步进和伺服电机驱动选型应用
伺服电机与步进电机的特点与用途一样吗
伺服电机与步进电机的特点与用途一样吗伺服电机和步进电机都是常见的电机类型,在自动化控制和机械领域中应用广泛。
它们各自具有独特的特点和适用场景,虽然在某些方面有相似之处,但在功能、工作原理和用途上存在一些区别。
伺服电机的特点与用途伺服电机是一种能够根据控制信号精确调节转速和位置的电机。
它具有以下特点:1.高精度控制:伺服电机内置位置反馈装置,可以实时监测电机的位置并进行调节,精度高。
2.高速响应:伺服电机能够快速响应控制信号的变化,适用于需要快速而精确的位置调节的场合。
3.大功率输出:伺服电机通常能够提供较大功率输出,适用于需要驱动较大负载的场合。
4.适用范围广:伺服电机适用于需要高精度位置控制的场合,如工业自动化设备、机械臂、数控机床等。
步进电机的特点与用途步进电机是一种按固定的步进角度运转的电机,它的特点包括:1.简单控制:步进电机控制相对简单,只需提供正确的脉冲信号即可实现旋转,不需要添加位置反馈。
2.低成本:步进电机结构简单、成本较低,适用于对成本有限制的应用领域。
3.稳定性好:步进电机在静止状态下能够保持稳定的位置,适用于需要长时间固定位置的场景。
4.适用范围窄:步进电机适用于一些对位置精度要求不高的应用,如打印机、纺织机械等。
两者的对比虽然伺服电机和步进电机在某些方面有相似之处,如都可以控制转速和位置,但在实际应用中存在明显的区别。
伺服电机适用于对精度和响应速度要求较高的场合,而步进电机适用于一些对成本要求较低、对精度要求不高的场合。
总的来说,伺服电机和步进电机各有其优势和适用范围,需要根据具体的应用场景和要求来选择合适的电机类型,以达到最佳的性能和效果。
以上就是关于伺服电机和步进电机的特点与用途的介绍,希望能帮助您更好地理解这两种电机,并在实际应用中做出正确的选择。
伺服电机的选型计算及应用案例介绍
伺服电机的选型计算及应用案例介绍伺服电机是一种能够精确控制转速和位置的电动机,广泛应用于工业自动化领域。
选型计算是确定伺服电机规格和性能的过程,通常涉及到转矩、转速、功率、惯量等参数的综合考虑。
1.确定负载要求:首先需要明确伺服电机所驱动的负载的要求,包括所需转矩、转速和精度等。
2.计算转矩需求:根据负载要求,可以通过转矩计算公式来估算所需的转矩。
常用的转矩计算公式为:转矩=负载惯量x加速度角加速度+负载转矩其中,负载惯量是指负载的惯性矩,加速度角加速度是指负载加速度的转矩。
3.计算转速需求:根据负载要求,可以通过转速计算公式来估算所需的转速。
常用的转速计算公式为:转速=转矩/转矩常数其中,转矩常数是伺服电机的特性参数,代表单位转矩所需要的电压或电流。
4.确定功率需求:根据转矩和转速需求,可以计算出所需的功率。
功率可以通过转速和转矩的乘积来计算。
功率=转矩x转速5.确定惯量需求:根据负载的惯性矩和转矩需求,可以计算出所需的惯性矩。
惯性矩可以通过负载的质量和尺寸来计算。
以上是伺服电机选型计算的基本步骤,具体的选型还需要考虑其他因素,如环境温度、耐用性、可靠性等。
下面以一个应用案例来介绍伺服电机的选型计算。
假设有一个机械臂需要驱动,臂长为1米,质量为10千克。
机械臂需要能够承受10牛米的转矩,并以每分钟100转的速度旋转。
根据这些要求,可以使用以下公式计算伺服电机的规格和性能。
负载惯量=质量x(臂长^2)转矩需求=负载惯量x加速度角加速度+负载转矩加速度角加速度=转速/时间转速=100转/分钟负载转矩=10牛米根据以上参数,可以计算出负载惯量、加速度角加速度、转矩需求等。
假设加速时间为1秒,则有:加速度角加速度=(100转/分钟)/(60秒/分钟)/(1秒)=1.67转/秒^2负载惯量=10千克x(1米^2)=10千克·米^2转矩需求=10千克·米^2x(1.67转/秒^2)+10牛米=26.7牛米根据转矩需求和伺服电机的特性参数,可以选择合适的伺服电机。
步进电机和伺服电机怎么选(性能优势对比-选用原则)
步进电机和伺服电机怎么选(性能优势对比/选用原则)本文首先介绍了步进电机和伺服电机的性能比较,其次介绍了伺服电机对比步进电机的优势,最后阐述了电机的选用原则以及如何正确选择伺服电机和步进电机,具体的跟随小编一起来了解一下。
什么是伺服和步进电机?伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。
步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。
在目前国内的数字控制系统中,步进电机的应用十分广泛。
随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。
为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。
虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。
现就二者的使用性能作一比较。
步进电机和伺服电机的性能比较_哪个好一、控制精度不同两相混合式步进电机步距角一般为 3.6、1.8,五相混合式步进电机步距角一般为0.72 、0.36。
也有一些高性能的步进电机步距角更小。
