《半导体物理》第四章

合集下载

半导体物理学第四章

半导体物理学第四章
2
算术平均速度:
8kT 5 7 10 m / s 10 cm / s * m
作为比较: 声速~ 340m / s ,波音767~272m / s
§4.1 载流子的漂移运动,迁移率
无规则运动的原因:载流子(电子)在运动过程中 遭到散射,每次散射后它们的运动方向及速度大小 均发生变化,而且这种变化是随机的,所以速度不 能无限增大。 ②有规则运动(条件:存在电场或载流子浓度梯度)
a) 施加电场,电子(空穴)作 漂移运动,在电场方向上获 得加速度。
设电压为 V ,则电场
q * F qE m a a * E m
V E L

图4-1-1 电子在电 场中的运动
§4.1 载流子的漂移运动,迁移率
每次散射经过时间△t,得到附加度 j nqd 。
n型,n p, n N D , n 1 1 N D qn
n
§4.1 载流子的漂移运动,迁移率
1 p型, p n, p N A , p p N A q p
本征,ni pi , i 1
1
i

1 ni q( n p )
n type, 用N D N A 代替N D 存在杂质补偿时 p type, 用N A N D 代替N A

V ( x)
x 0,V (0) V0 示意图 V ( x) V0 Ex V0 x xd ,V ( xd ) 0, E x const d V0 电子电势能 qV ( x) qV0 qEx qV0 q x x0 设 xd 处为电势零点,对应的导带底为 Ec 0 V0 Ec ( x) Ec 0 qV ( x) Ec 0 qV0 qEx Ec 0 qV0 q x 则: xd

第半导体物理课件 第四章

第半导体物理课件 第四章

用,对电子产生散射作用。
• 横声学波要引起一定的切变,对具有多极值、旋转椭球等 能面的锗、硅来说,也将引起能带极值的变化。
光学波散射
• 离子性半导体中,长纵光学波有重要的散射作用。 • 每个原胞内正负离子振动位移相反,正负离子形成硫密 相间的区域,造成在一半个波长区域内带正电,另一半 个波长区域内带负电,将产生微区电场,引起载流子散 射。 长声学波振动,声子的速度很小,散射前后电子能量基本不 变,--弹性散射 光学波频率较高,声子能量较大,散射前后电子能 量有较大的改变,--非弹性散射。

迁移率和杂质与温度关系

杂质浓度较低,迁移率随温度升高迅速减小,晶格散射起主要作用; 杂质浓度高,迁移率下降趋势不显著,说明杂质散射机构的影响为主。当 杂质浓度很高时,低温范围内,随温度升高,电子迁移率缓慢上升,直到
很高温度(约550K左右)才稍有下降,这说明杂质散射起主要作用。晶格 振动散射与前者比影响不大,所以迁移率随温度升高而增大;温度继续升 高后,又以晶格振动散射为主,故迁移随温度下降。
② 计算中假设散射后的速度完全无规则,即散射后载流子向各个方向运动 的几率相等。这只适用于各向同性的散射.对纵声学波和纵光学波的散射确 实是各向同性的.但是电离杂质的散射则偏向于小角散射。所以精确计算还 应考虑散射的方向性。
下节较精确地计算半导体的电导率,为简单起见,仍限于讨论各向同性的 散射。

5 玻耳兹曼方程· 电导率的统计理论
• 各向同性晶体特点:
a、声学波散射: Ps∝T3/2 b、光学波散射:P o∝[exphv/k0T)]-1
2)电离杂质散射:即库仑散射
散射几率Pi∝NiT-3/2(Ni:为杂质浓度总和)。
3)其它散射机构

半导体物理_第四章

半导体物理_第四章
精品资料
下图为室温(shì wēn)(300K)条件下砷化镓单晶材料 中电子和空穴的迁移率随总的掺杂浓度的变化关系曲 线。从图中可见,随着掺杂浓度的提高,砷化镓材料 中载流子的迁移率同样也发生明显的下降。
精品资料
假设τL是由于晶格振动散射所导致的载流子自由运 动时间,则载流子在dt时间内发生晶格振动散射的次数 为dt/τL;
精品资料
从上图看出,在低电场条件下,漂移速度与外 加电场成线性变化关系,曲线的斜率就是低电 场下电子的迁移率,为8500cm2/V·s,这个数值 要比硅单晶材料高出很多;随着外加电场的不 断增强,电子的漂移速度逐渐达到一个峰值点, 然后(ránhòu)又开始下降,此时就会出现一段 负微分迁移率的区间,此效应又将导致负微分 电阻特性的出现。此特性可用于振荡器电路的 设计。
即载流子平均的定向漂移速度与外加电场之间的比 值。对于空穴而言,则有:
精品资料
半导体晶体材料中,有无外加电场(diàn chǎng) 情况下,空穴的运动情况示意图
精品资料
没有外加电场时,载流子总的平均定向运动 速度为零,而当有外加电场时,载流子将在原 来热运动的基础上,叠加一个定向的漂移运动。 载流子发生连续两次碰撞之间的自由运动时间 (shíjiān)为τ,由热运动的剧烈程度和掺杂浓 度决定。
再假设(jiǎshè)杂质完全离化,则有:
精品资料
可见,非本征半导体材料的电导率(或电阻 率)主要由多数载流子的浓度及其迁移率决定。
对于(duìyú)本征半导体材料,其电导率可以 表示为:
注意,由于电子和空穴的迁移率一般情况下并不 相等,因此本征电导率并非是在特定(tèdìng)温度下 半导体材料电导率的最小值。
对空穴来说,在一次自由运动时间(shíjiān) 内所获得的最大定向漂移运动速度为

