北师大八年级数学下册第三章平移与旋转教案

合集下载

20年北师大版八年级数学下册《第3章图形的平移与旋转》教案设计

20年北师大版八年级数学下册《第3章图形的平移与旋转》教案设计

3.1图形的平移第1课时平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究探究点一:平移的定义下列各组图形可以通过平移互相得到的是()A. B.C. D.解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】利用平移的性质进行计算如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=32,△ABC 与△A1B1C1重叠部分面积为2,则BB1等于()A.1 B. 2 C. 3 D.2解析:设B1C=2x,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴12×x×2x =2,解得x=2(舍去负值),∴B1C=22,∴BB1=BC-B1C= 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC方向平移线段BE的距离,就得到此图形,下列结论正确的有( )①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个 解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF=BE =5,正确;④S四边形HDFC =S 梯形ABEH=12 (AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计 1.平移的定义 在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.第2课时坐标系中的点沿x轴、y轴的平移1.复习并巩固平移的性质及简单的平移作图;2.能够根据平移的性质解决点的坐标平移变化问题.(重点,难点)一、情境导入在如图所示的坐标系中标注出点A0(-2,-3),并按下列要求作图.(1)将A0向上平移3个单位长度,向右平移6个单位长度得到A1;(2)将A0向右平移6个单位长度,向上平移3个单位长度得到A2;(3)将A0向下平移2个单位长度,向左平移4个单位长度得到A3;(4)将A0向左平移4个单位长度,向下平移2个单位长度得到A4.观察每一次平移后得到的点的坐标,你能从中发现什么规律?二、合作探究探究点一:图形沿x轴或y轴方向的平移与点的坐标变化【类型一】沿x 轴方向的平移的坐标变化在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A()A.向右平移2个单位B.向左平移2个单位C.向右平移4个单位D.向左平移4个单位解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,那么向右平移两个横坐标差的绝对值即可.∵点A(-2,3)平移后能与原来的位置关于y轴对称,∴平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.方法总结:本题考查了平移中点的变化规律及点关于坐标轴对称的知识,用到的知识点为:两点关于y轴对称,纵坐标相同,横坐标互为相反数;点的左右移动只改变点的横坐标.【类型二】沿y轴方向的平移的坐标变化点P(-2,1)向下平移2个单位长度后,在x轴反射下的点P′的坐标为() A.(-2,-1) B.(2,-1)C.(-2,1) D.(2,1)解析:把点P(-2,1)向下平移2个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点的坐标(-2,-1),在x轴反射下的点P′与P关于x轴对称.点P(-2,1)向下平移2个单位长度后的坐标为(-2,-1),则在x轴反射下的点P′的坐标为(-2,1),故选C.方法总结:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).【类型三】根据平移判断点所在的位置将点M(-1,-5)向右平移3个单位长度得到点N,则点N所处的象限是() A.第一象限B.第二象限C.第三象限D.第四象限解析:先利用平移中点的变化规律求出点N的坐标,再根据各象限内点的坐标特点即可判断点N所处的象限.点M(-1,-5)向右平移3个单位长度,得到点N的坐标为(2,-5),故点N在第四象限.故选D.方法总结:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.探究点二:图形依次沿着x轴方向、y 轴方向的平移与坐标变化【类型一】根据点的坐标变化判断平移方式将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC()A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的解析:平移与点的变化规律:横坐标加上3,应向右移动;纵坐标不变.根据点的坐标变化与平移规律可知,当△ABC各顶点的横坐标加上3,纵坐标不变,相当于△ABC 向右平移3个单位长度.故选B.方法总结:本题考查图形的平移变换,关键是要懂得左右平移时点的纵坐标不变,而上下平移时点的横坐标不变.【类型二】根据平移判断点所在的位置在平面直角坐标系上,点(4,6)先向左平移6个单位,再将得到的点的坐标关于x轴对称,得到的点位于()A.x轴上B.y轴上C.第三象限D.第四象限解析:首先根据图形平移点的坐标的变化规律可得点(4,6)先向左平移6个单位后点的坐标,再写出关于x轴对称的点的坐标,然后根据平面直角坐标系中各象限内点的坐标特征即可求解.∵将点(4,6)先向左平移6个单位后点的坐标为(-2,6),∴(-2,6)关于x轴对称的点的坐标(-2,-6),在第三象限.故选C.方法总结:此题主要考查了坐标与图形变化-平移,关于x轴对称的点的坐标规律,以及平面直角坐标系中各象限内点的坐标特征,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.【类型三】平移的综合应用如图,△A′B′C′是由△ABC 平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为________.解析:(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0-2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.解:(1)A′为(4,0)、B′为(1,3)、C′为(2,-2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.方法总结:熟练掌握平移的规律是解题的关键,上下平移,横坐标不变,纵坐标上加下减;左右平移,纵坐标不变,横坐标左加右减.三、板书设计1.图形沿x轴的平移的坐标变化在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴的平移的坐标变化在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.3.图形依次沿着x轴方向、y轴方向的平移与坐标变化一个图形依次沿着x轴方向、y轴方向的平移后所得到的图形,可以看成是由原来的图形经过一次平移得到的.本课时的教学主要以学生为主体,鼓励学生主动参与到课堂互动中来,在学生讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性,体会数形结合思想的应用,增强应用数学的意识,提高数学建模的能力,让学生学会探究,学会学习.3.2图形的旋转第1课时旋转的定义和性质1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题.(重点,难点)一、情境导入飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?二、合作探究探究点一:旋转的定义【类型一】旋转的认识如图,将左边叶片图案旋转180°后,得到的图形是()解析:将叶片图案旋转任何角度和A、B中的图案均不重合;不旋转或旋转360°后和C中的图案重合,不合要求;顺时针或逆时针旋转180°后只和D中的图案重合,故选D.【类型二】旋转图形的识别下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解析:由旋转对称图形的定义逐一判断求解.解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.方法总结:判断一个图形是否是旋转对称图形,其关键是要看这个图形能否找到一个旋转中心,且图形能绕着这个旋转中心旋转一定角度与自身重合.【类型三】旋转角的判断如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°解析:对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角∠BOD=90°.故选C.探究点二:旋转的性质【类型一】旋转性质的理解如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点,又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17 .∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=2 2.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,体会图形变换思想.第2课时旋转作图1.复习旋转及旋转图形的概念与性质;2.能够根据旋转的性质进行简单的旋转作图.一、情境导入在钟面上,从1点到1点6分,分针转了多少度角?时针转了多少度角?1点6分时针与分针的夹角是多少度?二、合作探究探究点:简单的旋转作图【类型一】旋转作图在如图所示的网格图中按要求画出图形:(1)先画出△ABC向下平移5格后的△A1B1C1.(2)再画出△ABC以点O为旋转中心,沿顺时针方向旋转90°后的△A2B2C2.解:(1)如图,△A1B1C1即为△ABC向下平移5格后的图形.(2)△A2B2C2即为△ABC以点O为旋转中心,沿顺时针方向旋转90°后的图形.【类型二】作旋转图形如图,画出△ABC绕点O逆时针旋转90°后的△A′B′C′.解:(1)如图,连接OA,OB,OC.(2)分别以OA,OB,OC为一边作∠AOA′=∠BOB′=∠COC′=90°.(3)分别在射线OA′,OB′,OC′上截取OA′=OA,OB′=OB,OC′=OC.(4)依次连接A′B′,B′C′,C′A′.则△A′B′C′就是△ABC绕点O顺时针旋转90°后的图形.【类型三】图形旋转的应用如图①,分别以正方形ABCD的边AD和DC为直径画两个半圆交于点O.若正方形的边长为10cm,求阴影部分的面积.解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD 必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.3.3中心对称1.理解并掌握中心对称及中心对称图形的概念及性质;(重点)2.能够根据中心对称及中心对称图形的性质进行作图.一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称和中心对称图形的概念【类型一】中心对称的识别如下图所示的四组图形中,左边图形与右边图形成中心对称的有()A.1组B.2组C.3组D.4组解析:将选项中左边图形沿着某一点旋转180°能与右边图形重合的是(1)(2)(3),所以(1)(2)(3)中左边图形与右边图形成中心对称.共3组,故选C.【类型二】中心对称图形的识别下列标志图中,既是轴对称图形,又是中心对称图形的是()解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A是中心对称图形,不是轴对称图形;选项B既是中心对称图形,又是轴对称图形;选项C是轴对称图形,不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形.故选B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.探究点二:中心对称和中心对称图形的性质【类型一】确定对称中心如图,已知△ABC和△A′B′C′成中心对称,画出它们的对称中心.解析:由于△ABC和△A′B′C′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.解法一:根据观察,B、B′及C、C′应是两组对应点,连接BB′、CC′,BB′、CC′相交于点O,则O为对称中心.如图.解法二:B、B′是一对对应点,连接BB′,找出BB′的中点O,则点O即为对称中心.如图.方法总结:利用中心对称的特征,找正确对应点.当两个图形成中心对称时,通过直接观察的方法找对应点;如果直观体现不明显,可采用测量方法找对应点.【类型二】利用中心对称图形的性质求面积如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD 和BC于点E、F,AB=2,BC=3,试求图中阴影部分的面积.解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE关于点O成中心对称,此图中阴影部分的三个三角形可以转化到直角△ADC中,于是此面积即可求得.解:因为矩形ABCD是中心对称图形,所以△BOF与△DOE关于点O成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ADC中.又因为AB=2,BC=3,所以Rt△ADC的面积为12×3×2=3,即图中阴影部分的面积为3.方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.3.4简单的图案设计1.利用旋转、轴对称或平移进行简单的图案设计.2.认识和欣赏平移、旋转在现实生活中的应用,并灵活运用平移与旋转组合的方式进行一些图案设计.一、情境导入2016年里约热内卢奥运会会徽是由三人牵手相连的标志,代表巴西的著名景点“面包山”作为图形的基础,融合充满激情的卡里奥克舞,并且呼应了巴西国旗的绿黄蓝三色.标志象征着团结、转变、激情及活力.在和谐动感中共同协力,同时也体现了里约的特色和这座城市多样的文化,展示了热情友好的里约人和这座美丽的上帝之城.二、合作探究探究点一:分析图案的形成过程【类型一】分析构成图案的基本图形分析下列图形的形成过程.解析:仔细观察图案,分析构成的基本图形,再分析图形变换的过程和方式.是通过平移、轴对称、旋转中的一种变换还是其中的几种变换的组合,另外要注意图形形成不是唯一的,即基本图形也不唯一,要全面思考,认真分析.解:仔细观察会发现这四个图形分别是由以下的基本图形构成的.第一个是由基本图形旋转十次后得到的,第二个是由基本图形平移两次后得到的,第三个是由基本图形旋转五次后得到的,第四个是由基本图形旋转五次后得到的.因为图形的变换不唯一还可以有其他的变换方式,如(1)、(4)可以由图2(a)、2(b)通过轴对称变换得到.方法总结:对于这四种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.【类型二】分析图案的形成过程分析左边的树形图案,经过怎样的图形变换就可得到右边的树形图案.解析:根据左右两图形的位置关系可知,若要由左图得到右图,可以通过以下两种途径:(1)把左图绕点A沿顺时针方向旋转一个角度,使左边的树形图案与直线垂直,然后再作轴对称变换(要注意对称轴的正确选择),即可得到右边的树形图案.(2)把左图先做轴对称变换(要注意对称轴的正确选择),使左边的树形图案与直线垂直,然后再作平移变换,即可得到右边的树形图案.方法总结:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案.探究点二:利用平移、旋转、轴对称等方式设计图案用四块如图①所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图②、图③、图④中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).解:解法不唯一.例如:方法总结:求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.三、板书设计1.分析图案的形成过程(1)分析构成图案的基本图形;(2)分析图案的形成过程.2.利用平移、旋转、轴对称等方式设计图案教学过程中,强调学生自主探索和合作交流,经历运用平移、旋转、轴对称的组合进行简单的图案设计过程,体会图案的欣赏与设计过程.。

