分式的乘除运算
(完整版)分式加减乘除运算
(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。
分式的运算例题讲解
15.2 分式的运算1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a b ·c d =a ·c b ·d . (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a b ÷c d =a b ·d c =a ·d b ·c. 分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】 计算:(1)4a 4b 215x 2·9x 8a 4b ; (2)a 2-1a 2+2a +1÷a 2-a a +1;(3)a 2-4a 2+4a +4·2a a 2-4a +4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2).2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:⎝⎛⎭⎫a b n =a n b n .解技巧 分式的乘方的理解 (1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】 计算:(1)⎝⎛⎭⎫a 2-b 34; (2)⎝⎛⎭⎫x 2y -z 23.3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减; ②用式子表示:a c ±b c =a ±b c. (2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减;②用式子表示:a b ±c d =ad bd ±bc bd =ad ±bc bd. 警误区 分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】 计算:(1)(a -b )22ab +(a +b )22ab ; (2)a a 2-1-11-a 2; (3)1x +y -1x -y +2x x 2-y 2;(4)12m 2-9+23-m ; (5)x -3x 2-1-2x +1; (6)4a +2-a -2.4.整数指数幂一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m ,n 为整数时,a m ÷a n =a m -n ,a m ·a -n =a m +(-n )=a m -n ,因此a m÷a n =a m ·a -n .特别地,a b=a ÷b =a ·b -1,所以⎝⎛⎭⎫a b n =(a ·b -1)n ,即商的乘方⎝⎛⎭⎫a b n 可以转化为积的乘方(a ·b -1)n . 这样,整数指数幂的运算性质可以归纳为:(1)a m ·a n =a m +n (m ,n 是整数);(2)(a m )n =a mn (m ,n 是整数);(3)(ab )n =a n b n (m ,n 是整数).【例4】 计算:(1)⎝⎛⎭⎫-23-2; (2)a 2b -3(a -1b )3÷(ab )-1.5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤|a |<10,n 为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a ×10-n 的形式,其中n 为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤|a |<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】 把下列各数用科学记数法表示出来:(1)650 000; (2)-36 900 000; (3)0.000 002 1; (4)-0.000 006 57.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点 分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧 分式混合运算的技巧 分式四则混合运算要注意:(1)按照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值 分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】 计算:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1.【例7】 计算:⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫1a +1b 2·2a 2-b 2+2ab.【例8】 先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-12x ,其中x =-3.9.运用分式运算解决实际问题运用分式运算解决实际问题,关键是理解题意,找准各种量之间的关系,这也是解决数学应用题的基本方法,作差法等也是解决这类问题的常用方法.在判断两分式的差的正负的时候,可以考虑利用完全平方式的非负性和题中字母的实际意义来解题.作差法举例:若x ≠y 且x >0,y >0,比较4x +y 与x +y xy的大小.【例9】 甲、乙两工人生产同一种零件,甲每小时比乙多生产8个,现要求甲生产出168个零件,乙生产出144个零件,则他们两人谁能先完成任务?10.分式混合运算的开放型题所以在解决此类问题时,首先还是要正确进行分式的化简,然后还要注意问题的多解的情况.举例:已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.【例10】 已知A =1x -2,B =2x 2-4,C =x x +2.将它们组合成(A -B)÷C 或A -B÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x =3.。