如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为 1.8、0.9、0.72、0.36、0.18、0.09、0.072、0.036,兼容了两相和五相混合式步进电机的步距角。
如何正确选择步进电机和伺服电机
如何正确选择步进电机和伺服电机近期有许多人询问我,问我步进电机不知道怎么选择,我做了简洁的一下几个方法,盼望对大家有关心。
一、首先,确定步进电机拖动负载所需的扭矩最简洁的方法是在负载轴上增加一个杠杆,用弹簧秤拉动杠杆,拉力乘以臂的长度就是负载力矩。
也可以依据负载特性进行理论计算。
由于步进电机是掌握型电机,目前常用的步进电机最大转矩不超过45nm。
扭矩越大,成本就越高。
假如您选择的电机扭矩大于或超过此范围,您可以考虑添加和安装减速装置。
二、确定步进电机的最大运行速度。
在步进电机的选择中,速度指标是特别重要的。
步进电机的特点是随着电机转速的增加,转矩减小。
其下降速度与很多参数有关,如:驱动器的驱动电压、电机的相电流、电机的相电感、电机的尺寸等。
一般规律是:驱动电压越高,转矩下降越慢;电机相电流越大,转矩下降越慢。
在设计方案中,电动机的转速应掌握在1500转/分或1000转/分。
当然,这不是标准。
可以参考〈矩-频特性〉。
三、依据最大负载转矩和最大转速这两个重要指标,参照“转矩频率特性”,我们可以选择适合自己的步进电机。
假如您认为您选择的电机太大,可以考虑增加和减速装置,这样可以节约成本,使您的设计更加敏捷。
为了选择合适的减速比,应综合考虑转矩与转速的关系,选择最佳方案。
四、最终,应考虑肯定数量(如30%)的转矩裕度和转速裕度。
五、应尽量选用混合式步进电机,其性能要高于反射式步进电机。
六、尽可能选择细分驱动器,使驱动器在细分状态下工作。
七、在选择时,不要犯只看电机转矩的错误,即电机转矩越大越好,应与转速指标一并考虑。
八、当速度要求较高时,可选用驱动电压较高的驱动器。
九、没有详细要求选择两相或三相,只要步距角能满意使用要求。
伺服驱动器原理应用及选型
伺服驱动器原理应用及选型伺服驱动器的原理是将电机的转子位置信息与期望的位置进行比较,然后通过调节电机的扭矩或速度来使得转子位置逐渐接近期望位置,从而实现精确控制。
伺服电机通常由一个电机和一个编码器组成,编码器可以用来检测电机转子当前的位置,并将位置信息反馈给伺服驱动器。
伺服驱动器通过不断调整电机的控制信号,从而使得电机转子的位置与期望位置一致。
伺服驱动器的应用非常广泛,在工业自动化领域被广泛应用于各种需要精确控制的场景中。
比如机床、印刷设备、纺织设备、包装设备、激光切割设备等。
伺服驱动器可以实现高精度定位和速度控制,可以提高生产效率和产品质量,同时也可以减少能源消耗和机械故障。
在选择伺服驱动器时,需要考虑以下几个因素:1.扭矩和速度要求:根据具体应用的要求,选择适合的驱动器。
大部分伺服驱动器都有额定扭矩和额定速度的参数,根据实际需求选择合适的驱动器。
2.控制方式:伺服驱动器有位置控制、速度控制和扭矩控制等不同的控制方式。
根据实际需求选择合适的控制方式。
3.稳定性和可靠性:伺服驱动器的稳定性和可靠性非常重要,选择具有良好的稳定性和可靠性的驱动器可以减少故障率和维修成本。
4. 通信接口:现代伺服驱动器通常支持各种通信接口,比如CAN总线、Modbus、EtherCAT等。
根据实际需求选择合适的通信接口。
5.成本:伺服驱动器的价格因素也是需要考虑的。
根据实际预算选择性价比较好的驱动器。
总之,伺服驱动器的原理、应用和选型都是非常重要的。
了解伺服驱动器的原理有助于我们更好地理解它的工作原理,了解伺服驱动器的应用可以帮助我们更好地选择合适的驱动器,而选择合适的伺服驱动器可以最大限度地满足我们的要求,提高生产效率和产品质量。
伺服电机驱动方式比较与选择
伺服电机驱动方式比较与选择引言伺服电机在现代自动化控制系统中广泛应用,其中电机驱动方式的选择对系统性能和效率至关重要。
本文将比较和介绍几种常见的伺服电机驱动方式,并分析其特点和适用场景,帮助读者在实际应用中做出明智的选择。
一、步进电机驱动方式步进电机驱动方式是一种常见且经济实用的选择。
步进电机以脉冲信号驱动,将连续运动转化为离散步进运动。
以下是步进电机驱动方式的优缺点及其适用场景。
优点:1. 简单稳定:步进电机驱动方式结构简单,使用方便,具有较高的可靠性和稳定性。
它不需要反馈传感器,减少了系统的复杂性和成本。
2. 适用范围广:步进电机驱动方式适用于低速高扭矩的应用,如纺织机械、印刷机械等。
它的转矩-速度特性良好,可以实现精确的位置控制。
3. 价格经济:步进电机驱动方式相对其他驱动方式成本较低,更适用于预算有限的应用。
缺点:1. 运行效率低:步进电机驱动方式的效率相对较低,因为它在不实际运转时仍然消耗电能。
2. 振动和噪音:由于步进电机的离散步进运动特性,会引起振动和噪音,对一些对噪音敏感的应用不太适用。
二、直流无刷电机驱动方式直流无刷电机驱动方式是一种高效且灵活的选择,它结合了直流电机的优点和伺服系统的性能。
以下是直流无刷电机驱动方式的优缺点及其适用场景。
优点:1. 高效能:直流无刷电机驱动方式具有高效能,因为它没有机械摩擦,消耗电能较少。
它的高效能可以降低系统能源消耗,提高系统性能。
2. 高速运动:直流无刷电机驱动方式适用于高速运动的应用,如风扇、泵等。
它的转速范围广,转速可通过调节电流进行控制。
