分式的乘除计算题22道题
分式的乘除运算专题练习
分式得乘除乘方专题练习例1、下列分式,,,中最简分式得个数就是( )、A、1B、2C、3D、4例21、约分把一个分式得分子与分母得公因式约去,叫做约分、约分得依据就是分式得基本性质、若分式得分子、分母就是多项式,必须先把分子、分母分解因式,然后才能约去公因式、分子与分母没有公因式得分式,叫做最简分式,又叫做既约分式、分式得运算结果一定要化为最简分式、2、分式得乘法3、分式得除法例3、若,求得值、例4、计算(1) (2)(3) (4)分式得乘方求n个相同分式得积得运算就就是分式得乘方,用式子表示就就是n、分式得乘方,就是把分子、分母各自乘方、用式子表示为(2)(3)(xy-x2)÷(4)÷ (5)(6)求得值、计算(1) (2)2·3·2(3)3·22、先化简,再求值:3÷·[]2,其中a=,b=3、(1)先化简后求值:÷(a2+a),其中a=-.(2)先化简,再求值:÷,其中x=1.4.已知m+=2,计算得值.7.(宁夏)计算:(9a2b-6ab2)÷(3ab)=_______.8.(北京)已知x-3y=0,求·(x-y)得值.9.(杭州)给定下面一列分式:,-,,-,…(其中x≠0).(1)把任意一个分式除以前面一个分式,您发现了什么规律?(2)根据您发现得规律,试写出给定得那列分式中得第7个分式..11.(结论开放题)请您先化简,再选取一个使原式有意义而您又喜爱得数代入求值:÷.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:÷(x+3)·.解:÷(x+3)·=·(x2+x-6)①=·(x+3)(x-2)②= ③上述解题过程就是否正确?如果解题过程有误,请给出正确解答.13、已知a2+10a+25=-│b-3│,求代数式·÷得值.(一)、填空题1、把一个分式得分子与分母得约去,叫做分式得约分、2、在分式中,分子与分母得公因式就是、3、将下列分式约分:(1)= (2)= (3)=4、计算= 、5、计算= 、6、计算2·3÷4= 、(二)、解答题7、计算下列各题÷(4x2y2)(3) (4)8、某厂每天能生产甲种零件a个或乙种零件b个,且a∶b=2∶3、甲、乙两种零件各一个配成一套产品,30天内能生产得产品得最多套数为多少?1、已知x2+4y24x+4y+5=0,求·÷2得值、2、已知a b c=1,求aa babb cbca c c++++++++111得值。
分式的乘除运算专题练习
分式的乘除乘方专题练习例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例23234)1(x y y x • a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质.若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式.分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法例3、 若432zy x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(cb a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(b a)n .分式的乘方,是把分子、分母各自乘方.)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy yx ÷-(3)(xy -x 2)÷x y xy -(4)2223ba a ab -+÷b a b a -+3 (5)3224)3()12(y x y x -÷-(6)322223322322)2()2()34(c b ab a c b a b a ab c +-÷-⋅2、如果32=b a ,且a ≠2,求51-++-b a b a 的值、 计算(1))22(2222a b abb a a b ab ab a -÷-÷+-- (2)(2334b a )2·(223ab -)3·(a b 3-)2(3)(22932x x x --+)3·(-xx --13)22、先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=323、(1)先化简后求值:2(5)(1)5a a a a-+-÷(a 2+a ),其中a=-13.(2)先化简,再求值:21x x x -+÷1xx +,其中x=1.4.已知m+1m=2,计算4221m m m ++的值.7.(宁夏)计算:(9a 2b -6ab 2)÷(3ab )=_______. 8.(北京)已知x -3y=0,求2222x yx x y +-+·(x -y )的值.9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y,…(其中x ≠0).(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式. .11.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m --÷211m m -+.