半导体物理学刘恩科第七版第4章导电性

半导体物理学刘恩科第七版第4章导电性
声学波(频率低) 、光学波(频率高)。本质上,它们体现了 两种不同形式的运动。 无论声学波还是光学波,原子位移和波传播方向之间的关 系都是一个纵波两个横波
(4)格波的能量和动量
准动量:hq
能 量:有多个可能: (1/2 + n)h1
其中,ha为格波的能量量子,称作声子。当格波能量减 少一个ha,称放出一个声子,当格波能量增加一个ha,称
无外电场时,载流子总是做无规则热运动,宏观上不 能形成定向的运动,故不能形成电流。
外电场作用下,载流子一方面做无规则热运动,一方 面做定向运动(空穴与电场方向一致,电子相反)。 载流子获得漂移速度,宏观上形成定向运动,故形成 电流。
在外电场和散射双重作用下,载流子从电场中获得速 度,散射又不断地将载流子散射到各个方向,使漂移 不能无限地增大。
电子和晶格散射时,将吸收或放出一个声子。
q2 k 2 k' 2 2 k k' cos (k'k)2 2 k k' (1 cos )
若散射前后k=k’, 则
q 2k sin
2
设散射前后电子速度大小为, 声子速度为u, hk=mn* , 对
长声学波,ha =hqu, 散射前后电子能量变化为:
对锗、硅及III-V族化合物半导体,原胞中含有 2个原子,对应一个q有6个不同的格波。6个格 波的频率和振动方式完全不同。
声学波:频率最低的3个格波; 光学波:频率高的3个波。
由N个原胞构成的半导体晶体,有N个不 同波矢q构成的格波 (N为固体内含有的 原子数) 。
每个q有6个不同频率的格波,所以共有6N 个格波,分为6支,3支为声学波,3支为光学 波。
实际半导体中的载流子在外电场作用下,速度不会无限增 大,根本原因: 受散射(碰撞)的缘故。

半导体物理_第四章

半导体物理_第四章
以简化为玻尔兹曼分布函数,即:
其中NC称为导带的有效态密度函数,若取mn*=m0, 则当T=300K时, NC=2.5E19cm-3,对于大多数半导 体材料来说,室温下NC确实是在1019cm-3的数量级。
其中NV称为价带的有效态密度函数,若取mp*=m0,则 当T=300K时, NV=2.5E19cm-3,对于大多数半导体 材料来说,室温下NV确实是在1019cm-3的数量级。 热平衡状态下电子和空穴的浓度直接取决于导带和 价带的有效态密度以及费米能级的位置。
为了求解热平衡状态下的载流子浓度,首先必须确 定费米能级EF的位置。对于本征半导体材料(即纯净 的半导体材料,既没有掺杂,也没有晶格缺陷)来说, 在绝对零度条件下,所有价带中的能态都已填充电子, 所有导带中的能态都是空的,费米能级EF一定位于导 带底EC和价带顶EV之间的某个位置。 当温度高于绝对零度时,价带中的部分电子将获得 足够的热运动能量,进而跃迁到导带中,产生一个导 带电子,同时也产生一个价带空穴。也就是说电子- 空穴成对出现,因而费米能级的位置几乎不变。
参见右图所示,当 半导体材料中掺入 施主杂质后,导带 中的电子浓度将大 于价带中的空穴浓 度,半导体材料成 为N型材料,其费 米能级的位置也将 由禁带中心附近向 导带底部上移。
而当半导体材料 中掺入受主杂质 后,价带中的空 穴浓度将大于导 带中的电子浓度, 半导体材料则变 成P型材料,其费 米能级的位置也 将由禁带中心附 近向价带顶部下 移,如右图所示。
右图给出了几种常见半导体材 料的本征载流子浓度与温度之间的 变化关系。 根据上式计算出的室温下硅材 料本征载流子浓度为 ni=6.95E9cm-3,这与实测的本征 载流子浓度为ni=1.5E10cm-3有很 大偏离,原因在于:电子和空穴的 有效质量通常是在低温下利用回旋 共振实验方法测得的,室温下会有 一定的偏差;态密度函数是利用三 维无限深势阱模型得到的,这也与 实际情况有一定偏离。

半导体物理与器件-第四章 平衡半导体

半导体物理与器件-第四章 平衡半导体
ni严重依赖温度
16
4.1 半导体中的载流子
4.1.3 本征载流子浓 度
P81例4.3
ni随温度的升高而明显增大。
• 与温度关系很大: • 温升150度时,浓度增大4个数量级。
17
4.1 半导体中的载流子
4.1.4 本征费米能级位置
由电中性条件:n0=p0
禁带中央
本征费米能级精确位于禁带中央;
本征费米能级会稍高于禁带中央; 本征费米能级会稍低于禁带中央;
平征半导体(Intrinsic Semiconductor)
本征激发:共价键上的电子激发成为准自由电子,也就是 价带电子获得能量跃迁到导带的过程。
本征激发的特点:成对的产生导带电子和价带空穴。
14
4.1 半导体中的载流子
4.1.3 本征载流子浓度
说明: 本征半导体中电子的浓度=空穴的浓度即n0=p0 (电中性条件)记为ni=pi
3、施主杂质原子增加导带电子,但并不产生价带空穴,因此,这样的半导体称为 n型半导体。
22
4.2掺杂原子与能级 施主杂质
■ 电子脱离施主杂质的束缚成为导电电子的过程称为施主电 离,所需要的能量
ΔED=Ec-Ed 称为施主杂质电离能。ΔED的大小与半导体材料和杂质种类
有关,但远小于Si和Ge的禁带宽度。 ■ 施主杂质未电离时是中性的,称为束缚态或中性态,电离后
4.4施主和受主的统计学分布 4.4.2完全电离和束缚态
与室温条件相反,当T=0K时,杂质原子没有电离: 1、对n型半导体,每个施主原子都包含一个电子,nd=Nd
费米能级高于施主能级
2、对p型半导体,杂质原子不包含外来电子,na=Na,费米能级低于受主能级
束缚态:
没有电子从施主能态热激发到导带 中,