3. 可编程控制:直流无刷电机驱动方式具有灵活的控制,可以通过编程方式实现多种运动控制模式,适应不同应用场景的需求。
缺点:1. 系统复杂性:直流无刷电机驱动方式需要使用编码器等传感器进行位置反馈,以实现高精度的位置控制。
这增加了系统复杂性和成本。
2. 成本较高:相对步进电机驱动方式,直流无刷电机的成本较高,不太适合预算有限的应用。
伺服电机步进电机选型中转动惯量计算折算公式
伺服电机步进电机选型中转动惯量计算折算公式在伺服电机步进电机选型过程中,转动惯量的计算是十分重要的。
转动惯量描述了物体绕轴转动时所具有的惯性大小,对电机的动态性能有很大影响。
在实际应用中,需要根据具体的电机结构和工作条件,计算出电机的转动惯量。
下面将介绍几种常见的转动惯量计算折算公式。
1.通过电机几何尺寸计算转动惯量:转动惯量与电机的几何尺寸密切相关。
对于常见的电机结构,可以通过电机的几何尺寸和材料属性,利用公式计算得到转动惯量。
下面以直流电机为例,介绍计算方法。
首先需要测量电机的几何尺寸,包括电机长度、半径、转子长度和转子半径等。
然后可以利用以下公式计算电机的转动惯量:J=(1/2)*m*(r^2+l^2)其中,J表示电机的转动惯量,m表示电机的质量,r表示电机的半径,l表示电机的长度。
2.通过转矩常数计算转动惯量:转矩常数Kt是描述电机力矩大小和电流之间关系的参数,也可以用来计算电机的转动惯量。
这种方法适用于需要在电机选型中预估转动惯量的情况。
首先需要测量电机的转矩常数Kt值。
然后,可以通过以下公式计算电机的转动惯量:J=T/(ω^2*Kt)其中,J表示电机的转动惯量,T表示电机所需扭矩,ω表示电机的角速度,Kt表示电机的转矩常数。
3.通过加速度和角加速度计算转动惯量:在一些特定应用中,需要根据电机的加速度和角加速度来计算转动惯量。
这种方法适用于需要在特定工况下计算转动惯量的情况。
首先需要测量电机的加速度和角加速度。
然后,可以通过以下公式计算电机的转动惯量:J=T/α其中,J表示电机的转动惯量,T表示电机所需扭矩,α表示电机的角加速度。
在实际应用中,可以根据具体情况选择适合的转动惯量计算折算公式。
选型过程中,除了转动惯量,还需要考虑转速、功率、效率和工作条件等多个因素,并综合考虑才能选取到适合的电机。
伺服电机的驱动器选型与应用考虑
伺服电机的驱动器选型与应用考虑伺服电机作为一种高性能、精密度高的电机,在工业自动化领域得
到了广泛的应用。
而伺服电机的驱动器作为控制伺服电机运动的核心
部件,选型和应用的考虑至关重要。
本文就伺服电机的驱动器选型与
应用进行探讨,希望可以给读者们带来一些帮助和启发。
1. 驱动器选型
在选择伺服电机的驱动器时,首先需要考虑的是驱动器的功率与电
机的匹配。
驱动器的功率应该略大于电机的额定功率,这样可以更好
地发挥电机的性能并且保证系统的稳定性。
另外,驱动器的控制精度、响应速度、过载能力等性能也需要考虑在内。
根据具体的应用需求,
选择适合的驱动器型号和规格是至关重要的。
2. 驱动器应用考虑
在伺服电机的实际应用中,驱动器的参数设置和调整也是非常重要
的一环。
首先是速度环和位置环的参数设定,这直接影响到电机的运
动性能和稳定性。
其次是控制方式的选择,可以根据需要选择位置控制、速度控制或者力控制等不同的控制方式。
另外,对于一些特殊的
应用场合,还需要考虑到驱动器的通信接口、编程软件的兼容性等因素。
综上所述,伺服电机的驱动器选型与应用不仅需要考虑到基本的匹
配性能,还需要结合具体的应用情况来进行综合考虑。
只有在选择合
适的驱动器并合理应用的情况下,才能充分发挥伺服电机的性能,并
且实现更精准、更稳定的运动控制。
希望本文对伺服电机的驱动器选型与应用有所帮助,谢谢阅读。
伺服电机、步进电机、丝杠、导轨的计算选择
伺服电机的选择伺服电机:伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移;可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
闭环半闭环:格兰达的设备用伺服电机都是半闭环,只是编码器发出多少个脉冲,无法进行反馈值和目标值的比较;如是闭环则使用光栅尺进行反馈。
开环步进电机:则没有记忆发出多少个脉冲。
伺服:速度控制、位置控制、力矩控制增量式伺服电机:是没有记忆功能,下次开始是从零开始;绝对值伺服电机:具有记忆功能,下次开始是从上次停止位置开始。
伺服电机额定速度3000rpm,最大速度5000 rpm;加速度一般设0.05 ~~ 0.5s计算内容:1.负载(有效)转矩T<伺服电机T的额定转矩2.负载惯量J/伺服电机惯量J< 10 (5倍以下为好)3.加、减速期间伺服电机要求的转矩 < 伺服电机的最大转矩4.最大转速<电机额定转速伺服电机:编码器分辨率2500puls/圈;则控制器发出2500个脉冲,电机转一圈。
1.确定机构部。
另确定各种机构零件(丝杠的长度、导程和带轮直径等)细节。
典型机构:滚珠丝杠机构、皮带传动机构、齿轮齿条机构等2.确定运转模式。
(加减速时间、匀速时间、停止时间、循环时间、移动距离)运转模式对电机的容量选择影响很大,加减速时间、停止时间尽量取大,就可以选择小容量电机3.计算负载惯量J和惯量比(xkg.)。
根据结构形式计算惯量比。