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:22644x x x --+÷(x+3)·263x x x +-+.解:22644x x x--+÷(x+3)·263x x x +-+=22644x x x--+·(x 2+x -6)① =22(3)(2)x x --·(x+3)(x -2)② =22182x x -- ③上述解题过程是否正确?如果解题过程有误,请给出正确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a bb+-÷222b a ab b-+的值.(一)、填空题1.把一个分式的分子与分母的 约去,叫做分式的约分.2.在分式xyxy y x 222+中,分子与分母的公因式是 .3.将下列分式约分:(1)258x x = (2)22357mn n m -= (3)22)()(a b b a --= 4.计算2223362c ab b c b a ÷= .5.计算42222a b a a ab ab a b a --÷+-= . 6.计算(-y x )2·(-32yx )3÷(-y x )4= .(二)、解答题7.计算下列各题316412446222+⋅-+-÷+--x x x x x x x y x y xy x -+-24422 ÷(4x 2-y 2)(3) 4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222xa bxx ax a ax -÷+-8、某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?1、已知x 2+4y 2-4x+4y+5=0,求22442yxy x yx -+-·22y xy y x --÷(y y x 22+)2的值.2、已知a b c =1,求a a ba b b cb ca c c ++++++++111的值。
(完整版)分式的乘除运算专题练习
分式的乘除乘方专题练习例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4例23234)1(x y y x • aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(cb a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n .分式的乘方,是把分子、分母各自乘方.)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy y x ÷-(3)(xy -x 2)÷x y xy -(4)2223ba a ab -+÷b a b a -+3 (5)3224)3()12(y x y x -÷-(6)322223322322)2()2()34(cb ab ac b a b a ab c +-÷-⋅2、如果32=b a ,且a ≠2,求51-++-b a b a 的值、 计算(1))22(2222a b ab b a a b ab ab a -÷-÷+-- (2)(2334b a )2·(223a b -)3·(a b 3-)2(3)(22932x x x --+)3·(-xx --13)22、先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=323、(1)先化简后求值:2(5)(1)5a a a a-+-÷(a 2+a ),其中a=-13.(2)先化简,再求值:21x x x -+÷1x x +,其中x=1.4.已知m+1m=2,计算4221m m m ++的值.7.(宁夏)计算:(9a 2b -6ab 2)÷(3ab )=_______.8.(北京)已知x -3y=0,求2222x y x x y +-+·(x -y )的值. 9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y,…(其中x ≠0). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式..11.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m --÷211m m -+.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:22644x x x--+÷(x+3)·263x x x +-+. 解:22644x x x --+÷(x+3)·263x x x +-+ =22644x x x--+·(x 2+x -6)① =22(3)(2)x x --·(x+3)(x -2)② =22182x x -- ③ 上述解题过程是否正确?如果解题过程有误,请给出正确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.(一)、填空题1.把一个分式的分子与分母的 约去,叫做分式的约分.2.