半导体物理_第四章

半导体物理_第四章

右图所示为 N型和P型锗、 砷化镓以及 磷化镓单晶 材料在室温 (300K)条件 下电阻率随 掺杂浓度的 变化关系曲 线。
如果我们考虑一块掺杂浓度为NA的P型半 导体材料( ND=0),且NA>>ni,假设电子和空 穴的迁移率基本上是在一个数量级上,则半导 体材料的电导率为:
再假设杂质完全离化,则有:
负微分迁移率效应的出现可以从砷化镓单晶材 料的E-k关系曲线来解释:低电场下,砷化镓 单晶材料导带中的电子能量比较低,主要集中 在E-k关系图中态密度有效质量比较小的下能 谷,mn*=0.067m0,因此具有比较大的迁移率。
当电场比较强时,导带 中的电子将被电场加速并获 得能量,使得部分下能谷中 的电子被散射到E~k关系图 中态密度有效质量比较大的 上能谷,mn*=0.55m0,因此 这部分电子的迁移率将会出 现下降的情形,这样就会导 致导带中电子的总迁移率随 着电场的增强而下降,从而 引起负微分迁移率和负微分 电阻特性。
§5.2 载流子的扩散运动 除了漂移运动之外,另外一种引起载流子定向 流动的机理就是所谓的载流子扩散运动,微观 粒子的扩散运动是由于其浓度梯度的存在而引 起的,带电粒子由于浓度梯度的存在而发生扩 散运动就会引起扩散电流。
1. 扩散电流密度 考虑一个简化的一维半导体情形,其中电 子的浓度梯度如图所示,半导体中各处温度均 匀,因此电子的平均热运动速度也与位置无关。
而当温度比较低时,则由于杂质原子的冻结 效应,载流子浓度趋近于零。但随着温度升高, 杂质开始电离,载流子浓度增加,电导率都随 着温度的升高而不断升高。 在中等温度区间内(即大约200K至450K之 间),此时杂质完全离化,即电子的浓度基本 保持不变,但是由于在此温度区间内载流子的 迁移率随着温度的升高而下降,因此电导率也 随着温度的升高而出现了一段下降的情形。

半导体物理笔记第四章

半导体物理笔记第四章

为 ND+NA,因为此时施主和受主杂质全部电离,分别形成了正电中心和负电中心及其相
应的库仑势场,它们都对载流子的散射作出了贡献,这一点与杂质补偿作用是不同的 ②晶格振动散射 一定温度下的晶体其格点原子(或离子)在各自平衡位置附近振动。半导体中格点原子
的振动同样要引起载流子的散射,称为晶格振动散射。 格点原子的振动都是由被称作格波的若干个不同基本波动按照波的迭加原理迭加而
(a) 纵声学波
(b)
纵声学波引起的能带改变
图 4.3 纵声学波及其所引起的附加势场
在 GaAs 等化合物半导体中,组成晶体的两种原子由于负电性不同,价电子在不 同原子间有一定转移,As 原子带一些负电,Ga 原子带一些正电,晶体呈现一定的 离子性。 纵光学波是相邻原子相位相反的振动,在 GaAs 中也就是正负离子的振动位移相反, 引起电极化现象,从而产生附加势场。
i s 0
§4 电阻率及其与杂质浓度和温度的关系 (可由电阻率与迁移率的关系传递推导,从略)P98
第五章 非平衡载流子 思路:讨论非平衡载流子的注入(产生)与复合;非平衡载流子的运动规律(扩散运动);
连续性方程和爱因斯坦关系; 平衡态是指一定温度下没有外界的激励因素存在,此时导带电子浓度和价带空穴浓度是确定 的,达到了动态平衡。
第四章 半导体的导电性 本章思路 一个概念:载流子散射的概念 一个运动:载流子漂移运动
一个规律:电阻率 、电导率 、迁移率 随掺杂浓度与温度的变化规律
§1 载流子的漂移运动 迁移率 1、欧姆定律的微分形式——由于宏观样品不均匀,所以欧姆定律的宏观形式不可用
J 1 E E ,J 为电流密度
1 2 3
所以半导体总迁移率的倒数等于各种散射机构单独存在时所决定的迁移率的倒数之和。 因此,只须讨论主要散射机构 A.对 Si、Ge 元素半导体中电离杂质散射和纵声学波散射起主导作用,因此

半导体物理2013(第四章)

半导体物理2013(第四章)