负载惯量J/伺服电机惯量J< 10 单位(xkg.)计算负载惯量后预选电机,计算惯量比4.计算转速N【r/min】。
根据移动距离、加速时间ta、减速时间td、匀速时间tb计算电机转速。
伺服电机与步进电机的特点与用途是什么
伺服电机与步进电机的特点与用途是什么伺服电机的特点与用途伺服电机是一种能够在外部输入控制信号的情况下,根据信号实时反馈调整输出轴位置的电机。
其特点主要包括以下几点:1.高精度性:伺服电机具有高精度的位置控制能力,能够实现精准的位置控制,因此在需要高精度位置控制的场合得到广泛应用,如工业机器人、数控机床等领域。
2.快速响应性:伺服电机响应速度快,能够在很短的时间内调整输出轴的位置,适用于需要快速响应的应用场合,比如印刷设备、包装机械等。
3.闭环控制:伺服电机通过使用反馈装置和控制系统进行闭环控制,能够实现更稳定和精确的位置控制,适用于对位置要求严格的应用场合。
4.负载能力强:伺服电机的负载能力较强,能够在承受一定负荷的情况下稳定工作,适用于需要承载较大负载的场合。
伺服电机的主要用途包括工业机器人、数控机床、飞机控制系统、印刷设备、包装机械、医疗设备等领域。
步进电机的特点与用途步进电机是一种将信号转化为确定步进角度的电机。
其特点主要包括以下几点:1.精确的位置控制:步进电机可以根据外部输入的脉冲信号准确地控制轴的位置,适用于需要精确位置控制的应用场合。
2.简单驱动控制:步进电机的驱动控制相对简单,只需提供正确的脉冲信号就可以实现位置控制,适用于需要简单控制系统的场合。
3.无需反馈装置:步进电机不需要额外的反馈装置进行闭环控制,减少了系统的复杂性和成本。
4.低速高力矩:步进电机在低速时能够提供较大的力矩,适用于需要大力矩输出的场合。
步进电机主要用于打印机、数码相机、扫描仪、精密仪器、医疗设备等领域,以及一些需要精确位置控制的自动化设备中。
总的来说,伺服电机适用于需要高精度、快速响应、稳定性强的应用场合;而步进电机则适用于需要精确位置控制、简单驱动控制、低速高力矩的应用场合。
根据不同的应用需求和系统要求,选择合适的电机类型可以更好地满足实际需求。
各类电机的选型方法及应用
各类电机的选型方法及应用电机是现代工业中不可或缺的重要设备,广泛应用于各个领域。
如何选择合适的电机对于确保设备的正常运行和提高生产效率至关重要。
在选型电机时,需要考虑以下几个方面:动力需求、负载要求、环境条件和经济性。
下面将逐个类别进行介绍。
1. 直流电机直流电机通常由电枢、定子和刷子组成。
直流电机具有速度调节范围广、转矩特性好、反应快等优点,适用于需要调速性或转矩可控的场合。
在选型时,首先需要确定所需的转矩大小和速度要求,然后根据负载类型和工作环境条件选择合适的直流电机型号。
2. 交流电机交流电机通常分为同步电机和异步电机两种类型。
异步电机包括异步感应电机和异步安川电机。
异步感应电机由定子和转子组成,具有结构简单、性价比高的特点,适用于一般功率和速度要求的场合。
异步安川电机是一种特殊的异步电机,具有高效率、高性能和低噪音等优点,适用于精密机械和高要求的场合。
对于交流电机的选型,需要考虑负载类型、电源电压、功率要求和启动方式等因素。
3. 步进电机步进电机是一种精密电动机,由电子驱动器控制驱动,具有定位精度高、速度范围宽、输出转矩大的特点。
步进电机适用于需要精确控制位置的场合,如数控机床、精密仪器等。
在选型时,需要考虑步进电机的步距角、输出转矩和转速等参数。
4. 无刷直流电机无刷直流电机是一种新型的电机,与传统的直流电机相比,具有转速范围广、寿命长、噪音小、效率高等优点,适用于高性能和需要大功率输出的场合。
在选型时,需要考虑转速要求、输出功率和供电电压等因素。
在选型电机时,除了考虑以上几个方面,还需要考虑电机的可靠性、维护成本和供应商的信誉等因素。
此外,应根据不同行业和应用领域的特殊要求选择相应的电机,如矿山行业通常选择防爆电机,汽车行业通常选择高温电机等。
总的来说,电机的选型方法主要是根据负载要求、电源条件、控制要求、环境条件等因素进行综合考虑,选择合适的电机类型和型号。
只有选型合理,才能确保电机的效率和可靠性,提高设备的运行效率和生产效率。
伺服电机与步进电机的特点与用途
伺服电机与步进电机的特点与用途一、伺服电机的特点与用途伺服电机是一种能够根据控制信号对位置、速度等进行精确控制的电机。
它具有速度响应快、精度高、抗负载能力强等特点。
伺服电机主要应用于需要高精度、高速度控制的领域,如工业自动化、机器人、航空航天等。
伺服电机的控制系统通常由编码器、控制器和功率驱动器等组成。
通过控制信号调节电机的转速和位置,实现精准的运动控制。
二、步进电机的特点与用途步进电机是一种通过控制脉冲信号来驱动的电机,每接收一个脉冲信号,电机就转动一个固定的步长。
步进电机具有结构简单、控制方便、成本低等特点。
它主要用于需要位置控制而不需要速度控制的场合,如打印机、激光雕刻机等。
步进电机通常由驱动器和控制器组成,通过控制脉冲频率和方向来实现电机的运动控制。
由于步进电机不需要反馈装置,因此在一些简单的场合具有一定的优势。
三、伺服电机与步进电机的比较1.精度:伺服电机的位置控制精度高于步进电机,适用于需要高精度控制的场合。
2.速度响应:伺服电机的速度响应快于步进电机,适用于需要快速响应的场合。