分式的乘除法
分式的乘除法在数学中,分式是一种数学表达式,由一个或多个数的比值构成。
分式的乘除法是指对于两个或多个分式进行相乘或相除的运算。
本文将详细介绍分式的乘法和除法运算规则,并提供相关示例。
一、分式的乘法运算规则分式的乘法运算规则如下:1. 分子与分子相乘,分母与分母相乘。
例如,对于分式 a/b 和 c/d 的乘法运算,结果为(a*c)/(b*d)。
示例1: 计算 (2/3) * (4/5) = (2*4)/(3*5) = 8/15。
示例2: 计算 (1/2) * (3/4) = (1*3)/(2*4) = 3/8。
2. 分式可以和整数进行相乘。
例如,对于分式 a/b 和整数 c 的乘法运算,结果为(a*c)/b。
示例3: 计算 (2/3) * 4 = (2*4)/3 = 8/3。
示例4: 计算 (3/4) * 2 = (3*2)/4 = 6/4 = 3/2。
二、分式的除法运算规则分式的除法运算规则如下:1. 分式的除法可以转化为分子乘以倒数的形式。
例如,对于分式 a/b 除以 c/d 的运算,结果为(a/b)*(d/c)。
示例5: 计算 (2/3) ÷ (4/5) = (2/3)*(5/4) = (2*5)/(3*4) = 10/12 = 5/6。
示例6: 计算 (1/2) ÷ (3/4) = (1/2)*(4/3) = (1*4)/(2*3) = 4/6 = 2/3。
2. 分式可以和整数进行相除。
例如,对于分式 a/b 除以整数 c 的运算,结果为(a/b)*(1/c)。
示例7: 计算 (2/3) ÷ 4 = (2/3)*(1/4) = (2*1)/(3*4) = 2/12 = 1/6。
示例8: 计算 (3/4) ÷ 2 = (3/4)*(1/2) = (3*1)/(4*2) = 3/8。
三、综合运算示例接下来,我们将综合运用分式的乘法和除法规则进行计算。
示例9: 计算 [(1/2) * (4/5)] ÷ [(3/4) * (1/3)]。
分式加减乘除运算
例
1:分式
1 m
n
,
m2
1
n2
,
2 m
n
的最简公分母是(
)
A. (m n)(m2 n2 ) B. (m2 n2 )2 C. (m n)2 (m n)
D. m2 n2
例 2:对分式 y , x , 1 通分时, 最简公分母是(
)
2x 3y2 4xy
A.24x2y3 B.12x2y2 C.24xy2 D.12xy2
)
y x
D. x y
计算:(1) 2x3 8x x 2 ; (2) x2 2x 1 2 2x
x2 4x 4 2x 4
x2 1
x 1
(3)(a2-1)·
a
2a 2 2 2a
1
÷
a 1 2a 2
7、分式的通分及最简公分母:
通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式
(6)
a2 1 a 1 a2 4a 4 a 2 计算:(7) 6x 2 y 2 4x
3y3
(8) 6ab 3b2 2a
(9) xy x2 xy x y
计算:(10) 2x2 5y 10 y (11) x2 1 (1 x) x 3
y4
x 2 2xy y 2 x 2 xy
(2)已知: x 9 y y 3x ,求 x2 y 2 的值。 x2 y2
(3)已知: 1 1 3 ,求 2x 3xy 2 y 的值。
xy
x 2xy y
例题:
第 1 页 (共 6 页)
计算:(1) ( 2 y2 )3 3x
分式及其运算
分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
分式的乘除运算讲解
分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。
分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。
分式的乘法运算是指将两个分式相乘,得到一个新的分式。
而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。
在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。
为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。
分式可以看作是分子和分母之间带有分数线的数学表达式。
在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。
分式的分子和分母都可以是整数、变量、或两者的组合。
在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。
而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。
通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。
分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。
掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。
综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。
通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。
1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。
2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。
5.2.分式的乘除法(教案)
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。