在分式xyxy y x 222+中,分子与分母的公因式是 . 3.将下列分式约分: (1)258x x = (2)22357mn n m -= (3)22)()(a b b a --= 4.计算2223362c ab b c b a ÷= . 5.计算42222ab a a ab ab a b a --÷+-= . 6.计算(-y x )2·(-32yx )3÷(-y x )4= . (二)、解答题7.计算下列各题316412446222+⋅-+-÷+--x x x x x x x y x y xy x -+-24422 ÷(4x 2-y 2)(3) 4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222xa bx x ax a ax -÷+-8、某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?1、已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷(y y x 22+)2的值.2、已知a b c =1,求a a ba b b cb c a c c ++++++++111的值。
初二分式乘除练习题50道
初二分式乘除练习题50道1. 计算下列分式的乘积:a) $\frac{2}{3} \times \frac{4}{5}$b) $\frac{3}{4} \times \frac{5}{6}$c) $\frac{1}{2} \times \frac{3}{4}$d) $\frac{5}{6} \times \frac{7}{8}$e) $\frac{2}{5} \times \frac{3}{7}$2. 计算下列分式的商:a) $\frac{2}{3} ÷ \frac{4}{5}$b) $\frac{3}{4} ÷ \frac{5}{6}$c) $\frac{1}{2} ÷ \frac{3}{4}$d) $\frac{5}{6} ÷ \frac{7}{8}$e) $\frac{2}{5} ÷ \frac{3}{7}$3. 计算下列分式的乘积或商:a) $\frac{2}{3} \times \frac{4}{5} ÷ \frac{1}{2}$b) $\frac{3}{4} ÷ \frac{5}{6} \times \frac{4}{5}$c) $\frac{1}{2} \times \frac{3}{4} \div \frac{2}{3}$d) $\frac{5}{6} \div \frac{7}{8} \times \frac{6}{7}$e) $\frac{2}{5} \times \frac{3}{7} \div \frac{4}{5}$4. 将下列分式化简,使分母为正数:a) $\frac{-2}{3}$b) $\frac{3}{-4}$c) $\frac{-5}{-6}$d) $\frac{4}{-7}$e) $\frac{-6}{8}$5. 计算下列表达式的值:a) $3 \times \left(\frac{2}{5} - \frac{1}{3}\right)$b) $\frac{2}{9} + \frac{3}{7} - \frac{5}{21}$c) $\frac{3}{4} \div \left(\frac{2}{5} + \frac{1}{3}\right)$d) $\left(\frac{4}{5} + \frac{1}{6}\right) \div \left(\frac{2}{3} -\frac{1}{4}\right)$e) $\frac{2}{3} \times \left(\frac{3}{4} - \frac{1}{6}\right) +\frac{1}{2}$6. 用分式表示下列问题,并计算:a) Tom做了$\frac{2}{5}$小时的作业,占他学习时间的$\frac{3}{4}$,他学习了多久?b) 如果$\frac{1}{8}$块蛋糕可以给一个人吃,那么12个人可以吃多少块蛋糕?c) 一个学生做数学作业花费$\frac{4}{9}$小时,然后又花费$\frac{5}{8}$小时做英语作业,一共花了多久?d) $\frac{3}{4}$米绳子被剪成了$\frac{2}{3}$米和剩下的部分,剩下的部分有多长?e) 如果一个邮箱的容量是$\frac{7}{10}$倍于另一个邮箱,容量较大的邮箱可以放几个较小邮箱的邮件?7. 将下列百分数转换为分数或小数:a) $50\%$b) $75\%$c) $25\%$d) $20\%$e) $80\%$8. 将下列分数转换为百分数或小数:a) $\frac{3}{5}$b) $\frac{2}{10}$c) $\frac{1}{4}$d) $\frac{3}{8}$e) $\frac{5}{6}$9. 在下列方程中解出未知数的值:b) $\frac{5}{2}y + \frac{1}{4} = \frac{11}{4}$c) $\frac{1}{3}z - \frac{4}{5} = -\frac{11}{15}$d) $\frac{3}{4}w + \frac{2}{3} = \frac{17}{12}$e) $4a - \frac{1}{5} = 5$10. 