初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案

初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案

第三章 图形的平移与旋转2.图形的旋转(二)本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。

课前热身:1. 旋转的定义: 这个定点称为_____,转动的角称为____.旋转不改变图形的________.2.旋转的基本性质:对应点到旋转中心的距离对应点与旋转中心所连线段的夹角等于旋转前、后的图形图形的旋转是由 和旋转方向和旋转角度决定(注意:请准备好圆规、三角板、量角器和铅笔)3.关于点的旋转(1)点A 绕点O 逆时针旋转60° OA 4.关于线段的旋转(1)画出线段AB 绕着端点A 顺时针旋转60度后的线段(2)画出线段AB 绕着端点O 顺时针旋转90度后的线段 讲授新知:关于三角形的旋转类型一:已知旋转中心与旋转角作旋转后的图形例1.试着画△ABC 绕O 点逆时针旋转60°后所得的三角形.变式.如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B ,C 对应点的位置,以及旋转后的三角形A B B A O总结:“旋转”作图的步骤:一连:连接已知点与旋转中心二定:确定旋转方向三量:测量旋转角度四截:在旋转角的另一条边上,以旋转中心为一端点截取等于对应线段长度的线段五画:顺次连接所得的点,从而画出旋转得到的图形例2(格点问题)如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB 的三个顶点O(0,0),A(4,1),B(4,4)均在格点上画出△OAB绕原点O顺时针旋转90°后得到的△OA1B1,并写出点A1的坐标变式(坐标系中的旋转)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(-2,5)的对应点A′的坐标是________.类型二:已知旋转后的图形,反过来寻找旋转中心和旋转角的位置例1.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)变式:如图,四边形ABCD和四边形CDFE是边长相等的两个正方形,其中A、D、F 和B、C、E各成一直线,将正方形ABCD绕着一点旋转一定的角度后与正方形CDFE重合,这样的旋转中心共有多少个?确定旋转中心与旋转角的方法:在图形的旋转过程中,判断谁是旋转中心,要看旋转中心是在图形上还是不在图形上;若在图形上,哪一点在旋转过程中位置没有改变,这一点就是旋转中心;若不在图形上,对应点连线的垂直平分线的交点就是旋转中心,旋转角等于对应点与旋转中心所连线段的夹角.随堂练习:1.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是四边形ABCD以A为旋转中心() A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点B C.点C D.点D课堂小结课后作业:请完成《英才课堂》59~60页1~10题必做,11、12题选做。

北师大版八年级数学下册第三章图形的平移与旋转3.3中心对称(教案)

北师大版八年级数学下册第三章图形的平移与旋转3.3中心对称(教案)
3.掌握中心对称在实际问题中的应用,如平面几何图形的对称变换。
4.掌握中心对称与轴对称的区别与联系,能解决相关问题。
5.举例说明中心对称在生活中的应用,培养学生的观察能力和实际操作能力。
本节课我们将结合教材内容,通过实例分析、动手操作、小组讨论等方式,帮助学生深入理解和掌握中心对称的相关知识。
二、核心素养目标
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、旋转等操作,演示中心对称的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中心对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
此外,我在教学过程中也注意到,对于一些理解能力较弱的学生,需要更多地给予个别辅导和鼓励。在讲解难点时,我要更加耐心地解释,尽量用简单易懂的语言和例子,帮助他们克服困难。
在总结回顾环节,我询问了学生们对今天学习内容的掌握情况,他们普遍反映对中心对称有了更深刻的认识。但同时,我也意识到,对于这部分知识点的巩固和应用,还需要在后续的教学中不断加强。
1.培养学生的空间观念和几何直观,通过中心对称的学习,使学生能够观察、分析、描述和创造对称图形,提高对图形变换的理解和操作能力。
2.培养学生的逻辑思维与推理能力,通过探究中心对称的性质与判定方法,让学生学会运用严谨的逻辑推理解决问题。
3.培养学生的数学建模能力,使学生能够将中心对称Байду номын сангаас用于解决实际问题,建立数学模型,提高解决实际问题的能力。
4.培养学生的合作交流能力,通过小组讨论、合作探究,让学生学会倾听、表达、交流与合作,提高团队协作能力。

北师大版八年级数学下册 第三章 图形的平移与旋转 3.3《中心对称》教学设计

北师大版八年级数学下册 第三章 图形的平移与旋转 3.3《中心对称》教学设计
教学设计
教学主题
3.3中心对称(北师大版八年级下册)
一、教材分析
“中心对称”是初中数学教学中的一项重要内容,它与轴对称和轴对称图形有着紧密的联系和区别,同时与图形的三种变换(平移、翻折、旋转)中的“旋转”有着不可分割的联系。实际生活中也随处可见中心对称的应用.通过对这一节课的学习,可以完善初中对“对称图形”的知识,并为后面平行四边形等知识的学习做必要的准备。
引导学生自己小结本节课的知识要点及数学方法,使知识系统化.
本节课关注学生已有活动经验的回顾过程,关注了“探索-发现-猜想-巩固”的活动过程,关注了学生自主探究过程,学生学习的主体性发挥较好,增强了教学效果。
布置作业
1、教师在教学过程中可根据学生的学习情况确定是否补充内容,也可留给学生课后思考,分层要求;
1、学生解答问题,并利用小组合作设疑问题;
2、通过例题学习,使学生进一步掌握知识。
多媒体投影展示学生解题过程,并利用白板批注修改;在例题的选择时注意加强中心对称的应用。多媒体课件展示问题和解答,展示对PPT的熟练操作,有利于教学效果。
巩固运用
(达标测评)
以适当的练习巩固本节课的知识点,使学生能熟练画出成中心对称的图形,巩固学生的作图能力,并会简单应用中心对称的性质。
七、教学特色(如为个性化教学所做的调整,为自主学习所做的支持、对学生能力的培养的设计,教与学方式的创新等)200字左右
本节课根据课程标准的指导思想,鉴于本节教材的特点和学生的心理特征,我确定了以启发、实践、交流为主的教学方法,努力培养学生观察、思考、交流、合作的学习品质,以及猜想、类比、归纳、概括的思维习惯。几何图形的旋转是学生学习的难点,为了培养学生的抽象思维能力,我运用了的多媒体技术,利用动画把动态的问题直观地表现出来,使学生更容易理解并掌握中心对称的概念与性质给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间。我从学生已有的生活体验出发,引导学生通过各种形式的活动,从数学的角度去观察事物、思考问题,让学生在画图过程中培养动手动脑的能力,并在动手动脑的过程中逐步理解中心对称的定义和性质,使学生真正实现由“学会”到“会学”的质的飞跃。