分式的加减法与乘除法
分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。
分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。
在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。
本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。
一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。
例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。
例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。
例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。
例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。
例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。
例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。
分式的加减乘除
分式的加减乘除分式是数学中的一种常用表示方法,用于表示一个数与另一个数之间的比率关系。
分式的运算包括加法、减法、乘法和除法。
在本文中,我们将详细介绍分式的加减乘除运算。
一、分式的加法分式的加法是指将两个分式相加的运算。
我们可以通过以下步骤来完成分式的加法:Step 1:找到两个分式的公共分母。
Step 2:将两个分式的分子分别乘以对方的公共分母。
Step 3:将两个分式的分子相加,并将结果放在一个新的分子上。
Step 4:将两个分式的公共分母保持不变,并将结果放在一个新的分数上。
Step 5:将新的分子和分母进行约分,得到最简分数。
例如,我们有以下两个分式需要相加:1/3 + 2/5Step 1:两个分式的公共分母为15。
Step 2:将1/3乘以5/5,得到5/15;将2/5乘以3/3,得到6/15。
Step 3:5/15 + 6/15 = 11/15。
Step 4:保持公共分母为15。
Step 5:11/15已经是最简分数。
所以,1/3 + 2/5 = 11/15。
二、分式的减法分式的减法是指将一个分式减去另一个分式的运算。
我们可以通过以下步骤来完成分式的减法:Step 1:找到两个分式的公共分母。
Step 2:将第一个分式的分子乘以第二个分式的分母。
Step 3:将第二个分式的分子乘以第一个分式的分母。
Step 4:将第一个分式的分子减去第二个分式的分子,并将结果放在一个新的分子上。
Step 5:将两个分式的公共分母保持不变,并将结果放在一个新的分数上。
Step 6:将新的分子和分母进行约分,得到最简分数。
例如,我们有以下两个分式需要相减:3/4 - 1/8Step 1:两个分式的公共分母为8。
Step 2:将3/4乘以2/2,得到6/8。
Step 3:将1/8乘以4/4,得到4/32。
Step 4:6/8 - 4/32 = 24/32 - 4/32 = 20/32。
Step 5:保持公共分母为32。
教学难点分式乘除法运算的应用
教学难点分式乘除法运算的应用分式乘除法运算是数学中的一个重要内容,也是学生们在学习过程中常常遇到的难点之一。
本文将从概念讲解、具体运算方法以及应用举例等方面来介绍分式乘除法运算的应用。
一、概念讲解分式是由两个整数或者多项式以及整数与多项式构成的比。
在分式中,由于存在分子和分母的概念,因此需要注意分子与分母的运算规则。
分式的乘法与除法运算是分数运算中较为复杂且易出错的部分,也是教学中的难点之一。
二、具体运算方法1. 分式乘法运算分式的乘法运算遵循以下规则:若分数a/b与c/d相乘,那么它们的乘积等于ac/bd。
例如,计算1/2乘以2/3,可以将它们的分子相乘得到1乘以2=2,分母相乘得到2乘以3=6,所以1/2乘以2/3等于2/6,进一步可以约分得到1/3。
2. 分式除法运算分式的除法运算遵循以下规则:若分数a/b除以c/d,那么它们的商等于ad/bc。
例如,计算3/4除以1/2,可以将它们的分子相乘得到3乘以2=6,分母相乘得到4乘以1=4,所以3/4除以1/2等于6/4,进一步可以约分得到3/2。
三、应用举例分式乘除法运算在实际生活中有着广泛的应用,下面通过一些例子具体说明其应用场景。
1. 菜谱中的调配在烹饪过程中,经常需要按照比例来调配原料。
例如,一份蛋糕配方需要1杯面粉和1/2杯牛奶,如果需要将配方扩大2倍,那么需要计算出新的面粉和牛奶的配比。
根据分式乘法运算,可以计算出新的配比为2杯面粉和1杯牛奶。
2. 药物剂量计算在医学中,常常需要根据患者的体重来计算药物的剂量。
例如,某种药物的推荐剂量为每千克体重下0.1毫克,如果患者体重为60千克,可以通过分式乘法运算计算出该患者所需药物的剂量为60乘以0.1=6毫克。
3. 比例问题在生活中,经常会遇到一些比例问题,例如商品的折扣比例、化学反应的化学方程式等。
在计算这些比例时,常常需要运用到分式乘法运算。
通过合理运用分式乘法运算,可以快速计算出比例中的未知数值。
分式的加减乘除乘方混合运算
分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。
分式可以进行加、减、乘、除以及乘方等混合运算。
本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。
一、分式的加法运算分式的加法运算是指将两个分式相加的操作。
要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。
例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。