3.负载能力:伺服电机具有较强的抗负载能力,适用于需要承载较大负载的场合。
4.结构复杂度:伺服电机的控制系统较步进电机复杂,成本更高。
5.应用领域:伺服电机适用于需要高精度、高速度、高负载能力的场合,步进电机适用于简单的位置控制场合。
结语综上所述,伺服电机和步进电机各有其特点和优势,根据具体应用场合的要求选择合适的电机类型至关重要。
在工业自动化、机器人、成像设备等领域,伺服电机和步进电机都具有重要的应用价值,可以满足不同领域的精密控制需求。
变频、伺服、步进应用实践教程PPT课件—变频器的选型
规格的选择
变频器的认知
(2)按照电动机额定电流选择
对于多数的恒转矩负载新设计的项目,可以按照公
式 Ievf≥K1Ied 选择变频器规格。式中,
Ievf 为变频器额定电流;Ied 为电动机额定电流; K1 为电流裕量系数,可取 1.05~1.15,一般情况下
规格的选择
变频器的认知
(1)按照标称功率选择
一般而言,按照标称功率选择只适合作为初步投资 估算依据,在不清楚电动机额定电流时使用。
对恒转矩负载应用时,可以放大一级估算。例如, 90kW 电动机可以选择 110kW 变频器。
规格的选择
变频器的认知
(1)按照标称功率选择
在按照过载能力选择时,可以放大一倍来估算。例 如,90kW 电动机可选择 185kW 变频器。对流体 类负载应用时,一般可以直接按照标称功率作为最 终选择依据,并且不必放大。
置安全制动逻辑。
变频器的认知
类型的选择
变频器的认知
有些应用在高速下要求的转矩,大体与转速
恒
成反比,就是所谓的恒功率负载。
功 机床主轴和轧机、造纸机、塑料薄膜生产线
率 中的卷取机、开卷等
负 负载的恒功率性质应该是就一定的速度变化
载 范围而言的。
当速度很低时,受机械强度的限制,不可能 无限增大,在低速下转变为恒转矩性质。
品牌型号的选择
变频器的认知
品牌选择依据:产品的平均无故障时间、经验和口 碑。
型号选择依据:由已经确定的变频调通方案、负载 类型以及应用所需要的一些附加功能决定。
品牌型号的选择
变频器的认知
两者关系:确定型号时的选择原则有时候也会影响 品牌的选择,如果应用所需要的功能或者控制方式 在某品牌的各型号变频器上都不具备时,则应该考 虑更换品牌。
伺服电机和步进电机的区别及其选择
伺服电机和步进电机的区别及其选择1. 伺服电机的特点伺服电机是一种能够根据特定控制信号精确旋转一定角度的电机。
它具有以下特点: - 高精度:伺服电机可以精确控制位置、速度和转矩。
- 高速度:在高速运转时仍能保持准确性。
- 高性能:响应速度快,工作稳定。
- 高效率:能够根据负载需求自动调节工作状态,节能环保。
2. 步进电机的特点步进电机是一种精密控制的电机,通过每一个步进角度工作,具有以下特点:- 相对简单:结构简单,操作容易。
- 低成本:制造成本低,维护成本也相对较低。
- 精确控制:能够准确控制位置,适合一些需要精确定位的场合。
- 稳定性:稳定性好,不易出现失步情况。
3. 选择伺服电机还是步进电机?3.1 控制精度要求•如果对精确度和控制要求高,建议选择伺服电机,因为它在控制精度和速度方面表现更优秀。
•如果只是简单的定位任务,步进电机已经可以满足需求。
3.2 应用领域•伺服电机通常用于一些需要高速度、高精度、高效率的场合,如数控机床、机器人等。
•步进电机适用于一些简单的定位或速度控制的应用,如打印机、摄像机等。
3.3 成本考虑•在成本方面,步进电机比伺服电机更经济实惠,适合有预算限制的项目。
•如果预算允许并且对性能要求高,可以选择伺服电机。
4. 结论综上所述,伺服电机和步进电机各有优缺点,选择适合自己需求的电机类型非常重要。
在实际应用中,应根据控制精度、应用领域和成本等考虑因素综合选择,以达到最佳的机械性能。
以上是关于伺服电机和步进电机的区别及其选择的相关内容,希望对您有所帮助。
步进电机和伺服电机的原理和区别以与如何选型
特点详细讲解
运转变化佳∶ 因转矩是由感应式电流产生,具有完美磁性分ห้องสมุดไป่ตู้之高密度磁通所产生,故籍由保持整个速 域非常佤之转矩涟波而可得到全然稳定之旋转运动及伺服动作。 最大与额定轻矩之良好关系∶
步进和伺服马达的区别
总结:伺服马达和步进的区别,一是速度,步进电机的速度比伺服电机的速度慢了很多, 第二个区别就是马达的解析度,伺服电机的更高。 线性电机是一种可以直接产生直动的 电机,不需要要转换设备(如丝杆或是皮带)。这样一说的话大家都可以很容易的知道线 性电机和伺服电机相比有哪些优势了。由于去掉了传动的皮带(或是丝杆),工作头动作 的启停更快。没有了传动部分,当然也没有了传动过程中的动作失真。在定位系统中,最 常用的马达不外乎是步进马达和伺服马达,其中,步进马达主要可分为2相,5相,微步进 系统。伺服马达则主要是驱动器所表现出来之分辨率不同,2相步进系统马达每转最细可 分为400格,5相则为1000格,微步进则可从200-50000(或以上)格,表现出来的特性以 微步进最好,加减速时间较短,动态惯性较低。 AC和DC伺服马达主要分为DC伺服比AC伺服马达多一个碳刷,会有维护上的问题,而AC伺 服马达因没有碳刷,所以后续不会有太多的维护问题。所以基本上来说AC伺服系统是较 DC伺服系统更优,但DC伺服系统主要的优势则是价位上比AC伺服系统较便宜,而此两种 的控制精度皆为相同。
步进和伺服马达的区别