八年级数学下册第三章图形的平移与旋转图形的平移 教案北师大版

八年级数学下册第三章图形的平移与旋转图形的平移 教案北师大版

第三章图形的平移与旋转1 图形的平移第2课时【教学目标】知识技能目标:通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系. 过程性目标:在活动过程中,提高学生的探究能力和方法.情感态度目标:通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学的美.【重点难点】重点:通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律难点:坐标的变化与点的平移之间的关系【教学过程】一、创设情境图中的“鱼”是将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的,将这条“鱼”向右平移5个单位长度.(1)画出平移后的新“鱼”.(2)在图中尽量多选取几组对应点,并将它们的坐标填入下表:原来的“鱼”( , ) ( , ) ( , ) …向右平移5个单位长度后的( , ) ( , ) ( , ) …新“鱼”(3)你发现对应点的坐标之间有什么关系?如果将原来的“鱼”向左平移4个单位长度呢?请你先想一想,然后再具体做一做.二、探究归纳活动一:探求坐标系中的平移变换想一想:如果将图中的“鱼”向上平移3个单位长度,那么平移前后的两条“鱼”中,对应点的坐标之间有什么关系?如果将图中的“鱼”向下平移2个单位长度呢?做一做:(1)将图中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别加3,再将得到的点用线段依次连接起来,从而画出一条新“鱼”,这条新“鱼”与原来的“鱼”相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?(2)将图中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别加3,所得到的新“鱼”与原来的“鱼”相比又有什么变化?如果横坐标保持不变,纵坐标分别减2呢?例题讲解议一议:在平面直角坐标系中,一个图形沿x轴方向平移a(a>0)个单位长度后的图形与原图形对应点的坐标之间有什么关系?如果图形沿y轴方向平移a(a>0)个单位长度呢?与同伴交流.归纳总结如下:1.一个图形沿x轴方向平移a(a>0)个单位长度:(x,y)向右平移a个单位(x+a,y)向左平移a个单位(x-a,y)2.一个图形沿y轴方向平移a(a>0)个单位长度:(x,y)向上平移a个单位(x,y+a)向下平移a个单位(x,y-a)三、交流反思通过一条“鱼”的平移,探究“鱼”横向或纵向平移一次的坐标变化,进一步感受平移的实质,渗透平移的三要素,即“基本图形、方向、距离”.操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生掌握得比较好.四、检测反馈1.四边形ABCD的顶点坐标分别是A(0,3),B(-3,0),C(0,-3),D(3,0)(1)将四边形ABCD向右平移6个单位长度,得到四边形A1B1C1D1,写出四边形A1B1C1D1各顶点的坐标;(2)将四边形A1B1C1D1向上平移6个单位长度,得到四边形A2B2C2D2,写出四边形A2B2C2D2各顶点的坐标.2.(1)将第1题中的四边形A2B2C2D2各顶点的纵坐标不变,横坐标分别减4,得到四边形A3B3C3D3,它与四边形A2B2C2D2相比有什么变化?(2)将四边形A3B3C3D3各顶点的横坐标不变,纵坐标分别减4,得到四边形A4B4C4D4,它与四边形A3B3C3D3相比有什么变化?五、布置作业.课本P70 3.2习题六、板书设计七、教学反思1.注意学生活动的指导教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.2.给学生空间最后提出的一个挑战性问题,虽不能解决,让学生更加急迫地要充实新知识解决未解决的问题,从而使自己获得更大的成功,以成良性循环的学习模式.。

数学北师大八年级下册图形的平移与旋转教案

数学北师大八年级下册图形的平移与旋转教案

第三章图形的平移与旋转3.3 中心对称一、教材分析本章位于北师大版八年级下第三章,是继小学已经学过了平移和旋转基础之上进行深入学习。

具有呈上启下的作用。

本章先通过观察具体的平移、旋转现象,分析、归纳并概括出平移、旋转的整体规律和基本性质,然后再平移和旋转的设计、欣赏、简单应用中,进一步深化对图形三种基本变化的理解和认识。

也对后面学习平行四边形等特殊的四边形起了铺垫的作用。

本节内容是继《图形旋转》后的一节内容,在本章中起了非常重要的作用,前面的几节内容研究一般图形的旋转,本节是研究两个图形通过特殊的旋转而产生的特殊位置关系,体现了从一般到特殊的思想。

而研究这种特殊的位置关系为我们几何图形的分析提供了更多的手段,比如平行四边、正偶数边形正是二、学情分析学生的知识技能基础:在七年级(下)和本章前面几节课中,已学习了轴对称、平移、旋转等概念,学生已充分理解了各种变换的基本性质,具备了分析、设计图案的基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经初步积累了一定的图形变换的数学活动经验,本节课旨在让学生在进行观察、分析、欣赏等操作性活动中,丰富学生对图形变换的认识,并使他们正确理解和把握平移、旋转等内容,进一步深化对图形的三种基本变换的理解和认识。

三、教学目标(一)知识与技能:1.了解中心对称、中心对称图形的概念,探索它的基本性质;2.会进行简单的中心对称作图;3.认识并欣赏现实生活中的中心对称;(二)过程与方法:经历有关中心对称的观察、操作、欣赏、归纳、验证、设计的过程,进一步积累数学活动经验,增强学生的动手实践能力,发展空间观念。

(三)情感、态度与价值观:通过图形间的变化关系,使学生认识到一切事物的变化可以通过一系列的基本变化组合得到,体会事物从量变到质变的过程。

四、教学重点中心对称、中心对称图形的概念;作出一个图形关于一点的对称图形;五、教学难点两个图形成中心对称与中心对称图形的区别和联系;六、重难点突破:问题串设置逐层推进,达到目标核心。

新北师大版八年级数学下册《三章 图形的平移与旋转 1. 直角坐标系中图形的平移与坐标的变化》教案_6

新北师大版八年级数学下册《三章 图形的平移与旋转  1. 直角坐标系中图形的平移与坐标的变化》教案_6

3.1图形的平移(第1课时)教学设计教材分析:学生在七年级已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。

同轴对称一样,平移也是现实生活中广泛存在的现象,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。

为综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计打下基础。

教学目标:1.通过具体实例认识平面图形的平移,探索它的基本性质,会进行简单的平移画图;2.经历有关平移的观察、操作、分析和抽象、概括等过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念;3.认识并欣赏平移在自然界和现实生活中的应用。

教学重点1.认识平移在现实生活中的广泛应用。

2.探索和理解平移的基本性质,会运用基本性质进行简单的平移作图。

教学难点平移的性质的理解。

教学过程:第一环节创设情境,引入新课教学内容:出示一组动画,推拉门、上升的电梯、升起的国旗、直线行驶的小汽车、风扇、钟表等教师活动:课前制作生活有关的小视频,为学生揭示本章主要内容。

学生活动:观看视频,了解本章将研究平移旋转等有关内容。

第二环节初步感知,生成定义问题1:仔细观察推拉门、上升的电梯、升起的国旗、直线行驶的小汽车图形的运功,它们有什么共同的特征?设计意图:让从学生从身边熟悉、感兴趣的事情研究,激发学生的学习兴趣,体会数学来源于生活。

共同总结并板书平移概念,总结平移不改变图形的形状与大小,改变图形的位置。

平移三要素:原图形位置、平移方向、平移距离。

问题2 (课件演示)如图所示点A与点A'叫做对应点,线段AB与线段A'B'叫做对应线段,∠A与∠A'叫做对应角。

此时:点B的对应点是点E;点C的对应点是点F;线段AC的对应线段是线段DF;线段BC的对应线段是线段EF;∠B的对应角是∠E;∠C的对应角是∠F。

△ABC平移的方向就是由点B到点E的方向,平移的距离就是线段BE的长度。

北师大版八年级数学下册第三章图形的平移与旋转3.1图形的平移(一)教学设计

北师大版八年级数学下册第三章图形的平移与旋转3.1图形的平移(一)教学设计

第三章图形的平移与旋转3.1 .图形的平移(一)教课目的:经过详细实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。

教课过程:第一环节:创建情境活动内容:1.引入问题,出现课题:赏识生活中,我们常常有到的一些漂亮的图案和汽车标记以及漂亮的花边!感觉生活中的平移的经验!引入新的问题!请你判断:小明随着妈妈乘参观电梯上楼,一会儿,小明喜悦地大喊起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为何?2.接触平移现象:教师经过多媒体展现(展现画面)现实生活中平移的详细实例:(1)箱子在传递带上挪动的过程。