同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。
例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。
要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。
要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。
例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。
要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。
在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。
分式运算如何进行分式的加减乘除运算
分式运算如何进行分式的加减乘除运算分式是数学中常见的一种表达形式,它可以表示一个数或一种比例关系。
在实际问题中,分式运算经常出现,掌握分式的加减乘除运算方法对于解决实际问题具有重要意义。
本文将介绍分式运算的基本概念和常见的加减乘除运算方法,并提供实例进行说明。
1. 分式的基本概念分式是由分子和分母组成的表达式,分子表示分式的数值部分,分母表示分式的单位部分。
分式通常用a/b的形式表示,其中a为分子,b为分母。
分式可以是整数、小数或者其他分数形式。
2. 分式的加法运算分式的加法运算需要满足分母相同的条件,具体步骤如下:- 若分式的分母相同,则分子相加即可,分母保持不变,即a/b +c/b = (a+c)/b。
- 若分式的分母不同,则需要找到它们的最小公倍数,使分母相同,然后进行相加,具体步骤如下:1) 找到两个分式的最小公倍数。
2) 分别计算两个分式的等价分数,使它们的分母相同。
3) 将等价分数的分子相加,分母保持不变。
3. 分式的减法运算分式的减法运算与加法运算类似,也需要满足分母相同的条件,具体步骤如下:- 若分式的分母相同,则分子相减即可,分母保持不变,即a/b - c/b = (a-c)/b。
- 若分式的分母不同,则需要找到它们的最小公倍数,使分母相同,然后进行相减,具体步骤如下:1) 找到两个分式的最小公倍数。
2) 分别计算两个分式的等价分数,使它们的分母相同。
3) 将等价分数的分子相减,分母保持不变。
4. 分式的乘法运算分式的乘法运算比较简单,直接将两个分式的分子相乘,分母相乘即可,即(a/b) * (c/d) = (a*c)/(b*d)。
5. 分式的除法运算分式的除法运算需要倒数的概念,即将除法转换为乘法,具体步骤如下:- 先将除数倒数,即将分式b/c转换为c/b。
- 然后进行乘法运算,即(a/b) ÷ (c/d) = (a/b) * (d/c)。
综上所述,分式的加减乘除运算可以通过满足分母相同或者通过找到最小公倍数使分母相同,并按照相应的运算规则进行计算。
分式的乘除法混合运算
分式的乘除法混合运算在数学中,分式的乘除法混合运算是一种常见的运算形式。
它结合了分式的乘法和除法,需要我们掌握一定的运算规则和技巧。
本文将详细解释分式的乘除法混合运算的概念、计算方法和注意事项。
一、概念解释:分式是数学中的一种表示形式,通常由分子和分母组成,用水平线隔开。
分子表示分数的被除数,分母表示分数的除数。
分式的乘除法混合运算即在一个式子中同时进行分式的乘法和除法运算。
二、计算方法:1. 乘法运算:分式的乘法运算很简单,只需将两个分式的分子相乘并将其作为结果的分子,将两个分式的分母相乘并将其作为结果的分母。
例如,计算分式1/2乘以3/4的结果如下:(1/2) × (3/4) = (1 × 3) / (2 × 4) = 3/82. 除法运算:分式的除法运算比乘法稍微复杂一些。
我们需要将除数倒置,然后将除法转化为乘法运算。
即将除法a/b转化为a乘以b的倒数。
例如,计算分式2/3除以4/5的结果如下:(2/3) ÷ (4/5) = (2/3) × (5/4) = (2 × 5)/(3 × 4) = 10/123. 混合运算:分式的乘除法混合运算可以通过先进行乘法运算,再进行除法运算的顺序来计算。
例如,计算分式2/3乘以4/5再除以1/2的结果如下:(2/3) × (4/5) ÷ (1/2) = (2/3) × (4/5) × (2/1) = (2 × 4) / (3 × 5) × 2 = 16/15三、注意事项:在进行分式的乘除法混合运算时,需要特别注意以下几点:1. 括号的运用:如果混合运算中有括号存在,我们应当优先计算括号内的乘除法。
2. 化简分式:在得到运算结果后,我们应当尽可能地将其化简。
即将分子和分母的公因数约去,使分式的结果更加简洁。
3. 正确运用分数运算规则:在进行分式的乘除法混合运算时,需要按照分数的运算规则进行计算,确保运算的准确性。
分式的运算
分式的运算
★一、分式的四则运算:
⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:
⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:
⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:
⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:
⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:
★二、约分与通分
1.确定最简公分母的方法:
①最简公分母的系数,取各分母系数的最小公倍数;
②最简公分母的字母因式取各分母所有字母的最高次幂.
2.确定最大公因式的方法:
①最大公因式的系数取分子、分母系数的最大公约数;
②取分子、分母相同的字母因式的最低次幂.
★三、整数指数幂
1.知道负整数指数幂=(a≠0,n是正整数).
2.回忆0指数幂的规定,即当a≠0时,.