§4.2 载流子散射
§4.2.1 载流子散射的概念
理想的完整晶体里的电子处在严格的周期性 势场中,如果没有其他因素的作用,其运动状态保 持不变(用波矢k标志).但实际晶体中存在的各种 晶格缺陷和晶格原子振动会在理想的周期性势场 上附加一个势场,它可以改变载流子的状态,这种 附加势场引起的载流子状态的改变就是载流子散 射。
§4.3 迁移率与杂质浓度和温度的关系
§4.3.2电导率、迁移率与平均自由时间的关系
设沿x方向施加强度为ε的电场,t=0时刻遭到散射, 经过t后再次被散射 q vx vx 0 * t
mn
多次散射后,v 0 在x方向上的分量为0,即
vx vx 0
0
v x0 0
q Pt tPe dt * mn
3 3 J x nqc x 3 3
q n 1 (1 2 3 ) 3 mc 1 1 1 2 ( ) mc 3 ml mt
1 2 3
q n ml q n mt q n mt

mc称为电导有效质量,对硅mc = 0.26m0 由于电子电导有效质量小于空穴电导有效质量,所以 电子迁移率大于空穴迁移率。

(l )
3 2
散射概率随温度的变化主要取决于中括号中 的指数因子,散射概率随温度的下降而很快 减小,所以在低温时,光学波的散射不起什 么作用,随着温度的升高,平均声子数增多, 光学波的散射概率迅速增大。
§4.2 载流子散射
§4.2.2 半导体的主要散射机构
3.其他因素引起的散射 (1)等同的能谷间散射 有些半导体导带具有极值能量相同的多个旋 转椭球等能面,载流子在这些能谷中分布相同, 这些能谷称为等同的能谷。对这种多能谷半导体, 电子可以从一个极值附近散射到另一个极值附近, 这种散射称为谷间散射。

半导体物理学4

半导体物理学4

4 16
2 2 4 m v N z e 1 0 rd n I P P , 1 c o s d l n 1 I 2 2 3 2 2 3 m i n 8 m v I z e N 0 rd n I


1. 散射几率:极坐标(θ ,φ )表示,散射与原运动方向V
间有轴对称性
令 P(θ):为 Δt 时间内载流子被散射到 (θ,φ) 方向单位立体角的几率
θ 为散射角,则 Δt 时间内载流子发生散射的几率为: 1 = ,4 1 d P
V
a d s i n d d 为(θ,φ) 方向上的立体角

声子波长~1 0 0 A 左右
>>单胞尺寸~ 5 A ,
∴长声学波近似下晶体可视为连续的
长声学波:纵波→引起原子分布疏密变化 → 形变势,如P.91,F.4-11所示 横波→不使原子产生疏密分布,但可产生切变
a E g a E g
原子间距
P.91, F.4-10 为LA和LO波示意图,对LO:A疏处B密,A密处B疏 2°散射作用:对LA 波:A、B同时密,同时疏 ∵ 如 P.89, F.4-8 所示对 LA:AB两类原子运动方向相同 a. 非极性晶体Ge、Si:长纵声学波 起主要散射作用, ∵形变势如P.91,F.4-11 b. 极性晶体GaAs(无反演中心): 声学波 经
长声学波的声子能量~meV,室温RT(300K), 每个模式包含数十个声子 长光学波的声子能量~数十个meV,与电子能量的数量级相同; ∴ 低温时平均光学声子数很少
2. 长声学波的散射:
1°长声学波
室温RT=300K时,电子波长
e 100 A

半导体物理(刘恩科)第四章小结含习题答案

半导体物理(刘恩科)第四章小结含习题答案

ℏ������������
������0 ∝ [ⅇ������0������ − 1]
12.当几种散射概率同时存在时
P=������Ι + ������ΙΙ + ������ΙΙΙ + ⋯ ⋯
τ
=
1 ������
=
1 ������Ι+������ΙΙ+������ΙΙΙ+⋯

1 ������
=
������Ι
比本征情况下增大了������′
������
=
6.4 3.18×10−6
=
2.01
×
106倍
显然掺杂大大提高了电导率
3. 电阻率为 10.m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。
解:对 p 型 Si,多子为空穴 ������ = 1
������������������������
其中������������ = 500 ������������2/(������������)

������
=
1 ������������������������
=
1 10×1.6×10−19×500
=
1.25
×
1015������������−3
������
=
������������2 ������
=
47
×
1.602
×
1 10−19
×
(3800
+
1800)
=
2.37
×
1013������������−3
2. 试 计 算本 征 Si 在 室温 时的 电导率 ,设 电子和 空穴 迁移率 分别 为 1450cm2/( V.S)和

第4章.-半导体物理-半导体的导电性PPT课件

第4章.-半导体物理-半导体的导电性PPT课件

电子平均漂移速度为: vxN 10 0 N 0PP eq m t n *d E tq m n *E n
2021/4/8
26
qE
vx mn* n
电子的平均自由时间
vvddnnqnmE E n *n nqm n *n , 同理 pqm p*p
n型电导率:
n
nqn
nq2 mn*
n
p型电导率:
6
在本征情况下, J= Jn+ Jp
电场不太强时,漂移电流遵从欧姆定律 J E
n型半导体,n>>p,Jn>>Jp E nqdvn
2021/4/8
vdn
nq
E
n不随电场变化, 为一常数,
nq
通常用正值μ表示其比例系数,电子的迁移率
v dn n E 意义:单位场强下电子的平均漂移速
vd / E
散射(晶格振动、杂质、晶格畸变)
➢ 载流子在外加电场作用下的漂移运动(包括与其相联系的 材料的主要参数如迁移率、电导率、电阻率等),并讨论 影响这些参数的因素。
2021/4/8
2
4.1 载流子的漂移运动 迁移率
无外加电场作用时:载流子热运动是无规则的,运动速度各向同 性,不引起宏观迁移,从而不会产生电流。
28
3.迁移率与杂质浓度和温度的关系
几种散射机构同时存在时
散射几率为它们的和: P Pi i
总平均自由时间为 :
1
1 i
n
q n
m
* n
p
q p
m
* p
总平均迁移率为 :
1
1
i
2021/4/8
29
定性分析迁移率随杂质浓度和温度的变化:

半导体物理与器件 第四章

半导体物理与器件 第四章

第四章平衡半导体4.0本章概要在上一章中,我们讨论了一般晶体,运用量子力学的概念对其进行了研究,确定了单晶晶格中电子的一些重要特性。

在这一章中,我们将运用这些概念来专门研究半导体材料。

我们将利用导带与价带中的量子态密度函数以及费米-狄拉克分布函数确定导带与价带中电子与空穴的浓度。

另外,我们将在半导体材料中引入费米能级的概念。

注意,本章中所涉及的半导体均处于平衡状态。

所谓平衡状态或者热平衡状态,是指没有外界影响(如电压、电场、磁场或者温度梯度等)作用于半导体上的状态。

在这种状态下,材料的所有特性均与时间无关。

本章目标:(1)推导半导体中热平衡电子浓度和空穴浓度关于费米能级的表达式。

(2)讨论通过在半导体中添加特定杂质原子来改变半导体材料性质的过程。

(3)推导半导体材料中热平衡电子浓度和空穴浓度关于添加到半导体中的掺杂原子浓度的表达式。

(4)求出费米能级的位置,其为添加到半导体中的掺杂原子浓度的函数。

简单说来,本章讨论的重点是:在不掺杂和掺杂的情况下,分别求平衡半导体中电子和空穴的浓度值,以及费米能级位置。

4.1半导体中的载流子我们知道:电流从本质上来说是电荷移动的速率。

在半导体中有两种载流子——电子和空穴——有能力产生电流。

载流子的定义:在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。

如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。

既然半导体中的电流很大程度上取决于导带中电子与价带中空穴的数量,那么我们关心的半导体的一个重要参数就是这些载流子的密度。

联想我们之前学习的知识,我们不难知道电子和空穴的密度与态密度函数、费米-狄拉克分布函数都有关。

在接下来的章节中,我们会从更严谨的数学推导出发,导出电子与空穴的热平衡浓度,定性地讨论这些关系。

4.1.1电子与空穴的热平衡分布导带中电子关于能量的分布,我们可以从允带量子态密度函数乘以量子态被电子占据的概率函数(分布函数)得出。

半导体物理学第四章答案

半导体物理学第四章答案

全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
解:300K时,,查表3-2或图3-7可知,室温下Si的本征载流子浓度约
为。
本征情况下,
金钢石结构一个原胞内的等效原子个数为个,查看附录B知Si的晶格
常数为0.543102nm,则其原子密度为。
掺入百万分之一的As,杂质的浓度为,杂质全部电离后,,这种情况
①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表4-15(b)知室温下,浓度为1013cm-3的p型Si样品的电阻率为, 则电导率为。 电流密度为 电流强度为 ②400K时,查图4-13可知浓度为1013cm-3的p型Si的迁移率约为,则电导 率为 电流密度为 电流强度为 12. 试从图4-14求室温时杂质浓度分别为1015,1016,1017cm-3的p型 和n型Si 样品的空穴和电子迁移率,并分别计算他们的电阻率。再从图 4-15分别求他们的电阻率。
,
,查图4-14(a)知,
④磷原子31015cm-3+镓原子11017cm-3+砷原子11017cm-3
,
,查图4-14(a)知, 17. ①证明当unup且电子浓度n=ni时,材料的电导率最小,并求min的表 达式。 解:
令 因此,为最小点的取值
②试求300K时Ge 和Si样品的最小电导率的数值,并和本征电导率相比 较。 查表4-1,可知室温下硅和锗较纯样品的迁移率 Si: Ge: 18. InSB的电子迁移率为7.5m2/( VS),空穴迁移率为0.075m2/( VS), 室温时本征载流子浓度为1.61016cm-3,试分别计算本征电导率、电阻率 和最小电导率、最大电导率。什么导电类型的材料电阻率可达最大。 解: 借用17题结果 当时,电阻率可达最大,这时 ,这时为P型半导体。

半导体物理学第四章答案

半导体物理学第四章答案

第四章习题及答案1. 300K 时,Ge 的本征电阻率为47Ωcm ,如电子和空穴迁移率分别为3900cm 2/( V.S)和1900cm 2/( V.S)。

试求Ge 的载流子浓度。

解:在本征情况下,i n p n ==,由)(/p n i p n u u q n pqu nqu +=+==111σρ知 3131910292190039001060214711--⨯=+⨯⨯⨯=+=cm u u q n p n i .)(.)(ρ 2. 试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/( V.S)和500cm 2/( V.S)。

当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。

比本征Si 的电导率增大了多少倍? 解:300K 时,)/(),/(S V cm u S V cm u p n ⋅=⋅=225001350,查表3-2或图3-7可知,室温下Si 的本征载流子浓度约为3101001-⨯=cm n i .。

本征情况下,cm S +.u u q n pqu nqu -p n i p n /.)()(6191010035001350106021101-⨯=⨯⨯⨯⨯=+=+=σ金钢石结构一个原胞内的等效原子个数为84216818=+⨯+⨯个,查看附录B 知Si 的晶格常数为0.543102nm ,则其原子密度为322371051054310208--⨯=⨯cm ).(。