2、伺服马达分为交流和直流两大类,功率相对较大,精度高;两者主要的区别是看 马达的端部是否有光电编码器!伺服马达就是靠光电编码器来反馈位置信号的. 顺便提一下闭环控制又可分半闭环和全闭环两种,但是普遍使用的是半闭环装置, 只有非常精密的设备才用全闭环装置:
伺服电机的选型与应用指南
伺服电机的选型与应用指南伺服电机是一种常用的电动机类型,广泛应用于自动化设备、机器人、CNC机床等领域。
正确选择和应用伺服电机对于保证设备的性能和系统稳定运行至关重要。
本文将为您介绍伺服电机的选型与应用指南,帮助您更好地理解和使用伺服电机。
一、伺服电机的基本原理伺服电机是一种通过控制信号来精确控制位置、速度和加速度的电动机。
其基本原理是通过反馈信号持续与设定值进行比较,通过调整控制信号来控制电机输出的转矩和速度,使得电机能够精确控制运动。
二、伺服电机的选型要点1. 功率和转矩:根据实际应用需求确定所需伺服电机的功率和转矩。
一般来说,功率和转矩越大,电机的承载能力越高。
根据实际负载情况选择合适的电机。
2. 控制方式:伺服电机的控制方式包括位置控制、速度控制和力控制等。
根据实际应用需求选择合适的控制方式。
例如,对于需要精确控制位置的应用,选择位置控制方式更合适。
3. 分辨率:伺服电机的分辨率决定了其控制精度。
分辨率越高,电机的运动精度越高。
根据实际应用的精度需求选择合适的分辨率。
4. 响应速度:伺服电机的响应速度影响了系统的动态性能。
响应速度越快,系统的动态性能越好。
根据实际应用需求选择合适的响应速度。
5. 环境适应性:考虑伺服电机的使用环境,包括温度、湿度、震动等因素。
选择具有良好环境适应性的电机,以确保其稳定运行和长寿命。
三、伺服电机的应用指南1. 安装调试:按照电机厂商提供的安装手册进行电机的安装和调试。
确保电机安装稳固,与传动装置连接良好。
2. 参数调整:根据实际应用要求,调整伺服电机的参数,如位置环、速度环和加速度等参数。
合理调整参数可以提高控制的精度和稳定性。
3. 负载匹配:根据实际负载特性和要求,调整电机的负载匹配。
合理匹配负载可以确保电机在工作过程中的高效率和稳定性。
4. 防护措施:根据实际工作环境,采取合适的防护措施,如防尘、防湿、防震等。
保护电机免受外界环境的影响,延长其使用寿命。
伺服电机与步进电机的特点与用途区别
伺服电机与步进电机的特点与用途区别一、伺服电机的特点与用途1. 特点•高精度性能:伺服电机具有高精度的位置控制能力,可以根据控制信号精确控制位置。
•速度响应快:伺服电机响应速度很快,能够在短时间内快速达到设定速度。
•负载能力强:伺服电机在承受负载时能够稳定工作,有较强的负载能力。
•动态响应性好:伺服电机的动态响应性能好,能够快速实现位置、速度或力的调整。
2. 用途•数控机床:在数控机床中,伺服电机常用于控制各种运动轴的定位和速度。
•机器人:伺服电机在机器人领域广泛应用,可以实现机械臂、关节等运动。
•印刷设备:伺服电机可以用于控制印刷设备中的张紧辊等部件的运动。
二、步进电机的特点与用途1. 特点•精确位置控制:步进电机可以通过控制脉冲信号实现精确的位置控制。
•简单驱动:步进电机的驱动相对简单,只需控制脉冲信号即可实现运动。
•静态摩擦力大:步进电机在停止时产生的静态摩擋大,有很好的保持力。
•低速转动平稳:步进电机在低速运动时转动平稳,适合需要高精度定位的场合。
2. 用途•3D打印机:步进电机常用于3D打印机中,控制打印头、平台等部件的精确运动。
•纺织设备:步进电机可以用于控制纺织设备中绞线、缝纫等部件的运动。
•医疗设备:步进电机可以被应用于医疗设备中,如医用机器人、手术器械等的精确控制。
三、伺服电机与步进电机的区别1.控制方式不同:伺服电机通过检测实际位置与设定位置之间的误差来控制,而步进电机通过脉冲信号控制位置。
2.适用领域不同:伺服电机更适用于需要高动态响应和精度控制的场合,而步进电机适用于需要简单驱动和精确位置控制的场合。
3.成本差异:伺服电机相对步进电机成本较高,但在某些对性能要求较高的场合更为适用。
综上所述,伺服电机和步进电机各有其特点和用途,选择合适的电机类型应根据具体应用场景和需求来决定,以达到最佳的效果和性能。
伺服电机与步进电机的应用场合
伺服电机与步进电机的应用场合作者:CDGXZDH在理想条件(温度、湿度、粉尘)下、额定参数范围(电压、负载)以内,伺服电机和步进电机在位置、速度控制上的表现基本无区别。
但是实际的工业应用场合确实多种多样的,特定的应用场合就必须选用合适的电机才能达到最佳的性价比较优势。
一伺服电机伺服有刷直流电机采用带电刷的结构从机械上保证了可靠地换相,外部只需供以直流电便能驱动直流伺服电机,易于控制。
但正是由于其在结构上带有电刷,在长期工作过程中易磨损,直接影响了使用寿命。
此类电机在伺服系统早期应用中比较普遍,但是伴随着无刷直流电机的出现逐步淡出了历史舞台。
当然了,伺服有刷直流电机由于成本较低,在那种无需长期作业的场合还是有市场的,比如导弹等一次性产品上应用的还是比较广泛。
伺服无刷直流电机采用电子换相取代了有刷电机原有的电流由机械换向的模式,使得电机中的电流换向无触点摩擦,彻底改变了有刷电机寿命短的问题,同理,因为没有摩擦,所以也不会产生有刷电机那样导电体粉末附着现象,无刷电机的性能不会因为电机使用时间的推移而出现下降现象。