3.科学计数法:
①你还记得1纳米=0.000000001米?②太阳离地球150********00千米?。
分式乘除经典例题+习题
第十九讲 分式的乘除【要点梳理】 要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘. (3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分. (4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成nn a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭.【典型例题】 类型一、分式的乘法例1、计算:(1)422449158a b xx a b;(2)222441214a a a a a a -+--+-. 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算. 【答案与解析】解:(1)422449158a b x x a b 422449315810a b x bx a b x==. (2)222441214a a a a a a -+--+-22(2)1(1)(2)(2)a a a a a --=-+-22(2)(1)(1)(2)(2)a a a a a --=-+-222(1)(2)2a a a a a a --==-++-.【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算. 举一反三: 【变式】计算.(1)26283m x xm ;(2)22122x x x x+-+ 【答案】解:(1)原式22621283242m x mx xx m mx ===;(2)原式22112(2)2x x x x x x+==-+-;类型二、分式的除法例2、 计算:(1)222324a b a bc cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简. 【答案与解析】解:(1)222324a b a b c cd -÷22222244236a bcd a b cd c a b c a b ==--23dc=-. (2) 2222242222x y x y x xy y x xy-+÷+++2(2)(2)2()()2x y x y x x y x y x y+-+=++22(2)24x x y x xyx y x y --==++.【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的. 举一反三: 【变式】化简:.【答案】 解:原式=•=.类型三、分式的乘方例3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C.【解析】解:A、,本选项错误;B、,本选项错误;C、,本选项正确;D、,本选项错误.所以计算结果正确的是C.【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算例4、计算:(1)(2016春•淅川县期中)(﹣2ab﹣2c﹣1)2÷×()3;(2)22 2223()a b aba abb b a⎛⎫-⎛⎫÷+⎪ ⎪-⎝⎭⎝⎭.【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab﹣2c﹣1)2÷×()3 =﹣••=﹣.(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭ 2222232()1()[()]()a b ab b a a b b a -=+-22222332()()1()()a b a b a b b a a b a b +-=+-211()a a b a ab==++.【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算. 举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)2222()m n n m m nm n mn m --+⎛⎫÷⎪-⎝⎭. 【答案】解: (1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a b a a a ba b ⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭. (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭22222()()()()m n m n m n m m nm n m n m n mn +---==-+.【巩固练习】 一.选择题 1.计算261053ab cc b 的结果是( )A .24a cB .4aC .4a cD .1c2. (2016•迁安市一模)化简:(a ﹣2)•的结果是( )A .a ﹣2B .a+2C .D .3.(2015•蜀山区一模)化简的结果是( )A.12B.1a a + C. D.4.分式32)32(ba 的计算结果是( ) A .3632b aB .3596b aC .3598b aD .36278b a5.下列各式计算正确的是( )A .yx y x =33B .326m m m =C .b a ba b a +=++22D .b a a b b a -=--23)()(6.22222nm m n m n ⋅÷-的结果是( )A .2n m -B .32nm -C .4mn -D .