掺入百万分之一的As,杂质的浓度为3162210510000001105-⨯=⨯⨯=cm N D ,杂质全部电离后,i D n N >>,这种情况下,查图4-14(a )可知其多子的迁移率为800 cm 2/( V.S)cm S .qu N -n D /.''468001060211051916=⨯⨯⨯⨯=≈σ比本征情况下增大了66101210346⨯=⨯=-..'σσ倍 3. 电阻率为10Ω.m 的p 型Si 样品,试计算室温时多数载流子和少数载流子浓度。

第半导体物理课件 第四章

第半导体物理课件 第四章

散射
1 电子的漂移运动

电流的微观机制 在电场中,电子作定向运动,即漂移运动:
J E
如半导体中电子密度n,平均漂移运动速度υd
迁移率
J nqvd

d
E
d E
nq
J nqE
迁移率的意义:表征了在单位电场下载流子的平均漂移速度。
它是表示半导体电迁移能力的重要参数。
E E f ( E ) exp( F ) 对非简并条件下: k 0T
1 E EF 1 exp( ) k 0T
处于非平衡态时的分布函数 在drdk相空间的电子数
dN 在t+dt 时刻该体积元中电子数变为: (k , r , t dt ) 2 f ( k , r ,t dt ) dkdr
' k
分布函数随时间变化的原因在于 :
• 漂移变化:由于外场作用,分布函数改变是连续的,
称为漂移变化,引起单位时间体积元 电子数变化: • • 散射作用:电子在运动过程中不断地遭到散射,波 矢产生突变使分布发生改变。
• 漂移变化:由于外场作用,分布函数改变是连续的,称为漂移 变化,引起单位时间体积元 电子数变化:
格波的速度(相速度)为


q
由于晶格结构的周期性,频率v的格波的能量是量子化的, 格波的能量以ħ=hv为单元。把格波的能量量子称为声子
1 (n )hv 2
声学波散射
• 能带具有单一极值的半导体中起主要散射作用的是长波, 也就是波长比原子间距大很多倍的格波。 • 纵波在散射中起主要作用。长纵声学波传播时会造成原子 分布的疏密变化;禁带宽度随原于间距变化,疏处禁带宽 度减小、密处增大。引起能带极值的改变。处于导带底或 价带顶的电子或空穴,在半导体的不同地点,其能量就有 差别。纵波引起的能带起伏,对载流子如同附加势场的作

半导体物理_第四章综述

半导体物理_第四章综述

上式中σ是半导体晶体材料的电导率,其常用 的单位是(Ω·cm)-1,它是两种载流子浓度及其 迁移率的函数,我们已经看到,载流子迁移率 也是掺杂浓度的函数,因此可以预计,电导率 将是掺杂浓度的一个非常复杂的函数。
电导率的倒数就是电阻率,其表达式为
右图所示 为N型和P 型硅单晶 材料在室 温(300K) 条件下电 阻率随掺 杂浓度的 变化关系 曲线。
单纯由晶格振动散射所决定的载流子迁 移率随温度的变化关系为:
在比较低的掺 杂浓度下,电子 的迁移率随温度 的变化如右图, 这表明在低掺杂 浓度的条件下, 电子的迁移率主 要受晶格振动散 射的影响。
在低掺杂浓度 的条件下,空 穴的迁移率也 是主要受晶格 振动散射的影 响。
载流子在半导体晶体材料中运动时所受到的第 二类散射机制是所谓的离化杂质电荷中心的库 仑散射作用。单纯由离化杂质散射所决定的载 流子迁移率随温度和总的掺杂浓度的变化关系 为:
在没有外加电场和有外加电场存在的两种 情况下,导带电子在半导体晶体材料中的运 动情况分别如下图所示:
1. 漂移电流密度 如下图所示,对于一块半导体材料来说,当 在其两端外加电压V之后,所形成的电流密度 (面密度)可表示为:
其中N为导电载流子的密度, 定向漂移速度。
v 为载流子的平均
在弱场情况下,载流子的定向漂移速度与 外加电场成正比,即:
其中NI=ND++NA- ,为总的离化杂质浓度。
从上式中可见,离化杂质散射所决定的载流子 迁移率随温度的升高而增大,这是因为温度越 高,载流子热运动的程度就会越剧烈,载流子 通过离化杂质电荷中心附近所需的时间就会越 短,因此离化杂质散射所起的作用也就越小。
下图所示为室温(300K)条件下硅单晶材料中 电子和空穴的迁移率随总的掺杂浓度的变化关 系曲线。从图中可见,随着掺杂浓度的提高, 载流子的迁移率发生明显的下降。

半导体物理学.

半导体物理学.

例2 已知本征Ge的电导率在310K时为3.56×10-2S/cm,在 273K时为0.42×10-2S/cm。一个n型锗样品,其施主杂质浓度 ND=1015cm-3。试计算在上述温度时掺杂Ge的电导率。(设 μn=3600cm/Vs,μp=1700cm/Vs.)