(2)手扶电梯上人的挪动的过程。

教师发问:① 你能发现传递带上的箱子、手扶电梯上的人在平移前后什么没有改变,什么发生了改变吗?②在传递带上,假如箱子的某一按键向前挪动了 80cm,那么电视机的其余部位(如屏幕左上角的图标)向什么方向挪动?挪动了多少距离?③假如把挪动前后的同一箱子当作长方体(多媒体演示书上的图 3-2 ),那么四边形与四边形的形状、大小能否同样?学生自由讲话,畅所欲言。

平移前后两个图形的形状和大小没有改变,地点发生了改变。

第二环节:活动研究活动一:研究平移的定义内容:依据上述剖析,你能说明什么样的图形运动称为平移?教师指引学生从语句的主谓剖析来对待以上几个句子,让学生自己总结平移的观点:(主语――状语――谓语)“一个物体沿着某个方向挪动必定的距离”在学生发现和概括的基础上板书:平移定义:在平面内,将一个图形沿某个方向挪动必定的距离,这样的图形运动称为平移。

平移不改变图形的形状和大小。

注意:平移三因素:几何图形——运动方向——运动距离活动二:研究平移的性质学生联合 P65 图 3-1 的内容和 P66图 3-2 的内容自主学习学生概括总结,教师板书平移的性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

北师大版数学八年级下册第三章图形的平移与旋转3.1图形的平移(教案)

北师大版数学八年级下册第三章图形的平移与旋转3.1图形的平移(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了图形平移的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形平移的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.学会使用平移工具,解决实际问题,培养空间想象能力和创新意识。
本节课将结合教材内容,通过讲解、示范、练习等环节,使学生掌握图形的平移概念,并能运用平移性质解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的空间观念:通过学习图形的平移,让学生在实际操作中感受和认识平移现象,提高对空间位置关系的理解和判断能力。
此外,学生在进行实验操作时,对平移工具的使用还不够熟练。我应该在操作前给予更详细的指导,让学生在实践中更好地掌握工具的使用方法。
在小组讨论环节,我发现有的学生比较内向,不愿意主动发表意见。为了鼓励他们,我可以在课堂上创造更多的机会,让每个人都有机会表达自己的观点。同时,也可以通过设置一些简单的问题,引导他们逐步参与到讨论中来。
五、教学反思
在今天的教学中,我发现学生们对图形平移的概念和性质有了初步的理解,但在实际应用中还存在一些困惑。通过观察他们的讨论和操作,我发现几个值得注意的地方。
首先,学生在理解平移向量时,对向量的方向和大小关系把握不准。在今后的教学中,我需要更加直观地展示向量与平移的关系,例如,可以使用实际的物体进行演示,让学生更直观地感受到向量的作用。
-平移与旋转的区分:学生可能会将平移与旋转混淆,难点在于明确两者之间的区别,平移是沿直线移动,而旋转是围绕某一点或轴进行旋转。

新北师大版数学八下第三章图形的平移与旋转整章教案

新北师大版数学八下第三章图形的平移与旋转整章教案

第三章图形的平移与旋转第1节图形的平移教学目标1、通过具体实例认识平面图形的移,探索它的基本性质,会进行简单的平移画图。

2、在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。

3、在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。

4、认识的欣赏平移在自然界和现实生活中的应用。

5、经历有关平移的观察、操作、分析及抽象、概括等过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念。

教学重点平移的性质,利用平移性质作图,在平面直角坐标系里进行平移操作。

教学难点平移作图,坐标的变化与平移规律之间的关系。

教学过程:3个课时第一课时图形的平移一、导入新课生活中的平移:P65“传送带上的电视机的形状、大小是否发生了改变”、“手扶电梯上的人”、“笔直的铁道上行驶的火车”、“上下楼的电梯”二、平移1、定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

2、如图:P65,对应点、对应线段、对应角三、做一做:P65四、平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等。

五、例:P66六、想一想:P67在上面例中,你还有画△DEF的其他方法吗?七、议一议:P67确定一个图形平移后的位置,需要哪些条件?(要原先的图形、平移方向、平移距离)八、练习:P67,P67-68九、作业:1、把图中的机器人向右平移2格,再向下平移2格, 画出最后平移的图形。

2、如图,在长宽分别为20M 、10M 的长方形草地上有一条宽 为1M 的弯曲小路,求草地的面积。

3、已知正方形边长为10米,从A 点爬到B 点沿折线走路程是多少?第二课时 在坐标系里上、下、左、右平移与坐标的关系一、回顾图形平移的性质二、思考:P68三、想一想:P69A B四、议一议:P69五、平移小结1、纵坐标不变,横坐标分别增加(减少)a 个单位时,图形 平移a 个单位;2、横坐标不变,纵坐标分别增加(减少)a 个单位时,图形 平移a 个单位。

北师版初中数学八年级下册精品教案 第3章 图形的平移与旋转 1 图形的平移 第1课时 平移

北师版初中数学八年级下册精品教案 第3章 图形的平移与旋转 1 图形的平移 第1课时 平移

第三章图形的平移与旋转1 图形的平移第1课时平移教师备课素材示例●归纳导入观察下列图片,你能发现图中描绘的运动的共同点吗?这种现象是实际生活中的平移现象,今天我们来学习平移的相关知识.【归纳】在平面内,将一个图形沿着某一个方向移动一定的距离,这样的图形运动称为平移.平移前后两个图形的形状和大小没有改变,位置发生了改变.【教学与建议】教学:通过生活实例使学生初步感受到生活中的平移现象,渗透平移的三要素,归纳平移定义.建议:让学生各抒己见,用自己所学的知识合情推理并得出自己的结论.●置疑导入活动内容:我们大家共同来看小亮同学的一天.1.小亮早晨起来,推开卧室门,刷牙洗漱准备上学;2.小亮乘坐电梯,到达楼下;3.小亮骑上自行车到学校去;4.小亮路过公园看到有小朋友在玩滑梯.问题1:请大家思考并分组讨论一下,以上几种运动现象有什么共同点?问题2:根据上述分析,你能说明什么样的图形运动被称为平移吗?问题3:平移运动中,对于运动主体(图形),在形状、位置、大小这三个因素中,哪些因素发生了变化,哪些保持不变?问题4:展示图片,指出哪些运动是平移.问题5:下列现象中,属于平移的有(1)(3)(5).(1)火车在笔直的铁轨上行驶;(2)冷水受热过程中小气泡上升变成大气泡;(3)打气筒打气时,活塞的运动;(4)钟摆的摆动;(5)传送带运送物品.【教学与建议】教学:设置问题,培养学生的学习兴趣和归纳概括能力.建议:问题1,2,3.由学生分小组讨论完成,问题4和问题5让学生在学会的基础上进行练习,巩固对平移概念的理解.解此类题目的关键是判断在图形平移前后,图形形状和大小是否改变,平移改变的只有位置.【例1】下列图案中,可以由第一个图案平移得到的是(C)经过平移,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.【例2】如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为(A)A.16cmB.18cmC.20cmD.22cm(例2题图)(例3题图)【例3】如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE,如果CB=1,那么OE的长为__7__.确定图形平移方式的关键是确定出图形平移前后的对应点,再确定图形中的关键点,作出关键点的对应点.【例4】如图,在6×6的方格中有两个涂有阴影的图形M,N,图①中的图形M平移后位置如图②所示,以下对图形M的平移方法叙述正确的是(C)A.向右平移2个单位长度,向下平移3个单位长度B.向右平移1个单位长度,向下平移3个单位长度C.向右平移1个单位长度,向下平移4个单位长度D.向右平移2个单位长度,向下平移4个单位长度【例5】如图,作出图形经过平移后的图形,使点A与点A′对应.一个图形平移前后面积周长相等.解题时,要抓住平移的距离,注意观察平移前后图形的关系,从而求解.【例6】如图,将面积为4的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为__12__.(例6题图)(例7题图)【例7】如图,长方形ABCD的长为6,宽为4.将长方形先向上平移2个单位长度,再向右平移2个单位长度得到长方形A′B′C′D′,则阴影部分的面积是__8__.高效课堂教学设计1.通过具体实例认识平移,理解平移的基本内涵,掌握平移的基本性质.2.会画简单的平移图形.▲重点探索图形平移的主要特征和基本性质,会画简单图形的平移图.▲难点探索和理解平移的基本性质及性质的应用.◆活动1 创设情境导入新课(课件)请同学们观察下面的两幅图片:问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变,什么发生了改变吗?问题2:在传送带上,如果箱子的把手向前移动了80cm,那么箱子的其他部位向什么方向移动?移动的距离是多少?问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各个面的形状、大小是否相同?讨论得出:平移前后两个图形的形状和大小没有改变,位置发生了改变.这节课我们继续学习平移的一些知识.◆活动2 实践探究交流新知【探究1】平移的定义问题 1.根据上述分析,你能说明什么样的图形运动被称为平移吗?如何定义平移呢?问题2.根据平移的定义,你认为平移应具备哪几个要素?【归纳】1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.2.平移三要素:(1)几何图形;(2)运动方向;(3)运动距离.【探究2】探究平移的性质如图所示,△ABE沿射线XY的方向平移一定距离得到△CDF.点A,B,E分别平移到了点__C__,__D__,__F__;线段AB,BE,AE分别平移到了__CD__,__DF__,__CF__;∠ABE,∠BAE,∠AEB分别平移到了__∠CDF__,__∠DCF__,__∠CFD__.做一做:如图,四边形ABCD沿某方向平移后得到四边形EFGH,思考:(1)四边形ABCD是沿什么方向平移后得到四边形EFGH的,平移的距离是多少?(2)在图中,线段AE,BF,CG,DH有怎样的位置关系?(3)每对对应线段之间有怎样的位置关系?(4)图中有哪些相等的线段、相等的角?讨论分析:(1)变换前后对应点的连线平行且相等:平移变换是图形的每一个点的变换,一个图形沿某个方向移动一定的距离,那么每一个点也沿着这个方向移动相同的距离,所以对应点的连线平行且相等.(2)变换前后的图形全等:平移变换是由一个图形沿着某个方向移动一定的距离,所以平移前后的图形是全等的.(3)变换前后对应角相等.(4)变换前后对应线段平行且相等.【归纳】平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.◆活动3 开放训练应用举例【例1】下列图形中,哪一个可以通过平移得到( )A B C D【方法指导】注意仔细观察,一要判别大小是否变化;二要判别图形是否沿着一定的方向移动了一定的距离.由上可知,只有D项符合平移的概念.答案:D【例2】如图①,在宽20m,长32m的长方形地面上修同样宽的不规则的路(路始终垂直或平行于长方形地面的边),余下的部分作为耕地,耕地面积为540m2,设路宽为xm,根据题意可列方程为______________.图①图②【方法指导】利用平移把不规则的路平移成规则的路,使耕地成为一个规则的长方形(如图②),利用长方形的面积公式可列出方程.由于道路宽为xm,则耕地的长为(32-,所以根据题意可得方程:(32-x)(20-x)=540.答案:(32-x)(20-x)=540【例3】如图,经过平移,△ABC的顶点A移到了点D.画出平移后的三角形.【方法指导】确定一个图形平移后的位置,需要几何图形、运动方向、运动距离三要素,利用平移的定义和性质,找到关键点,用虚线画辅助线,实线画平移前后的图形.解:如图.画法一:过点D分别作出与AB,AC平行且相等的线段DE,DF,连接EF,△DEF就是△ABC平移后的图形.画法二:因为平移后的图形与原图形全等,所以过点B作线段BE,使它与线段AD平行且相等,得到另一个对应点E,用同样的方法得到点C 的对应点F,连接DE,EF,F D.△DEF就是△ABC平移后的图形.◆活动4 随堂练习1.下列说法中正确的是(D)A.一个图形经过平移后,与原图形成轴对称B.如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得到C.一个图形经过平移后,它的性质发生了变化D.图形的平移由平移的方向和距离决定2.若△ABC沿东南方向平移了4cm,那么△ABC中BC上的中点D向__东南__方向移动了__4__cm.3.如图,∠DEF是由∠ABC经过平移得到的.若∠ABC=33°,则∠DEF 的度数是__33°__.(第3题图)(第4题图)4.如图,大长方形的长是12cm,宽是10cm,阴影部分的宽均为2cm,则空白部分的面积是__80_cm2__.5.课本P67随堂练习◆活动5 课堂小结与作业【学生活动】1.这节课你有什么收获?2.我们在探索图形的平移时,运用了哪些方法?【教学说明】梳理本节课的重要方法和知识,加深对图形平移的特征、基本性质、作图等知识的理解和运用.【作业】课本P67习题3.1中的T1、T2、T3、T5.对于本节课,学生对“一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等”这一结论得出比较顺利.教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题等,使小组合作学习更具实效性,给学生充分的思考时间,让学生发表见解,讨论看法,达到学以致用的目的.。

