

这种方法包括两个因素:测量因素和重复因素。

测量因素是要分析的因素,重复因素是指对同一物件进行多次测量,每次测量之间都存在一定程度的差异,重复因素会产生误差。

以下是双因素重复测量资料的方差分析步骤:步骤一:确定方差来源方差来源包括测量因素、重复因素以及随机误差。

其中测量因素和重复因素可以用于计算方差,而随机误差则不能。

步骤二:计算平方和平方和是指每个因素所产生的方差之和。

计算平方和的公式如下:•总平方和(TSS):TSS=SSA+SSB+SSAB+SSE•因素A的平方和(SSA):SSA=n∑(yij-y··)2/a-1•因素B的平方和(SSB):SSB=n∑(yij-y··)2/b-1•因素AB的平方和(SSAB):SSAB=n∑(yij-yi·-y·j+y··)2/(a-1)(b-1)•误差平方和(SSE):SSE=TSS-SSA-SSB-SSAB其中,n是每组数据的测量次数,a和b是因素A和因素B的水平数,yij是第i个个体在第j次测量中的数据,yi·是第i个个体在所有测量中的均值,y·j是所有个体在第j次测量中的均值,y··是所有测量数据的均值。

步骤三:计算自由度自由度是指某一因素或误差中可变的部分,计算自由度的公式如下:•总自由度(DFS):dfs=nab-1•因素A的自由度(DFA):DFA=a-1•因素B的自由度(DFB):DFB=b-1•因素AB的自由度(DFAB):DFAB=(a-1)(b-1)•误差自由度(DFE):DFE=dfs-DFA-DFB-DFAB步骤四:计算均方值均方值是平方和与自由度的比值,计算均方值的公式如下:•因素A的均方值(MSA):MSA=SSA/DFA•因素B的均方值(MSB):MSB=SSB/DFB•因素AB的均方值(MSAB):MSAB=SSAB/DFAB•误差的均方值(MSE):MSE=SSE/DFE步骤五:计算F值F值是均方值之比,计算F值的公式如下:•因素A的F值(FA):FA=MSA/MSE•因素B的F值(FB):FB=MSB/MSE•因素AB的F值(FAB):FAB=MSAB/MSE步骤六:计算P值P值是指一个F分布的概率值,计算P值需要使用F分布表。

重复测量方差分析

重复测量方差分析

SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。

在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。

重复测量数据在科学研究中十分常见。

分析前要对重复测量数据之间是否存在相关性进行球形检验。

如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。

在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。

球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。

2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。

血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。

而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。

将收治的诊断胎粪吸入综合症的新生儿共42名。

将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。

PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。

PS组患儿给予牛肺表面活性剂PS70mg/kg治疗。

重复测量设计资料的方差分析SPSS操作

重复测量设计资料的方差分析SPSS操作

8.000 104.703 19.101
2.000 418.813 19.101
48
5.482
32. 577
8.077
48. 000
5.482
12. 000
21. 927
不同诱导时相之间收缩
Sig. .0ቤተ መጻሕፍቲ ባይዱ0
压存在差别,
.000
.000 F=106.558,P<0.01;
.000
.000
.000 诱导时相与诱导方法之
Corre cted
t ests
are
b.
满足了协方差矩阵
Design: Inte rcept+GROUP Within Subjects Design: FACTOR1
球对称的条件,不 需对结果进行校正;
Te sts of Within-Subje cts Effect s
Measure: MEASURE_1
患者序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 0
T 1
麻醉诱导时相
T 2 T 3
120
108
112
120
118
109
115
126
119
112
119
124
121
112
119
126
127
121
127
133
121
120
118
131
122
121
119
129
128
129
126
Lower-bound
263. 120
df Mean Square F