但是为了完成电子换相必须外加转子位子的检测器件,短期成本相对较高,而且控制起来也相对复杂。
此类电机具有伺服有刷直流电机的全部性能优势,而且还具有更长的寿命和更高的效率,所以在市场上应用相当广泛,比如电动自行车、玩具、航模、机器人等。
伺服交流感应电机结构上最大的不同在于其转子采用非永磁材料的硅钢片,转子必须通过与定子磁场的切割产生感应电流来建立转子磁场,这就决定了转子与定子之间磁场相差一定的角度,所以其磁场是非同步的。
此类电机在成本上成本是最低的,但效率也是最低的。
通常在大电压、中功率场合,伺服交流感应电机应用的较多,特别是在对旋转转速有要求的场合,比如磨床、铣床等。
伺服交流永磁同步电机在结构与伺服无刷直流电机上几乎没有区别,只是在驱动方式上不同,前者采用正弦电压驱动,后者采用脉冲电压驱动。
因此此类电机兼具直流和交流电机的所有优势,也是现阶段伺服系统高端应用的唯一选择,比如对位置和转速精度要求较高的CNC系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进 伺服
过载能力
转速范围
振动噪音
控制精度
速度响应
步进电动机一般 不具有过载能 力。步进电动机 的输出转矩会随 转速升高而下 降,且在较高速
最大转速推荐:
35,39机座 2000RPM以下; 42,57机座 1500RPM以下; 86机座1000RPM以
低频共振是步进电 机的固有属性。运 用抗低频共振等新 控制技术也仅能一 定程度上改善。而 且步进电机中高速
机械 工程 靠法兰盘来保证电机安装同心度。 2、电机安装和应用时需避免电机轴所受到的轴向力、径向力超过电机标称值。 3、联轴器或同步轮装到轴上时,尽量靠近电机法兰盘面(预防力臂太长导致个别电机断轴)。 4、电机轴因公差配合等原因装不上联轴器、同步带轮时,不能敲击带轮、连轴器,硬挤进去,
2.2 应用经验 1)电机与负载间合理装配联接。 2)需注意驱动、电机的散热。 3)选配驱动器,电源,合理设置电流,细分。 4)正确的电气连接,合理的电气装配工艺。 5)设计合理的运动曲线。
下表分别为设备制造商相关岗位人员如机械工程师、电气工程师、软件工程师提供一些参考
惯量和合理刚性 想得到高效、良好的运动效果,必须结构设计合理,负载惯量尽量小、电机与负载之间机械连
步进和伺服电机驱动选型应用速成
李浩,黄捷建 深圳市雷赛智能控制股份有限公司
概述:本文主要针对设备制造商相关人员,如项目经理、机械设计、电气、软件运动控制工程师,讲述步进电机、伺服电机 (本文都指永磁同步交流伺服电机)的作用,选用方法及周边配套设施的选配和主要应用经验。
1 步进和伺服电机的各自特点、优缺点介绍
机的额定电流与电机绕组电阻的乘积,一个重要工程应用经验:输入电压一般选定在步进电机 额定电压的3~25倍;步进电机一定时,供电电压越高,步进电机在中高速能产生的力矩越大,
越有利于需要高速应用的场合,但电机的发热随着电压、电流的增加而加大,所以要注意电机 的温升限值。” 步进电驱动器电源电压选择推荐如下:
设备制造商相关岗位人员可以按以下分工,来获取这些信息
项目经理
详细了解设备生产出产品的工艺,应用环境,适用环温,精度,产能,机械结构,成本
等参数,进而确定所需电机的噪音指标、防护等级、应用温湿度。依据工艺、产能、大
致的结构,基本能得到每个电机的行程及每步动作分配的时间是多少,进而确定电机需
求的转速范围,对应上述介绍精度及建议的速度范围数值,来确定选伺服还是步进的方
内,都能输出额
定转矩。
2 电机选型及应用经验
2.1 电机驱动选型方法
设备制造商在电机选型时,可参考以下方法:
1) 使用环境,需要的防护等级,运行噪音指标,温升指标等; 2) 确定机械规格,负载、刚性等参数; 3) 确认动作参数:转速、行程、加减速时间、周期、精度等; 4) 计算负载惯量、选择电机惯量; 5) 计算电机所需转矩; 6) 选择最高转速能满足应用要求的电机。
最大转速推荐:
80及以下机座建议 3000RPM以内; 80以上~130机座建 议2000RPM以内。
运行的噪音也较 大。
运转非常平稳,即 使在低速时低频振 动也非常小。
连接刚性较低这 些应用状况下有 优势 360°/ 编码器倍 加速性能较好, 频后的线数。 加速到最高速度 只要编码器线 仅需几十毫秒。 数超过500,伺 走长行程(2,3 服电机精度就 圈及以上时)伺 超过步进电机 服优势明显
定孔位尺寸,大部分都是按照英制习惯。伺服电机尺寸一般都按照公制习惯。
机械设计人员要先计算运动部件的转动惯量进而再计算需求力矩。
需估算项目 计算方法一
计算方法二
计算方法三
必要性
负载惯量估算 J=m·r2
参考雷赛提供的计算表 格公式
若结构太复杂,请使用机 械设计软件PRO-E或 Solidwork中自带的计算惯
两相步进电机 步距角1.8°, 考虑到步距角
的最大误差为 ±5%,故定位 精度为 0.18°
加速到最高转速 一般30~400毫 秒,短行程(不 到1圈);短时间 内(例如1秒)多 次启停,或机械
时会急剧下降。
下; 110,130机座 600RPM。
有较强的过载能 力,一般最大转 矩可为额定转矩 的2~3倍,在额 定转速(如 3000RPM)以
力矩估算
类别
负载所需力矩的估算 公式:
伺服电机:
计算原则 T=(JL+JM)*αM JL:折算到电机轴的负载总惯量 JM:电机的转子惯量 αM:角加速度
步进电机:
如果选用伺服电机,则所选用电机的额定转速需略大于计算所需最高转 速,额定转矩宜不小于计算所需最高转矩(因为考虑到伺服电机一般都可 以过载2到3倍,已有考虑了余量) 1、如果选用步进电机,则需用到步进电机的矩频曲线,它是指在标定的电 压,电流条件下,电机转速与输出转矩的关系曲线。需注意你所计算得到 的转矩是指在你需求速度下的转矩,而且,步进电转机没有过载能力,所 以一般需把计算所得力矩再乘以安全系数1.5~2,得到一个考虑了余量的所 需转矩。 2、据此转矩及前述计算得到的所需最大转速来初选步进电机,在初选电机 的矩频曲线上,在纵坐标轴上寻找到所需最大转矩,然后在横坐标下查量 出此转矩下对应可得到的转速,此转速应该大于计算所需最高转速。按此 方法就可以选定步进电机型号,然后可以参考电机的额定电流,电压等参 数,来初选适配的驱动器。
议取I值的80%;如果采用开关电源,建议电源电流取I值。如果由一个电源同时给几个驱动 器供电,可考虑按照前述指引下的电流值,乘以驱动器个数,再乘以70%即可。 步进电机驱动器的电流值设定,一般是设定在额定电流的70%~100%,然后按照最大负载,最大 加速度,最恶劣工况试运行,如果电机的壳体稳态温度不超过80度,则电流设置合适,否则, 可以把电流减小一、二档再试运行,验证壳体稳定温度不超过80度,而电机又没有出现堵转现
线提示
电机间的连接,步进注意两相八条线和三相六条线的颜色组合,请按照电机资料上标明的颜色
驱动器控制信号 接线 图
定义来接线。伺服驱动与电机绕组线连接时,需注意U,V,W相序应正确对应,不支持互换两 相来实现电机换向。 2)具体见“图1”及注释
软件 工程 师参 考
合理规划设置运 动曲线、参数
1、规划好每个轴的运动控制曲线 2、了解每个动作的时间、行程,合理的配置初速度、加速时间、最高速度、换向时间。以期望
选择DM556(型号名称的意义请参考雷赛产品命名规则),DM556最大输入电压为50V,推荐 输入电压为36V,最大输出电流(有效值)为5.6 / =4A。
如何选择电源
选择电源,需确定输出电压及输出功率。步进电机驱动器供电压的选取可参照《步进电动机在 装备制造业中的应用经验》:“步进电机厂经常会给出步进电机的额定电压,此电压其实就是电
设定细 分
象,则电流设置合适。
细分数/分辨率设定,对步进而言,推荐按照出厂默认的8细分即1600个脉冲每转的状态。经我们 的测试及推算,细分数超过8对提升精度没有明显作用,但更大的细分数对减小低速噪音会有一
定效果。在相同电机转速的情况下,细分越高,则所需上位机发出的脉冲频率越高。例如电机
如果为3000RPM,在8细分时,上位机发出脉冲频率为80KHZ即可,但如果细分为16,则上位机 发出脉冲频率需达160KHZ,而很多PLC发出脉冲频率最高仅100KHZ,那就不能用16细分。对 伺服来说,也推荐按照默认设置10000脉冲每转的分辨率,这个分辨率在精度方面基本能适应绝
电气 工程 师参
考
电机机座 35 39 42 57 86
110 130
推荐电源电压 24~36VDC
24~48 VDC 36~68 VDC 180~220VAC
备注
863S68H、86HS120这两款推荐 110VAC电源
设定电流值
供电电源的输出电流建议根据电机的标称额定电流I来确定。如果采用线性电源,电源电流建
1.1 两种电机在点位控制或调速应用的介绍 步进、伺服电机主要用于精确定位场合,也都可以用于调速应用。步进电机因效率低,一般不做为动力用;因存在一定的转 矩脉动,不推荐用于转矩控制。伺服系统则可以做转矩控制,还可考虑取代变频驱动当动力用。 步进电机做调速应用时,控制指令通常用脉冲指令,靠改变脉冲频率来调速。相对变频器调速,有低速力矩大,易于控制启 停,加减速时间短的优势(合适的电压及负载条件下,百毫秒级就能达到目标速度)。而且调速范围较宽,在负载惯量比匹 配合理的条件下,通常不需要另加减速机构。缺点在于运行噪音相对大一些。 伺服电机做调速应用相对变频调速来说也有加减速时间短的优势,通常可做到几十个毫秒就达到预期速度,调速范围更宽。 在做调速、转矩控制应用时,控制信号建议用模拟量电压信号。
向性。
机械设计人员
在机械传动、结构等设计之前,应先对伺服或步进电机的型号规格做详细的了解,按照
电机行业相关标准规格尺寸来设计,否则等设计好传动、结构后再来选电机,经常会遇
到:安装空间不够,没有所需轴径、轴长的标准电机;没有所需的大力矩、合适惯量的
备注
电机等问题。影响进度,抬高成本。 常用的控制类电机(包含伺服、步进)转矩最大一般为50 NM (牛米)。雷赛惯量最大的 步进电机型号为130HS45,惯量为:4.84*10-3(kg·m2)。步进电机轴径、法兰盘、端盖固
电气装配工艺注 连接到驱动器所有接线端子的电线端都不要浸锡,浸锡后易引起接触面积变小,接触电阻变
意事 项
大,导致弱信号被衰减,而强电端子接触点处则可能过热被烧坏。接线端子处若要套冷轧压线
帽,首先需按照线规选择合适规格的冷轧压线帽,注意观察冷轧压接后的尺寸,若不能与端子
形成面接触,请更换压线帽或更改工艺。不允许带电拔插驱动器的电源线或绕组线端子。 驱动器及电机接 1)注意驱动器的供电电源极性不要搞错,错误的状态下上电,驱动器将可能直接损坏;驱动与