北师大版八年级数学下册第三章图形的平移与旋转3.3中心对称教学设计

北师大版八年级数学下册第三章图形的平移与旋转3.3中心对称教学设计
4.针对不同学生的学习基础和接受能力,教师应关注个体差异,因材施教,给予每个学生充分的关注和指导,使他们在原有基础上得到提高。
5.学生在情感态度上,对新颖有趣的数学知识充满好奇心,教师应充分调动学生的积极性,创设有趣的教学情境,激发学生的学习兴趣。
三、教学重难点和教学设想
(一)教学重难点
1.理解中心对称的概念及其性质,能够识别并运用中心对称图形。
5.学生撰写学习心得,总结自己在学习中心对称过程中的收获和困惑。教师鼓励学生如实表达,以便了解学生的学习情况,为下一步的教学提供参考。
作业布置要求:
1.学生在完成作业时,要注重解题过程和方法,养成良好的学习习惯。
2.家长要关注孩子的学习情况,协助孩子完成作业,并给予适当指导。
3.教师在批改作业时,要关注学生的解题思路、方法和结果,及时给予反馈,指导学生改进。
2.掌握中心对称在实际问题中的应用,提高解决问题的能力。
3.培养学生的空间想象能力和抽象思维能力。
(二)教学设想
1.创设情境,激发兴趣:以生活中的实际例子导入,让学生感受到中心对Байду номын сангаас在生活中的广泛应用,激发学生学习兴趣。
2.理论与实践相结合:在讲解中心对称的概念和性质时,结合教具演示、动手操作等实践活动,帮助学生形象地理解中心对称。
1.学生在认知特点上,对具体、直观的实例更容易接受,教师应充分利用教具、多媒体等资源,以形象生动的方式展示中心对称的概念和性质。
2.学生在思维发展上,逐渐从具体运算向形式运算转变,教师应引导学生通过观察、思考、实践等环节,培养他们的抽象思维能力。
3.学生在合作交流方面,具备一定的团队协作能力,教师可组织学生进行小组讨论、分享心得,激发学生的学习兴趣,提高课堂参与度。