-n二.填空题7.1a c b c÷⨯_____; 2233y xy x -÷_____.8.389()22x yy x⋅-=______;=+-÷-x y x x xy x 33322______. 9.(2015•泰安模拟)化简的结果是 .10.如果两种灯泡的额定功率分别是21U P R =,225U P R=,那么第一只灯泡的额定功率是第二只灯泡额定功率的________倍.11.3322()a bc =____________;=-522)23(z y x ____________. 12.222222.2ab b a b a ab b a ab+-=++-______. 三.解答题13. (2016•黄石)先化简,再求值:÷•,其中a=2016.14.阅读下列解题过程,然后回答后面问题计算:2111ab c d b c d÷⨯÷⨯÷⨯解:2111ab c d b c d÷⨯÷⨯÷⨯=2a ÷1÷1÷1① =2a . ②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.15.小明在做一道化简求值题:22222().,x xy y x yxy x xy x-+--÷他不小心把条件x 的值抄丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?【答案与解析】 一.选择题 1.【答案】C ; 【解析】 ∵2261061045353ab c ab c ac b c b c==,∴ 选C 项. 2.【答案】B ;【解析】原式=(a ﹣2)•=a+2,故选B .3.【答案】B ;【解析】解:原式=×=.故选B.4.【答案】D ;【答案】23663333228()3327a a a b b b==. 5.【答案】D ;【解析】3322()()()()a b a b a b b a a b --==---. 6.【答案】B ;【解析】222222222223n n m n m m m m n n m m n n-÷⋅=-⋅⋅=-.二.填空题7.【答案】2abc;292x y -;【解析】2111a a ac b c b c c bc÷⨯=⨯⨯=.22223933322y x x xy xy x y y -÷=-⨯=-. 8.【答案】218x-;-1; 【解析】328918()22x y y x x⋅-=-;22233()3133()x xy x y x x y x x x x x y --+-÷=⨯=---. 9.【答案】;【解析】解:原式=••=.10.【答案】5;【解析】222122555U U U RP P R R R U ÷=÷=⨯=. 11.【答案】9368a b c;1010524332x y z -;【解析】3399323636228()a a a bc b c b c==;25101052510510533243()2232x x x y z y z y z -=-=-. 12.【答案】ba; 【解析】()()()()()2222222.2b a b a b a b ab b a b ba ab b a ab a a b aa b ++-+-=⋅=++--+. 三.解答题13.【解析】 解:原式=••=(a ﹣1)•=a+1当a=2016时,原式=2017. 14.【解析】解:第①步不正确,因为乘除运算为同级运算时,应从左到右依次计算.应为:22111111111a b c d a b c d b b c c d d ÷⨯÷⨯÷⨯=⨯⨯⨯⨯⨯⨯=2222a b c d.15.【解析】解:22222().x xy y x yxy x xy x-+--÷=()()22xyx yx x y xx y ---⨯⨯- =5y -=这道题的结果与x 的值无关,所以他能算出正确结果是5.。
分式运算的常用技巧与方法
分式运算的常用技巧与方法分式运算是数学中常见的运算形式,掌握一些常用的技巧和方法可以帮助我们更快、更准确地进行计算。
以下是一些分式运算的常用技巧和方法:一、化简与约分:化简和约分是分式运算的基本操作,可以简化分式,使其更容易处理。
化简分式的方法有:1.因式分解:将分子和分母同除以其最大公因数,化简为最简形式的分式。
2.合并同类项:对于分子或分母中含有多项的情况,将同类项相加或相减,化简为简单的形式。
3.分解为部分分式:一些分式可以通过分解为部分分式的形式进行化简,如等式两端分别乘以一个分子时。
二、通分:当两个分式的分母不同时,我们需要将分母化为相同的公分母,这个过程称为通分。
通分的方法有:1.找到两个分母的最小公倍数,在分子和分母同时乘上适当的倍数,使得两个分母相等。
2.当两个分式的分母为一次因式的幂指时,可以将较高次幂的分母分解为较低次幂的分母,再进行通分。
三、分式的加减运算:分式的加减运算可以通过通分和合并同类项来进行。
具体的步骤如下:1.找到两个分式的最小公倍数作为通分的分母。
2.将两个分式的分子乘以一个适当的倍数,使得它们的分母相同。
乘上的倍数可以通过最小公倍数与原分母的比值得到。
3.合并同类项,将分子进行相加或相减。
四、分式的乘除运算:分式的乘除运算可以通过相乘或相除的方式进行。
具体的步骤如下:1.乘法:将两个分式的分子相乘,分母相乘,得到新的分子和分母后化简。
2.除法:将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,得到新的分子和分母后化简。