重复测量方差分析报告

重复测量方差分析报告

前后测量设计和配对设计的区别
配对设计可随机分配同一对子的试验单位,同 期观察试验结果,而前后测量设计则不能同期 观察试验结果;
配对设计比较两种处理的差别,前后测量设计 比较某种处理前后的差别;
前后测量设计在推断处理是否有效时需假定 测量时间对观察结果没有影响.
前后测量设计和配对设计的区别
配对设计要求每组观察结果和差值相互独立, 且差值服从正态分布,前后测量设计差值通常 与前一次观察存在相关关系;
重复测量设计
当前后测量设计的重复测量次数≥3时,则所得 观察结果称为重复测量数据.
表12-5 20例患者手术前后症状评分
处理 分组
A A …… B B
手术 前
0.60 1.42 …… 2.71 1.80
10天 0.67 3.40 …… 2.04 1.40
手术后 2月 4月 6月 2.84 2.10 2.00 4.10 2.92 2.65 …… …… …… 2.61 2.17 2.15 1.00 1.30 2.40
18 128.633
Sig. .000
.226
处理<A>的检验结果,F=1.574,P=0.226 组间误差项
表12-10 重复测量设计两因素两水平的方差分析表
变异来源 组间(对象)
干预(A) 组间误差 组内(重复) 时间(B) AB交互作用 组内误差
自由度 19 1 18 20 1 1 18
SS MS 2517.9 202.5 202.5 2314.5 128.6 1702.0 1020.1 1020.1 348.1 348.1 333.8 18.54
5
4 0
45
90
135
放置时间(分钟)

重复测量资料的方差分析

重复测量资料的方差分析

ˆ ˆ ˆ2 2k 式中中的 s 是协方差矩阵中的第 k 行第 l 列元素, s = ( = (∑ s ) / a 是主对角线元素的平均值, s = (∑ s ) / a 是第 k 行的平均值。

ε ˆ 的取值在 1.0 与 1/(a -1)之间。

ε =ˆˆ ˆ分子自由度ν 1 =ν 1 ⨯ε 分母自由度ν 2 =ν 2 ⨯ε 。

具体计算时可用或ε 代替。

用 调整所得的ν 1 及ν 2 的 F 值查临界值表,得 F α (ν ' ,ν ' ) 。

由于ε≤ 1.0,所以调整后的重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间 点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。

这类测量 资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的 治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。

1、 重复测量资料方差分析中自由度调整方法1.调整系数 ε 的计算有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G - G ε ) ,计算 公式为ε =a 2(s kl - s 2) 2(a -1)[∑ ∑ (s kl ) 2 - (2a )(∑ (s 2 ) 2 ) + a 2 (s 2 ) 2 ]k l kkl 2 2 ∑∑ s k l 2 kl ) / a 2 是所有元素的总平均值, s 2 kk l2 2 ll2 2 kkll 第 2 个系数是 Huynh-Feldt 调整系数 ε (H - F ε ) 。

研究表明,当 ε 真值在 0.7 以上时,用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提 出用平均调整值 ε 值进行调整。

ε 值的计算公式为ng (a - 1)ε - 2 (a - 1)[(n - 1)g - (a - 1)ε ]式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。