初中八年级数学下册第三章图形的平移与旋转教案新版北师大版

初中八年级数学下册第三章图形的平移与旋转教案新版北师大版

初中八年级数学下册第三章图形的平移与旋转教案1 图形的平移一、教学目标1.知识与技能(1)认识平移、理解平移的基本内涵;(2)理解平移前后两个图形对应点连线平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等的性质;(3)经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,学会平移作图,掌握作图的技巧.2.过程与方法(1)经历观察、分析、操作、欣赏以及抽象概括等过程;(2)经历探索图形平移的性质的过程,以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.3.情感态度及价值观(1)引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验.(2)通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值.通过同学间的合作交流,培养学生的协作能力与学习的自主性.二、教学重点、难点重点:(1)探究平移变换的基本要素,画简单图形的平移图;(2)平移图形的规律,作图的顺序.难点:(1)决定平移的两个主要因素;(2)平行线的作法及对应点的连接.三、教具准备课件.四、教学过程(一)师生活动[师]展示与平移有关的图片,借助实物演示平移,用几何画板演示两个图形的平移.[生]学生分组讨论,如何将所看到的现象用简洁的语言叙述.[师]分析平移定义,探讨“沿某一方向”的意义,其实质是沿直线运动.[生]讨论“沿某一方向”的意义.[师]展示图片,让学生讨论图中的运动各在哪种情况下是平移,图中还有哪些图形可以通过平移得到.[生]分组讨论:(1)能否通过平移得到?(2)能平移得到的其基本图形是什么?有哪些方法?(二)探究新知例1 如图1-1,将△ABE沿射线XY方向平移一定距离后得到△CDF.找出图中平行且相等的线段和全等的三角形.图1-1引导学生从“对应点所连线段”“对应线段”两个方面找平行且相等的线段.例2 如图1-2,将∠ABC沿射线XY平移至∠A/B/C/,且BC与A/B/交点为D,图中有哪些相等的角?图1-2学生分组讨论解题思路,独立解答.提出问题:(课件演示)经过平移,线段AB的端点移到了点D,你能作出线段AB平移后的图形吗?图1-3[师]引导学生归纳总结作图的方法.(如图1-3)[生]讨论并交流对多边形特征的认识.例3 如图1-4,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.图1-4分析:因为A 与D 是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD ,平移距离——线段AD 的长.作法:①分别过点B 、C 沿AD 方向作线段BE 、CF ,使它们与AD 平行且相等.②顺次连接D 、E 、F .则△DEF 即为所求.(如图1-5)图1-5例4 如图1-6,已知在Rt△ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A’B’C’的位置.图1-6(1)若平移距离为3,求△ABC 与△A’B’C’的重叠部分的面积;(2)若平移距离为x (40≤≤x ),求△ABC 与△A’B’C’的重叠部分的面积y ,并写出y与x 的关系式.解:(1)由题意CC’=3,BB’=3,所以BC’=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为211121=⨯⨯; (2)2)4(21x y -= 说明:这里应用了平移的定义及对应线段平行的性质.(三)延伸应用1.运用所过的轴对称及图形的平移知识设计一幅图案,或画出生活中所见到的图案.2.如图1-7,有两个村庄A 和B 被一条河隔开,现要架一座桥(桥与河岸垂直),请你设计一种方案,使由A到B的路程最短.图1-7(四)课堂小结谈谈你这节课有什么收获.(五)教学反思2图形的旋转一、教学目标(1)经历对生活中旋转现象的观察分析过程,引导学生用数学的眼光看待生活中的有关问题;(2)通过具体实例认识旋转,知道旋转的性质;(3)经历对具有旋转现象的图形的观察,操作,画图等过程,掌握好作图的基本技能. 二、教学重点、难点重点:通过具体实例认识旋转的性质.难点:探索旋转的性质,并能应用性质掌握作图技能.三、教具准备课件.四、教学过程(一)情境创设展示一些图片创设情境,让学生说说这些旋转现象有什么共同特征,还能不能再举出一些类似的例子?从学生熟悉的生活现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义,同时引导学生用数学的观点看待生活中的有关问题,发展学生的数学观.(二)探索活动(多媒体出示)活动一:将△ABC绕着点C旋转,记旋转后的三角形为△DEC.(如图2-1)问题1:你能说说BC旋转到了什么位置吗?AC旋转到了什么位置?问题2:点A与哪个点对应?点B与哪个点对应呢?问题3:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?学生小组内交流、讨论,教师巡视、指导.C BECO图2-1 图2-2(多媒体出示)活动二:将△ABC绕着点O旋转,记旋转后有的三角形为△DEF.(如图2-2)问题1:你知道点A旋转到了哪个点的位置吗?点B呢?点C呢?问题2:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?问题3:根据这两个活动,你知道什么叫做旋转吗?问题4:观察边AC的旋转痕迹,你能求出边AC旋转了多少度吗?BC呢?A点旋转到D点,转了多少度?B点转到E点,又转了多少度?问题5:如果继续旋转,你发现了什么?教师多媒体演示旋转,让学生仔细观察.师生共同探究.问题1:观察点C的旋转痕迹,你能测量出C点旋转了多少度吗?点A旋转了多度?点B 呢?问题2:如果取AC的中点M,那么点M会旋转到什么位置?你能画出来吗?那点M旋转了多少度?再继续旋转,你发现了什么?问题3:观察点C的旋转痕迹,你能说说点C是如何运动的吗?根据这个运动特点,你能说说点C与对应点F有什么关系吗?点A与点D,点B与点E是否也具有这种关系?讨论:你能说说旋转前与旋转后的两个之间有哪些会改变?又有哪些无论你怎么旋转,也不会改变?(三)新授通过以上探究活动,得出定义:在平面内,将一个图形绕着一个定点旋转一定的角度,这样的图形运动就叫做图形的旋转.这个定点就叫旋转中心,旋转的角度就叫旋转角.图形的旋转不改变图形大小与形状.性质:旋转前,旋转后的两个图形全等.对应点到旋转中心的距离相等.每一对对应点与旋转中心的连线所成的角彼此相等.思考:已知图形的旋转,如何测量出旋转角呢?(四)巩固练习1.如图2-3,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转一定的角度得到的.请指出图中的哪一点是旋转中心?测量旋转的角度.( A′ )D′C′图2-32.(1)如图2-4,画出将△ABC绕点A按逆时针方向旋转90°后的对应三角形.CAB图2-4(2)如果点D是AC的中点,那么经过上述旋转后,点D旋转到什么位置?请在所画图中将点D的对应点D′表示出来.3.如图2-5,在正方形ABCD中,E是BC上一点,将△AB E旋转后得到△A DF.FDBG图2-5(1)旋转中心是哪一点?旋转了多少度?说说你是怎么测量的.(2)如果G点是AB上的一点,点G应旋转到什么时候位置?请在图中将点G的对应点G′表示出来.(五)操作训练已知A点与点O,画出点A绕着点O旋转30°后的点A′.拓展一:已知线段AB与点O,画出将线段AB绕着点O按逆时针方向旋转80°后得到的图形.拓展二:已知△ABC和点O,画出将△ABC绕着点O按逆时针方向旋转80°后得到的图形. 拓展三:若改成多边形呢?你能总结出旋转作图的方法吗?4.思考:如图2-6,△ABC绕着点O旋转后,点A到达点D的位置,你能画出旋转后的三角形吗?D图2-6(六)课堂小结通过本节课的学习,你知道什么是旋转了吗?你认为旋转有哪些性质?,你能作出符合某一条件旋转后的图形吗?3 中心对称一、教学目标1.知识与技能(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成;(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.2.过程与方法利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.3.情感态度及价值观经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.二、教学重点、难点重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.三、教具准备课件.四、教学过程(一)创设情境,导入新课导语一:在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等.)导语二:观察图3-1中三个图形旋转的角度,发现哪个图形与其他两个不同?(1)(2)(3)图3-1(二)合作交流,解读探究1.解读信息,引出课题:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用.它都能给人以一种美的享受.本节我们就来研究这些图形的形成——中心对称.探究:如图3-2,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?图3-2我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.上述发现的证明如下.(1)点A'是由点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段A A'上,且OA=O A',即点O是线段AA'的中点.(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.2.[探索]图3-3中△A'B'C'与△ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)图3-3师生共同探索.结论:(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.议一议:中心对称与轴对称有什么区别?又有什么联系?3.画已知图形关于已知点的中心对称图形.试一试:点与点对称的作法.已知点A和点O,试作出点A关于点O的对称点.生1:利用中心对称的定义,把OA绕点O旋转180°便可得到.师:要确定对称点A'的位置,关键是点A'满足的性质,然后利用它的性质来确定.生2:延长AO到A',使OA'=OA,则点A'就是所要作的点.师:为什么?生:利用中心对称的性质.思考:比较以上两种方法,你打算今后在作图中使用哪种方法?(第二种简洁,易于作图)做一做:如图3-4,已知线段AB和点O,画线段A'B',使它与线段AB关于点O成中心对称.图3-4构思:关键是作出A,B两点关于点O的对称点A',B'.实践:(1)连接AO,并延长AO到A',使得A'O=OA;(2)连接BO,并延长BO到B',使得B'O=OB;(3)连接A'B'.则线段A'B'就是线段AB关于点O的对称线段.想一想:回顾以上作图过程,总结作中心对称的图形的一般步骤是什么?(1)确定“代表性的点”;(2)作出每个代表性的点的对称点;(3)顺次连接.做一做:如图3-5,选择点O为对称中心,画出与△ABC关于点O对称的△A'B'C'.图3-5解:如图3-6,作出点A,点B,点C关于点O的对称点A',B',C',依次连接A'B',B'C',C'A',就可以得到与△ABC关于点O对称的△A'B'C'.图3-6练习:如图3-7,已知四边形ABCD和点O,画四边形A'B'C'D',使它与已知四边形关于这一点对称.图3-7(三)应用迁移,巩固提高1.如图3-8,已知△ABC与△A'B'C'中心对称,求出它们的对称中心O.图3-8(四)课堂小结1.中心对称,中心对称图形的概念.2.成中心对称的图形的性质.(五)教学反思4简单的图案设计一、教学目标1.知识与技能(1)了解图案最常见的构图方式:轴对称、平移、旋转……理解简单图案设计的意图;(2)认识和欣赏平移、旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案.2.过程与方法经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识.3.情感态度及价值观(1)经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识;(2)通过学生之间的交流、讨论、培养学生的合作精神.二、教学重点、难点重点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.难点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.三、教具准备课件.四、教学过程(一)复习旧知,引入新课活动内容:复习全等变换中所学的图案设计方法.提问:1.我们已经具备了简单图案设计的基本知识与技能:用最基本的几何元素——点、线设计与制作图案;用最简单的几何图形——三角形、矩形设计、制作图案;割补、无缝隙拼接.2.图4-1的图案是怎样设计出来的?(1)(2)(3)图4-1活动目的:在学生熟悉的问题中,复习简单图案设计的基本知识与技能;创设问题情境,激发兴趣,调动学生的学习积极性,让学生充分感知轴对称、平移、旋转变换实际上就是所学过的全等变换,培养学生善于观察、善于总结、乐于探索研究的学习品质.(二)探索新知各小组充分讨论教材所示图案的形成过程.在生活中,我们经常见到一些美丽的图案:你能用平移、旋转或轴对称分析如图4-2中各个图案的形成过程吗?你是怎样分析的?与同伴交流.(1)(2)(4)(5)(6)图4-2对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向.其中图(1)(2)(3)(4)(5)(6)都可以看作是由“基本图案”通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)(3)(5)也可以看作是由“基本图案”通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),图(2)还可以看作是由“基本图案”通过平移形成.通过对漂亮图案的欣赏、分析,使学生逐步领略图案设计的奇妙,逐步掌握一些简单的图案设计技能.通过学生的讨论交流,让学生自己探索出图形变化的过程,为后面分析较复杂图案所运用的几何变换的规律和特征奠定了基础.在教学中,只要学生分析的合情合理即可. (三)合作交流,解决问题1.欣赏图4-3中的图案,分析这个图案形成的过程,仿照图中的某个标志设计一个图案,与同伴交流,并简述你的设计意图.图4-3例 1 欣赏图4-4 的图案,并分析这个图案形的过程.提问:(1)基本图案是什么?有几个?(2)分析同色“爬虫”、异色“爬虫”之间的关系.图4-4教师引导学生发现:这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同.在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角度为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.(四)练习与提高1.图4-5是由12个全等三角形组成的,利用平移、轴对称或旋转分析这个图案的形成过程.图4-5这个图形可以按照以下步骤形成的.(1)以一个三角形的一条边为对称轴作与它对称的图形.(2)将得到的这组图形以一条边的中点为旋转中心旋转180 °.(3)分别以图4-6这两组图形为平移的“基本图案”,各平移两次,即可得到最终的图形.图4-62.欣赏:(五)课堂小结鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励).(六)教学反思。