五、分式的倒数和幂运算:分式的倒数就是将分子和分母互换的操作。
分式的幂运算可以通过将分子和分母同时进行幂运算来进行。
六、一些特殊的分式运算:除了以上常见的分式运算方法,还有一些特殊的分式运算,如:1.分式的比较大小:将两个分式的分子和分母相乘后进行比较。
2.分式的求值:将分式中的变量替换为具体的数值进行计算。
整式与分式的乘除运算
整式与分式的乘除运算在代数中,整式与分式是常见的表达式形式。
整式是由整数、变量和代数运算符组成的表达式,例如2x+3y-4,3a^2+2b-5c等。
而分式是由分子和分母分别由整式组成的表达式,例如(2x+1)/(3y-2),(3a^2+2b)/(4c+1)等。
在数学中,整式与分式的乘除运算是非常重要的基础知识,本文将详细介绍整式与分式的乘除运算规则和步骤。
整式的乘法运算规则如下:1. 两个整式相乘时,先计算系数之间的乘积,然后合并相同变量的指数,得到新的整式。
例如:将3x^2和4x相乘,先计算系数3和4的乘积得到12,再合并x^2和x得到12x^3。
2. 一元多项式相乘时,按照指数从高到低的顺序将两个整式逐项相乘后合并,得到新的整式。
例如:将2x^2+3x-4和x+2相乘,按照指数从高到低的顺序逐项相乘后合并,得到2x^3+7x^2-5x-8。
3. 多元多项式相乘时,双重分配率和合并同类项的规则同样适用。
例如:将(2x+3y)(4x-5y)展开,按照双重分配率展开后再合并同类项,得到8x^2-7xy-15y^2。
整式的除法运算规则如下:1. 两个整式相除时,先将其转化为分式形式,再进行相除运算。
例如:将2x^2+3x-4除以x+2,先转化为分式(2x^2+3x-4)/(x+2),再进行相除的运算。
2. 整式除以整式的结果可能是整式,也可能是分式。
例如:(2x^2+3x-4)/(x+2)的结果是2x-1。
分式的乘法运算规则如下:1. 两个分式相乘时,先将分子与分母分别相乘,再将结果化简为最简形式。
例如:将(2x+1)/(3y-2)和(3a^2+2b)/(4c+1)相乘,先将分子相乘得到(2x+1)(3a^2+2b),再将分母相乘得到(3y-2)(4c+1),最后将结果化简为最简形式。
2. 当分子和分母有公因式时,要先约分再进行相乘运算。
例如:将(2x+4)/(3y-6)和(4x+8)/(6y-12)相乘,先约分得到(x+2)/(y-2),再将结果化简为最简形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与被除式相乘.
除法转化为乘法时:被除式不变, 除式要分子、分母交换位置
计算
x+1 4x2
2x ∙ x2-1
8x2 x2+2x+1
÷
6x x+1
解
x+1 4x2
2x ∙ x2-1
=
(x+1) ∙4x2 2x ∙ (x2-1)
=
(x+1)∙ 4x2 2x ∙ (x+1)(x-1)
8x2 x2+2x+1
1. 2 9 3 10
合作学习
2 9 29 233 3 3 10 310 3 25 5
2 .
2 3
4 9
=
2 4 2 9 233 3 3 9 3 4 322 2
用字母表示: a d a d ad b c b c bc
【分数的乘除法法则 】
bd ac
bc ad
bc ad
本节内容
1.2
复习与回顾
分式的基本性质:分式的分子与分母都乘(除以)一个 非零式子,分式的大小不变;
用字母表示为: A A C
B BC
A A C (C≠0)
B BC
把一个分式的分子和分母的相同因式约去, 分式的值
不变,这种变形叫做分式的约分。
约分: (1)162aa2bbc
x2 x (2) x2 1
两个分数相乘, 把分子相乘的积作为积的分子, 分母相乘的积作为积的分母.
两个分数相除, 把除数的分子分母颠倒位置后, 再与被除数相乘.
合作学习
类似地得到分式乘除法则:
f u fu g v gv
f u f v fv g v g u gu
u≠0
分式乘分式,把分子乘分子,分母乘分母,分 别作为积的分子、分母,然后约去分子与分母 的相同因式. 分式除以分式,把除式的分子、分母颠倒位置后,
4x a 2 3a 2x 3
2、 使代数式 x 3 x 2 有意义的x的值( D)
x3 x4
A.x≠3且x≠-2 C.x≠3且x≠-3
B.x≠3且x≠4 D.x≠-2且x≠3且x≠4
3、计算:-3x2 y2÷
2y2 3x
=
-
9 2
x3
.
小结
分式的乘除法法则 1、分子乘分子,分母乘分母, 2、有时要把分子或分母中的多项式因式
x 2 16 (3) x 2 8x 16
1:一个长方体容器的容积为V,底面的长为a,宽为b,当容器
m 的水占容积的 n 时,求水的高为
avb•
m n
。
2:大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖
ab
拉机的工作效率是小拖拉机的工作效率的 m n 倍。
怎样将上面两式化简?
如何进行分式乘法、除法的计算?
分解,然后约去分子分母中的相同因式, 化成最简分式。
作业:P9 1、2
÷
6x x+1
=
8x2 (x+1)2
∙ x+1
6x
8x2∙(x+1) = (x+1)2∙ 6x
=
2x x-1
=
4x 3x+3
从例2看到,有时需要把分子或
分母中的某些多项式因式分解,
然后约分,化成最简分式.
随堂练习
1、下面的计算对吗?如果不对,应该怎样改正?
(1)
x 2b
6b x2
3b x3 x(2) Nhomakorabea