重复测量方差分析

重复测量方差分析

课件
53
表9-13
课件
54
可以看出重复测量资料中同一受试对象 (看成区组)的数据高度相关
无论哪位受试对象服用曲明片剂或是胶囊,其服药后8 周、16周和24周的体重均和前面时间点(含服药前 的0周)的体重相关。不同时点数据其相关性较强。
课件
55
重复测量资料方差分析的基本步骤 分为三步:
课件
56
⑵计算检验统计量:使用统计软件进行计算结果如下 :
1 50.10 58.20 64.50 2 47.80 48.50 62.40 3 53.10 53.80 58.60 4 63.50 64.20 72.50 5 71.20 68.40 79.30 6 41.40 45.70 38.40 7 61.90 53.00 51.20 课8件 42.20 39.80 46.2015
常用的调整方法
课件
30
4. 计算F值
时间点间 误差
课件
31
球对称性通常采用 Mauchly’s test检验来判断
其结果按α=0.1水准检验,不满足球对称性, 对系数ε进行校正,其结果如下:
结果显示:治疗前与治疗后不课同件 时间转氨酶平均水平不同。32
5.单组重复测量方 差分析数据结构
6.基本程序格式
run; 提示:显示不同水平比较时的结构
课件
48
显示不同水平比较时的结构
课件
49
当兴趣在于1个水平与以后的所有水平 的比较时,可选helmert
………….; repeated time helmert /printm summary ; ………….;
课件
50
小结: 两两比较参数选择
Printe 产生Mauchly’s 的χ2值和P值 Printm 产生不同水平比较结构阵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
' 2 2
(1) Geenhouse-Geisser调整系数(G-G) (2) Huynh-Feldt调整系数(H-F)
自由度调整方法1
ˆ ˆ ( 1 ) G e e n h o u s e - G e i s s e r 调 整 系 数 ( G - G ) 为 :
ˆ
2 a 2 s kk s 2
2 s12 ( y1i y1 )( y2i y2 ) (n 1)
y1i y2i y1i y2i n
2 sij 2 sii s 2 jj
rij
球形对称的实际意义举例
协方差 阵 A1 A2 A3 A4
A1
10 5 10 15
A2
5 20 15 20
A3
10 15 30 25
2 kl
2 2 a 2 是 所 有 元 素 的 总 平 均 值 , s kk ( s ll ) a 是 l
2 2 主 对 角 线 元 素 的 平 均 值 , s k = ( s kl ) a 是 第 k 行 的 平 均 值 。 l
ˆ 的 取 值 在 1 . 0 与 1 / ( a - 1 ) 之 间 。
重复测量设计的优缺点
每一个体作为自身的对照, 克服了个体间的变异。分析时 可更好地集中于处理效应. 因重复测量设计的每一个 体作为自身的对照,所以研究 所需的个体相对较少,因此更 加经济。
优点
缺点
滞留效应(Carry-over effect) 前面的处理效应有可能滞留到 下一次的处理. 潜隐效应(Latent effect) 前面的处理效应有可能激活原 本以前不活跃的效应. 学习效应(Learning effect) 由于逐步熟悉实验,研究对象 的反应能力有可能逐步得到了提高。
检验的P值若大于研究者所选择的显著性水准α时, 说明协方差阵的球形性质得到满足。
球形条件不满足怎么办
• 常有两种方法可供选择: 1. 采用MANOVA(多变量方差分析方法)
2. 对重复测量ANOVA检验结果中与时间有关 的F值的自由度进行调整(调小) ' 分子自由度 1 1
分母自由度
协方差构成的矩阵称协方差阵。

设 k、l为两个测定时点,skl 代表协方差阵中的元素。当k=l时为方差, k≠l时为协方差。共有a个测定时点,将这a个方差和(a-1)/2个协方差 排成协方差阵V为:
2 s11 2 s21 V s2 a1 2 s12 2 s22
2

s12a 2 s2 a 2 saa (n 1)
对于第8、章,几个处理 9 组间的协方差矩阵为:
2 s11 0 0 2 0 s22 0 V 0 0 s2 aa 2 2 且假定s11 saa
• Mauchly氏检验的P值若大于研究者所选择的显著 性水准α时,说明协方差阵的球形性质得到满足。 否则,必须对与时间有关的F统计量的分子、分母 自由度进行调整,以便减少犯I类错误的概率。调 整系数为ε(读作epsilon)。
球形对称的实际意义
所有两两时间点变量间差值对应的方差相等
2 2 s11 s12 2 2 s21 s22 V 2 2 s a1 sa 2 2 s11 ( y1i y1 ) 2
5周后
10周后
两组家兔血清胆固醇的对数随时间的变化
每一根线代表1位病人
血药浓度(μ mol/L)
180 150 120 90 60 30 0
图10.附2
旧剂型 新剂型
4
8
时间(小时)
12
某药新旧剂型血药浓度随时间的变化
内容
• • • • • • •
概述 重复测量概念 几种重复测量资料 协方差 单因素重复测量资料分析 两因素重复测量资料分析 应用

2 sa 2
2 s1a 2 s2 a 2 saa
(10 1)
协方差阵的球形性质是指该矩阵主对角线元素(方差) 相等、非主对角线元素(协方差)为零。
球形性
• 协方差阵的球形性质是指该矩阵主对角线元素(方 差)相等、非主对角线元素(协方差)为零。
• 常用Mauchly氏法检验协方差阵的球形性质。
自由度调整方法2
(2)Huynh-Feldt 调 整 系 数 (H-F )