北师大版八年级数学下册第三章图形的平移与旋转3

北师大版八年级数学下册第三章图形的平移与旋转3
2.学生在图形旋转操作中可能存在的困难,如旋转方向的判断、旋转角度的计算等,教师需适时给予指导,帮助他们克服困难。
3.学生在小组合作探究中可能出现的分歧,教师要引导学生学会倾听、尊重他人意见,培养良好的团队协作精神。
4.学生对旋转性质的理解程度,教师应通过丰富的实例和变式训练,帮助学生深化理解,提高解决问题的能力。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、动手操作等方面,给予及时反馈。
(2)终结性评价:通过课后作业、单元测试等方式,评价学生对旋转知识与技能的掌握程度。
(3)发展性评价:鼓励学生发挥个性,勇于创新,关注他们在数学学习中的情感态度和价值观。
4.教学策略:
(1)关注学生的个体差异,实施分层教学,让每个学生都能在原有基础上得到提高。
4.引导学生认识到数学在生活中的广泛应用,体会数学的价值,增强他们的社会责任感。
在教学过程中,教态度与价值观有机地结合起来,使学生在轻松愉快的氛围中学习图形的旋转及旋转的性质。同时,教师要关注学生的个体差异,因材施教,让每个学生都能在原有基础上得到提高。
(四)课堂练习
1.教学内容:
设计不同难度的练习题,包括基本概念题、实际应用题和拓展提高题。
2.教学方法:
让学生独立完成练习题,教师对学生的解答进行点评和指导。
3.目的:
巩固所学知识,提高学生的解题能力,培养学生的应用意识。
(五)总结归纳
1.教学内容:
对本节课学习的旋转定义、旋转中心、旋转角、旋转性质等进行总结。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了平面几何的基本概念、图形的性质和分类,具备了一定的几何图形识别和推理能力。在此基础上,他们对图形的旋转及旋转的性质有了初步的认识,但可能对旋转的数学表达和实际应用还较为陌生。因此,在本章节的教学中,教师应关注以下学情:

【精选】北师版八年级下册数学第三章《图形的平移与旋转》优秀教案

【精选】北师版八年级下册数学第三章《图形的平移与旋转》优秀教案

【精选】北师版八年级下册数学第三章《图形的平移与旋转》优秀教案1 图形的平移第1课时图形平移的概念与性质【教学目标】1。

经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2。

通过具体实例认识平移,理解平移的基本概念,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。

【重难点】重点探索图形平移的主要特征和基本性质。

难点探索平移的基本性质及性质的应用。

【教学设计】一、情境导入教师通过多媒体展示(展示画面)现实生活中平移的具体实例:(1)箱子在传送带上移动的过程。

(2)手扶电梯上人的移动的过程。

学生观察多媒体展示的图片,教师提问:①你能发现传送带上的箱子、手扶电梯上的人在平移前后什么没有改变,什么发生了改变吗?②在传送带上,若箱子的某一按键向前移动了 80 cm,那么箱子的其他部位向什么方向移动?移动了多少距离?③如果把移动前后的同一箱子看成长方体,那么它的形状、大小是否相同?引导学生得出:平移前后两个图形的形状和大小没有改变,位置发生了改变。

二、探究新知1。

平移的定义师:根据上述分析,你能说明什么样的图形运动称为平移?在学生发现和归纳的基础上板书:平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形的形状和大小。

平移三要素:几何图形,运动方向,运动距离。

2。

探究平移的性质(1)课件出示:如图,△ABC 经过平移得到△DEF,点A,B,C分别平移到了点D, E,F.点A与点D是一组对应点,线段AB与线段DE是一组对应线段,∠BAC与∠EDF是一组对应角。

①线段AD,CF,BE有怎样的位置关系?②图中每对对应线段之间有怎样的位置关系?③图中有哪些相等的线段、相等的角?处理方式:学生分成四人一组,共同探讨平移的性质。

学生归纳总结:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

北师大版八年级下册第三章教案

北师大版八年级下册第三章教案

北师大版八年级下册《第三章图形的平移与旋转》3.1 图形的平移(第一课时)一.教学目标1、知识与技能目标:认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

2、过程与方法目标:①通过探究式的学习,培养学生的归纳总结与猜想的数学能力,培养学生的逆向思维能力。

通过知识的拓展,培养学生的分析问题与解决问题的能力。

②让学生经历观察、分析、操作、欣赏以与抽象概括等过程;经历探索图形平移性质的过程,以与与他人合作交流的过程,进一步发展空间观念,增强审美意识。

3、情感与价值观目标:①在探究式的教学活动中,培养学生主动探索,勇于发现的科学精神;通过多种途径,培养学生细致、严谨、求实的学习习惯;渗透由特殊到一般,化未知为已知的辩证唯物主义思想。

②引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验。

有意识的培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力与审美意识的发展。

③通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值。

通过同学间的合作交流,培养学生的协作能力与学习的自主性。

二.教学重点平移的基本性质三.教学难点平移的基本内涵的理解.四.教学过程一.情景问题,引入课题情境问题引入同学们,还记得游乐园内的一些项目吗?如:旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?(也走了200米.)其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的老牛上的辘轳;还是刚刚耸立起的高楼大厦里的电梯,无论是微观世界里的粒子运动,还是浩翰宇宙中的行星运转.其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!从今天开始,我们就来探索第三章:图形的平移和旋转.二. 探究——经历新知形成过程,体验探究方法探究问题过程(一)自主学习:的图3—1,然后回答书下面我们来看第一节:图形的平移(同学们仔细观擦:P58上提出的问题)(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?传送带上的电视机的形状、大小在运动前后没有发生改变.手扶电梯上的人也没有变化.(2)在传送带上,如果电视机的某一按键向前移动了80 cm,那么电视机的其他部位向什么方向移动?移动了多少距离?(电视机的其他部位也向前移动,也移动了80 cm).(3)如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?(四边形ABCD与四边形EFGH的形状、大小相同)(二)展示交流:1、传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?(学生讨论、发现、归纳结论)(在传送电视机的过程中,电视机的形状、大小没有变化,它的位置发生了变化.手扶电梯上的人也是位置发生了变化,人没有变化.)在电视机生产车间传输带运送电视机的过程中,对同一台电视机而言,不同时间的位置之间是相互平移的关系;人在电梯上两个不同时刻之间的位置关系也是平移那么,什么是平移呢?在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(translation).注意:“将一个图形沿某个方向移动一定的距离”,意味着“图形上的每个点都沿.....同一个方向移动了相同的距离.............”.那大家想一想:平移有什么特征呢?(1.平移不改变图形的形状和大小............2平移改变图形的位置).2、想一想,议一议: (1)在下图中,线段AE、BF、CG、DH有怎样的位置关系? (2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)、(2)两个问题,你能归纳出什么结论?(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.∠ABC=∠EFG、∠BCD=∠FGH∠BAD=∠FEH、∠ADC=∠EHG∠ABC=∠ADC、∠BAD=∠BCD、∠HEF=HGF、∠EFG=∠EHG(3)图形经过平移后,只是位置发生变化,即图形上的每个点都沿同一个方向移动了相同的距离,而线段的长短、角的大小没有发生变化.;经过平移,对应线段,对应角分别相等,对应点的连线是平行的,并且相等.平移的基本性质:1.经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.注意:平移三要素:几何图形——运动方向——运动距离三、应用——经历应用领悟构想,学会思考方法搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)①出示问题[例1](课本59页例1)如图所示,△ABE沿射线XY的方向平移一定距离后成为△CDF。

北师大八年级数学下册第三章平移与旋转教案

北师大八年级数学下册第三章平移与旋转教案

北师大八年级数学下册第三章平移与旋转教案
课题:图形的平移(1)
第二环节自研自探:
请同学们认真看课本65-67 页内容,思考并解决下列问题:
第六环节拓展提升
(4)如图,将字母A按箭头所指的方向平移出平移后的图形。

课题:图形的平移(2)
系?
2、完成想一想,你发现对应点的坐标之间有什么关系?
3、完成做一做,你发现对应点的坐标之间有什么关系?
4、通过议一议,归纳出沿坐标轴方向平移后的图形与原图
解:想一想答案:向上平移3个单位长度,对应点的横坐标不变,纵坐标都加3;向下平移2个单位长度,对应点的横坐标不变,纵坐标都减2
做一做答案:(1)原图向右平移3各单位长度;原图向左平移2个单位长度
(2)原图向上平移3个单位长度;原图向下平移2个单位长度
课题:图形的平移(3)
口答练习:
在坐标系中,将坐标作如下变化时,图形将怎样变化?
课题:图形的旋转(一)
课题:图形的旋转(二)
本题还有没有其他作法,可以作出△后的图形△DEF吗?
课题:3.3 中心对称
(二)自研自探
五、本课小结:
这节课你学到了什么?
六、布置作业:
七、板书设计
课题:3.4简单的图案设计