解:本征材料的电导率为:
i ni q( n p) ni

解:因为NA=0, 为n型半导体,T=300K,载流子浓度为:
n0 ≈ ND ≈1016cm-3 ni=1.8X106cm-3
少数载流子空穴的浓度为:
ni2 (1.8 106 ) 2 4 3 p0 3 . 24 10 cm n0 1016 n型非本征半导体的漂移电流密度为:
J drf q( n n p p) E qn N D E (1.6 1019 )(8500)(1016 )(10) 136 A / cm 2 说明:在半导体上加较小的电场就能获得很大的漂移电流密度。 在非本征半导体中,漂移电流密度基本上取决于多数载流子。
500
GaAs
8000
400
Ge
3800
1800
例1.计算在已知电场强度下半导体的漂移电流密度。室温(T= 300k)时,GaAs的掺杂浓度为:NA=0, ND=1016cm-3.设杂质 全部电离,电子和空穴的迁移率μn=8500cm/Vs,μp=400cm/Vs。 若外加电场强度为E=10V/cm,求漂移电流密度。


载流子热运动不会产生电流,载流子在电场中的运动将 形成电流。 漂移运动:由电场作用而产生的、沿电场力方向的运动 为漂移运动。 drift motion 漂移电流:由载流子的漂移运动所引起的电流称为漂移 电流。 drift current 漂移速度:载流子在电场作用下定向运动速度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 nq a exp( ) 1 k0T
长声学波,声子数最多,作用最大。
电子和声子的碰撞
• 声子的能量为:
1 1 1 a E (n )a a 2 2 exp(a ) 1 k0T
• 电子与声子的碰撞过程:
k 'k q E ' E h
• 具有单一极值、球形等能面的半导体,对导带电子散射 的几率是
k T (m ) Ps v 4 u
2 c 0 * 2 n 2
由形变引起导带底的变化
Ec c
V V0
最后,因电子热运动速度与T1/2成正比,声学波散射几率
Ps T 3 / 2
• 对于硅、锗具有旋转椭球等能面的半导体,切变也会引 起能带极值的变化,即横声学波也参与对电子的散射。 总的散射几率依然如上式,为T3/2关系。
§4.3 迁移率与杂质浓度和温度的关系
1、平均自由时间τ和散射几率P的关系 1 P
当几种散射机构同时存在时
总散射几率: 相应的平均自由时间:
P Pj
j
1


j
1
j
τ-P关系的数学推导 用N(t)表示t时刻未遭到散射的电子数,则在 t ~ t t 被 散射的电子数
• 对于硅、锗及III-V族化合物,其原胞结构均由两套 面心立方原子套构而成,基元有2个原子,三维结构 每个波矢q共有6支格波:3支声学波和3支光学波。 • 3支声学波为2横1纵。声学波是 q = 0时,=0。 • 长声学波代表质心的振动。在长波范围内,波数q越 大,波长越短,能量越大,声子数越少。 同时,其能 量 为量子化的: (n+1/2)h 。
载流子的散射 存在破坏周期性势场的作用因素: 载流子在半导体中运动时,不断与振动 杂质 着的晶格原子或杂质离子发生碰撞,碰撞后 缺陷 载流子速度的大小及方向均发生改变,这种 晶格热振动 现象称为载流子的散射。
散射:晶格振动、杂质、缺陷以及表面因素等均会引 起晶体中周期性势场的畸变。当载流子接近畸变区域时, 其运动状态会发生随机性变化。这种现象可以理解为粒子 波的散射,因此被称为载流子的散射。
其中,起主要作用的是中间的指数函数:
l 1 P [exp( ) 1 ] 0 k0T
光学声子能量较大,若电子能量低于h ,则将吸收声子。
• • • •
温度低,则P0将很小,光声子数少,作用小; 温度高,则P0将增大,光声子数多,作用大。 结论:光学声子主要作用于高温时的离子晶体。 (半导体在高温时的电阻主要由LO作用导致)。
• 纵声学波与横波相比,由于它会引起原子密度的疏密 变化,产生体积变化,导致能带的改变,对电子的运 动会产生较大的影响。 • 在一个波长范围内,一半压缩,一半膨胀。 • 由第一章的结论可以知道: • 原子距离越远,相互作用越小, 能级分裂越小,禁带宽度越小。 因而膨胀的疏处禁带宽度减小, 压缩的密处禁带宽度增大。 • 能带的变化又如同产生了一个 附加势场,使电子散射。
(3)其它散射机构
(1)等同能谷间散射——高温下显著
谷间散射:电子在等同能谷中从一个极 值附近散射到另一个极值附近的散射。
分类:A、弹性散射 (与长声学波散射) B、非弹性散射(谷内与长光学波散射,谷
间与短波声子)
散射几率P
• 计算公式:
E Pa nq ( 1) a
1 2
E Pe (nq 1) Re( 1) a
声学波和光学波的散射
• 在室温下,按照经典的统计,平均每个谐振子一个 自由度的能量为kT(动能+势能),为0.026eV。声子 的能量低于此值,为meV数量级。光学声子的能量 略高于此值,为几十个meV,与电子能量相差不大 • 对于声学波,尤其是长声学波,声子的速度u很小, 与电子的速度相比(u/v)更小。与电子能量相比,碰 撞的能量太小,可以忽略。因此认为声学波声子与 电子碰撞,电子的能量基本不变。 • ------弹性散射。 • 光学波声子与电子碰撞,电子的能量变化较大。 ------非弹性散射。
• 电离杂质散射 • 晶格振动散射 • 中性杂质散射(在低温重掺杂半导体中较为显著) • 晶格缺陷散射(位错密度大于104cm-2时较为显著)
• 载流子与载流子间的散射(载流子浓度很高时较为显
著) • 能谷间散射:等同能谷间散射高温下较易发生;不同 能谷间散射一般在强电场下发生。
(1)电离杂质散射(即库仑散射)
格是声子
• 将具有量子化能量的晶格振动当作准粒子---声子。 载流子与声子的作用为吸收或释放声子。当格波减 少一个h ,就称释放声子;而增加一个h ,称 为吸收一个声子。 • 声子生动地描述了格波能量的量子化,并且将电子 在晶体中被格波的散射看做是电子与声子的碰撞。 • 声子是玻色子。按照玻色-爱因斯坦统计,平均粒 子数的温度关系为
2、迁移率及半导体的电导率
迁移率:在单位电场下载流子的平均漂移速度。
迁移率的 物理意义
对n型半导体:
表征载流子在电场作用下 做漂移运动的能力。
σn = n0q(vd/E)= n0qμn (4-16)
对P型半导体:
对一般半导体:
σp = p0qμp
σ = σp+ σp = nqμn + pqμp
(4-17)
或1/ m)
与外加电压的关系为: I = V / R ------ 欧姆定律 但上式的参量均为广延量,不便于了解材料的性质.
• 利用:Ε = V / L . • J = I/ S,电流密度为流过单位面积的电流(沿 垂直方向)。 • 对于均匀半导体来说,电流密度
I V El l 1 J E E E s Rs Rs
• 光学波散射 • 1)对硅、锗等同种原子构成的半导体,作用同声学波,只 有弹性散射,没有电场的作用。而对离子性晶体、光学波 所产生的离子的疏密变化相当于半导体内产生了正电荷和 负电荷的区域------产生了内部的附加势场。
(l )3 / 2 1 1 P0 [ ] 1/ 2 (k0T ) exp( l ) 1 f ( l ) k0T k0T
3 2
A.电离杂质
D.电子间的
4.在强电离区,N型半导体的费米能级位于( ) A.高于施主能级 B.低于施主能级 C.等于施主能级
漂移运动和扩散运动有什么不同?
解:漂移运动是载流子在外电场的作用下发生的定 向运动,而扩散运动是由于浓度分布不均匀导致载 流子从浓度高的地方向浓度底的方向的定向运动。 前者的推动力是外电场,后者的推动力则是载流子 的分布引起的。
1. 半导体中载流子扩散系数的大小决定于其中的( A.散射机构 B.能带结构 C.复合机构 D.晶体结构