2
2 a 1 s kl k l

2
2 2a s k k

2
a2 s2

2
ቤተ መጻሕፍቲ ባይዱ

2 式 ( 1 0 - 3 ) 中 的 s kl 是 矩 阵 ( 1 0 - 1 ) 中 第 k 行 第 l 列 元 素 ,
s2 = s k l
本例差值对应的方差精确 相等,说明球形对称。
2 2 2 2 s yi y j s yi s y j 2s yi y j
如:s
2 y1 y2
s s 2s
2 11 2 22
2 12
球形对称的检验
用Mauchly法检验协方差阵是否为球形
H0:资料符合球形要求,
H1:资料不满足球形要求
2 s12 ( y1i y1 )( y2i y2 ) (n 1)
y1i y2i y1i y2i n
2 sij 2 sii s 2 jj
rij
重复测量资料方差分析对协方差阵的要求
• 重复测量资料方差分析的条件: 1. 正态性 处理因素的各处理水平的样本个体之间是相互独立的随机 样本,其总体均数服从正态分布; 2. 方差齐性 相互比较的各处理水平的总体方差相等,即具有方差齐 同 3. 各 时 间 点 组 成 的 协 方 差 阵 (covariance matrix) 具 有 球 形 性 (sphericity)特征。
内容
• • • • • • •
概述 重复测量概念 几种重复测量资料 协方差 单因素重复测量资料分析 两因素重复测量资料分析 应用
重复测量资料方差分析对协方差阵的要求 协方差矩阵
2 2 s11 s12 2 2 s21 s22 V 2 2 s a1 sa 2 2 s11 ( y1i y1 ) 2
• Box(1954)指出,若球形性质得不到满足,则方差 分析的F值是有偏的,这会造成过多的拒绝本来是 真的无效假设。
协方差阵的球形性检验
• 方差是指在某一时点上测定值变异性的
大小,而协方差是指在两个不同时点上
测定值相互变异性的大小。如果在某个
时点上的取值不影响其他时点上的取值,
则协方差为0,反之,则不为0。由方差
s12a 2 s2 a 2 saa (n 1)
对于yi与yj两时间点变量间差值 对应的方差可采用协方差矩阵 计算为:
2 2 2 2 s yi y j s yi s y j 2s yi y j 2 2 2 2 如:s y1 y2 s11 s22 2s12
d 66
设立对照的前后测量设计
表 19-2 肥胖患者治疗前后体重(kg) 观察对 象编号 1 2 3 4 5 6 7 8 9 10 11 12 合计 均数 标准差 试验组 体重(kg) 服药前 (X1) 101 131 131 150 124 137 126 105 90 67 84 109 1355 112.9 24.5 服药后 (X2) 100 136 126 143 128 126 116 95 87 57 74 101 1289 107.4 26.3 差值 d= X1- X2 1 -5 5 7 -4 11 10 10 3 10 10 8 66 5.5 5.6 13 14 15 16 17 18 19 20 21 22 23 24 观察对 象编号 对照组 体重(kg) 服药前 (X1) 100 129 127 145 137 128 115 130 87 69 85 109 1361 113.4 23.6 服药后 (X2) 101 131 126 140 135 126 116 126 90 70 84 101 1346 112.2 22.5 差值 d= X1- X2 -1 -2 1 5 2 2 -1 4 -3 -1 1 8 15 1.25 3.2
重复测量设计资料的方差分析
内容
• • • • • • •
概述 重复测量概念 几种重复测量资料 协方差 单因素重复测量资料分析 两因素重复测量资料分析 应用
内容
• • • • • • •
概述 重复测量概念 几种重复测量资料 协方差 单因素重复测量资料分析 两因素重复测量资料分析 应用
方差分析
单 反 应 变 量
A4
15 20 25 40
s1-22 = 10 + 20 - 2(5) = 20 s1-32 = 10 + 30 - 2(10) = 20 s1-42 = 10 + 40 - 2(15) = 20 s2-32 = 20 + 30 - 2(15) = 20 s2-42 = 20 + 40 - 2(20) = 20 s3-42 = 30 + 40 - 2(25) = 20
重复测量的概念
狭义 时间 重复测量(repeated measure)是指对同一观察对象的同一观察指标在 不同时间点上进行的多次测量,用于分析该观察指标在不同时间上 的变化特点。
部位 重复测量(repeated measure)是指对同一观察对象的同一观察指标在 个体的不同部位(或组织)上重复获得指标的观察值。
场合
广义
重复测量(repeated measure)是指对同一研究对象的某一观察指标在 不同场合(occasion,如时间点、部位等)进行的多次测量。
相关文档
最新文档