85到86页内容并解决下列问题:
解:这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同。

转分析这个图案的形成过程。

解:这个图形可以按照以下步骤形成的。

课题:图形的平移与旋转回顾与思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大八年级数学下册第三章平移与旋转教案课题:图形的平移(1)第章第课时本期第课时二次备课教案~教学目标知识与技能:通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。

过程与方法:在活动过程中,提高学生的探究能力和方法。

情感与价值:通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美。

教学重、难点重点:平移的性质;难点:平移的基本内涵的理解教?学。

过程第一环节情境引入教师通过多媒体展示(展示画面)现实生活中平移的具体实例:@(1)电视机在传送带上移动的过程。

(2)手扶电梯上人的移动的过程。

第二环节自研自探:请同学们认真看课本65-67 页内容,思考并解决下列问题:1、上图中,传送带上的电视机的形状、大小在运动前后是否发生了改变?手扶电梯的人呢?2、什么叫图形的平移?图形平移的性质是什么?3、完成例3,根据例3,完成想一想和议一议的问题。

《第三环节合作交流对于自学中的困惑请提出来,看你的同桌是否能帮助(1)图形原来的位置 (2)平移方向 (3)平移距离.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个图形平移后的位置,进而画出它平移后的图形.第五环节知识迁移1. 如图所示,∠DEF是∠ABC经过平移得到的,∠ABC =33O,求∠DEF的度数。

第六环节拓展提升(4)如图,将字母A按箭头所指的方向平移3cm,作出平移后的图形。

~解:在字母A上,找出关键的5个点(如图),分别过这5个点按箭头方向作5条长3cm的线段,将所作线段的另5个端点按原来的方式连接,即可得到字母A平移后的图形。

第七环节课堂小结平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。

平移的基本性质:经过平3cm¥课题:图形的平移(2)学目标情感与价值:培养学生的探究精神,发展初步的审美能力,增强对图形的欣赏意识教学重、难点重点:能从复合图案中寻找“基本图案”,并能分析复合图案是由“基本图案”经过怎样的平移而形成的\难点:能从复合图案中寻找“基本图案”,并能分析复合图案是由“基本图案”经过怎样的平移而形成的;教学…过程\第一环节情境引入生活中经常见到一些美丽的图案,这些图案都是由基本图形平移组成的,那么怎样平移基本图形就能得到美丽的图案呢?这节课我们就来探索一些图案中的图形之间的平移关系。

第二环节自研自探自学课本P68-P69的内容,思考并完成下列问题:1、完成课本中的引例,你发现对应点的坐标之间有什么关系?2、完成想一想,你发现对应点的坐标之间有什么关系?3、完成做一做,你发现对应点的坐标之间有什么关系?4、通过议一议,归纳出沿坐标轴方向平移后的图形与原图形对应点的坐标之间的关系。

、第三环节合作交流第四环节成果展示解:(1)图略(2)(0,0)(5,4)(5,1)平移后为(5,0)(10,4)(10,1)(3)纵坐标不变,横坐标都加5.如果原来的“鱼”向左平移4个单位长度:纵坐标不变,横坐标都减4.小结:左右平移,纵坐标不变,横坐标左减右加解:想一想答案:向上平移3个单位长度,对应点的横坐标不变,纵坐标都加3;向下平移2个单位长度,对应点的横坐标不变,纵坐标都减2,做一做答案:(1)原图向右平移3各单位长度;原图向左平移2个单位长度(2)原图向上平移3个单位长度;原图向下平移2个单位长度小结:左减右加,下减上加。

结论如下:第五环节:课堂小结本节课我们学了哪些知识?第六环节:布置作业 P71数学理解T3、T4^教学反思[>课题:图形的平移(3)第章第课时本期第课时二次备课教案教—学目标知识与技能:在上节课学习一次平移时坐标的变化特点的基础上,继续探究一次平移既有横向又有纵向时坐标的变化特点。

过程与方法:在活动过程中,提高学生的探究能力和方法。

情感态度与价值观:通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美。

情感与价值:在活动过程中,提高学生的探究能力和方法。

[情感态度与价值观:通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美。

教学重、难点重点:图形沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系。

—难点:在绝缘体情境中研究坐标和变化引起的图形变化的规律。

"教学。

过程]口答练习:在坐标系中,将坐标作如下变化时,图形将怎样变化?1.(x,y)——(x,y+4);2. (x,y)——(x,y-2);3. (x,y)——(x-1 , y);4. (x,y)——(3+x , y).思考:5. (x,y)——(x-1 , y+4)(二)自研自探@请同学们认真自学课本71——73页内容,尝试完成下列问题:1.完成引例中提出的3个问题。

2.在“做一做”中变化后的“鱼”与变化前的“鱼”相比有什么变化?如果将横坐标分别加2,纵坐标分别加3呢?3.一个图形依次沿X轴方向、Y轴方向平移后所得图形与原来的图形相比位置有什么变化?它们对应点的坐标之间有怎样的关系4.完成例2(三)成果展示一个图形依次沿X轴方向、Y轴方向平移后所的图形,可以看成是由原来的图形经过一次平移后得到的。

》(四):当堂反馈(1)在平面直角坐标系中描出点A (6,0),B(10,3),C (9,1),D(12,0)E(9,-1),F (10,-3),然后用线段依次连接A,B,C,D,E,F,A个点(2)将(1)中所画图形先向左平移1各单位长度,再向上平移2个单位长度,画出第二次平移后的图形:(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?(五)课堂小结|.这节课你学到了什么?一个图形依次沿X轴方向、Y轴方向平移后所的图形,可以看成是由原来的图形经过一次平移后得到的。

(六)布置作业完成习题3.3中的第1,2题(七)板书设计3.1.3图形的平移1.横坐标分别增加(减少) a个单位、纵坐标分别增加(减少) b个单位时,图形是怎样平移的?2.平移后的图形与平以前的图形相比,各对应点是怎样变化的?教]课题:图形的旋转(一)学?过程实例,引出课题:“生活中的旋转”。

(二)自研自探认真阅读课本75--76的内容,回答下面问题:(1)什么叫旋转?旋转的三要素是什么?(2)完成做一做,你有什么发现?(3)开动脑筋完成想一想(三)展示成果、向学生展示有关的图片:(1)时钟上的秒针在不停的转动(并介绍顺时针方向和逆时针方向)(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器;(5)由平面图形转动而产生的奇妙图案。

】1. 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

(1) 如图,△ABO 绕点O 旋转得到△CDO ,则:)点B 的对应点是点_____;线段OB 的对应线段是线段______;线段AB 的对应线段是线段______;∠A 的对应角是______;∠B 的对应角是______;旋转中心是点______;旋转的角是______ 。

2 探索得出下列性质:1.{2.旋转前后的图形全等;3.对应点到旋转中心的距离相等;4.对应点与旋转中心连线段的夹角等于旋转角。

3:图2 四:当堂反馈1.如图,如果把钟表的指针看做四边形AOBC ,它绕O 点旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A ,B 分别移动到什么位置?|(3)旋转角是什么?(4)AO 与DO 的长有什么关系?BO 与EO 呢? (5)∠AOD 与∠BOE 有什么大小关系?2.如图,正方形ABCD 中,E 是AD 上一点,将△CDE 逆时针旋转后得到△CBM.如连接EM,那么△CEM 是怎样的三角形?CA BO DOAB D E!CF《课题:图形的旋转(二)(四)成果展示1.例:试着画一画线段AB绕O点逆时针旋转90°后所得的线段(O点在线段外)2.做一做>如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B,C对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.假设顶点B,C的对应点分别为点E,点F,则∠BOE,∠COF,∠AOD都是旋转角.△DEF就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.解:(1)连接OA,OD,OB,OC.(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF,ED,FD.]△DEF,就是△ABC绕O点旋转后的图形.ABO本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?1.可以先作出点B的对应点E,连接DE,然后以点D、E为圆心,分别以AC、BC为半径画弧,两弧交于点F,连接DF,EF,则△DEF就是△ABC绕点O旋转后的图形.2.也可以先作出点C的对应点F,然后连接DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置. (2)旋转中心. (3)旋转角.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.](五)当堂反馈1.将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示)。

你知道旋转角是多少吗?连结BB’,△ABB’有什么特征吗?(六)课堂小结这节课你学会了什么?还有那些疑惑呢?(七)布置作业:习题3.5第1、2题(八)板书设计3.2.图形的旋转(二)"课题:3.3 中心对称程(二)自研自探认真阅读课本81--83的内容,回答下面问题:(1)什么叫中心对称?(2)自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180度,连接旋转前后一组对应点,你发现了什么?(3)独立完成课本例1.《(4)观察议一议的图,这些图有什么共同特征?尝试列举一些类似的图形。

相关文档
最新文档