2. 以长声学波为主要散射机构时,电子迁移率与温度的( ) A.平方成正比 B.平方成反比 C.3/2次方成正比 D. 3/2次方成反比 3.由( )散射决定的迁移率正比于T
B.声子波 C.光子波
载流子的散射几率P 散射几率 Pi∝NiT-3/2 单位时间内一个载流子受到散射的平均 次数。主要用于描述散射的强弱。 ( N :为杂质浓度总和)
i
(2) 晶格振动的散射
• 晶格中原子偏离平衡位置会产生附加电场,对载流子 也具有散射作用。偏离平衡位置的运动产生了格波, 在晶体中传播,阻碍了载流子的运动。特别是在高温 下,纵向光学波成为电阻的主要来源。为什么?
1、载流子散射
(1)载流子的热运动
电子
自由程:相邻两次散射之间自由运动的路程。 平均自由程:连续两次散射间自由运动的平均路程。 平均自由时间:连续两次散射间自由运动的平均运动时间。
(2)载流子的漂移运动
E
电子 空穴
理想情况 载流子在电场作用下不断加速
E
电子
实际情况
热运动+漂移运动
2、半导体的主要散射机构
• 碰撞前,电子的波矢为k, 能量为E,准动量为ħk; • 散射后变为k’;E’;ħk’。公 式中的正号表示电子吸收了 一个声子,负号释放声子。
散射的数学关系
• 散射前后电子运动方向发生了变化,设其夹角 为。由矢量法则得到
q2 k
2
k ' 2 k k ' cos
2
(k 'k ) 2 2kk ' (1 cos )
• 例:n型砷化镓,q0时光学声子的 max=8.7×1012hz,问对应的温度是多少? • 解:根据能量关系 k0T = h ,T声子 = h L /k0 = 417 K。 • T声子是L对应的温度。
• 当T<<100 K时,可以认为T<< T声子。 • 在研究半导体红外光探测器时,常将材料置于液氮之中(以 防光学声子的干扰------声子噪声)。
学习重点:
• 漂移运动 • 迁移率 • 电导率
4.1 载流子的漂移运动 迁移率
• 1. 欧姆定律 • 已知半导体的长为l,截面积为S,电阻率为, 则电阻为 • R=l/S 1 • 电导为: 1 s
G
l


• 类似于:C = S / l,
C:电容, 介电常数或
电容率。 • = 1 / , 为电导率,单位是西门子/米(S/m,
声学波的散射 • 声学波散射
• 室温下,电子热运动的速度为105m/s,对应的电 子波长为

* 8 h / mnv 10 m
晶体中原子间距为10-10m,长声学波长达几十个原 子间距。即长声学波长可以达到10-8m电子波长的 数量级,发生散射。因而,对电子起主要散射作 用的是长波,其波长须在几十个原子间距以上。 长声学波的波数为常数,实际上是弹性波,即声波。 对于长声学波,Ε 0, k 0。
1 2
• 当Ε < h 时,散射几率为 “0” 。 即不发生散射。 • 原因分析:当温度很低时,电子的能量太小, 经典理论的结论是 E = (3/2) k0T,此能量小于 声子的能量。 • 结论:低温时,谷间散射很小。
相关文档
最新文档