解下列方程组,给出未知数的值:a)$\begin{cases}2x - y = 5 \\x + 3y = 1\end{cases}$b)$\begin{cases}3x - 2y = 8 \\2x + y = 4\end{cases}$c)$\begin{cases}5x - 4y = 6 \\\end{cases}$d)$\begin{cases}\frac{x}{2} - \frac{y}{3} = 1 \\\frac{x}{4} + \frac{y}{5} = \frac{3}{10}\end{cases}$e)$\begin{cases}2x + 3y = 7 \\4x - 5y = 1\end{cases}$通过以上50道分式乘除练习题,相信你对初二阶段的分式乘除运算有了更深入的理解。
八年级上册分式的加减乘除计算题
八年级上册分式的加减乘除计算题一、分式的乘除法计算题(10题)1. 计算:(x)/(y)·(y)/(x)- 解析:分式乘法法则为(a)/(b)·(c)/(d)=(ac)/(bd),这里(x)/(y)·(y)/(x)=(x× y)/(y×x)=1。
2. 计算:(2a)/(3b)·frac{9b^2}{8a^2}- 解析:根据分式乘法法则,(2a)/(3b)·frac{9b^2}{8a^2}=frac{2a×9b^2}{3b×8a^2}=frac{18ab^2}{24a^2b}=(3b)/(4a)。
3. 计算:frac{x^2-1}{x^2+2x + 1}÷(x - 1)/(x+1)- 解析:- 先将分子分母因式分解,x^2-1=(x + 1)(x - 1),x^2+2x + 1=(x + 1)^2。
- 然后根据分式除法法则(a)/(b)÷(c)/(d)=(a)/(b)·(d)/(c),原式可化为((x + 1)(x - 1))/((x + 1)^2)·(x+1)/(x - 1)=1。
4. 计算:frac{4x^2-4xy+y^2}{2x - y}÷(4x^2-y^2)- 解析:- 先对分子4x^2-4xy + y^2=(2x - y)^2,分母4x^2-y^2=(2x + y)(2x - y)进行因式分解。
- 根据除法法则,原式=frac{(2x - y)^2}{2x - y}·(1)/((2x + y)(2x - y))=(1)/(2x + y)。
5. 计算:frac{a^2-4}{a^2+4a+4}·(2a + 4)/(a - 2)- 解析:- 对分子分母因式分解,a^2-4=(a + 2)(a - 2),a^2+4a + 4=(a + 2)^2,2a+4 = 2(a + 2)。
分式的乘除法专项训练题(含答案)
分式的乘除法专项训练题(含答案) 分式乘除法选择题1.下列等式正确的是()A。
21y-(-1)=-1B.(-1)^2=1C。
2x=2D。
x^2y^2/(2x^-1)(-2)=x^22.下列变形错误的是()A。
-4x^3y^2/(2x-3y)^3=-1B。
2x^3y^6/[(a-b)^2]^4=2C。
7(a-b)^9/3y(y-x)^3=2x^2y/(a-1)^2D。
ab^2/(-3ax)=8c^2d^2/2a^23.2cd^4/(cd^2)^2等于()A。
-2b^2/32a^2b^2x^3B。
2/b^2xC。
3x/2b^2D。
-8c^2d^2/2a^24.若2a=3b,则3b^2/2a^2等于()A。
1B。
3/2C。
9/4D。
9/65.使分式a^2x-a^2y/(x+y)^2的值等于5的a的值是()A。
5B。
-5C。
11/5D。
-5/(x-1)(x+3)6.已知分式(x+1)(x-3)/(x+1)(x-3)有意义,则x的取值为()A。
x≠-1B。
x≠3C。
x≠-1且x≠3D。
x≠-1或x≠37.下列分式,对于任意的x值总有意义的是()A。
(x-5)/(x-1)(x+2)B。
1/(x^2+1)C。
x^2+1/8xD。
3x+2/(|m|-1)8.若分式m^2-m的值为零,则m取值为()A。
m=±1B。
m=-1C。
m=1D。
m的值不存在9.当x=2时,下列分式中,值为零的是()A。
(x-2)^2/(x^2-3x+2)B。
(x-9)C。
(x-2)D。
(x+2)/(x+1)(x-3)10.每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A。
(nx+my)/(x+y)元B。
(mx+n)/(m+n)xy元C。
(x+y)元D。
2(m+n)元/(x+y)11.下列各式的约分正确的是()A。
2(a-c)/(a-c)=3/2B。
abc/2=ab^2/2c=1/2a(2c-b)C。
分式的乘除加减法练习题(打印版)
分式的乘除加减法练习题(打印版)### 分式的乘除加减法练习题#### 一、分式的乘法1. 计算以下分式的乘积:\[\frac{3}{4} \times \frac{5}{6}\]2. 计算以下分式的乘积:\[\frac{2}{3} \times \frac{7}{8}\]3. 计算以下分式的乘积:\[\frac{1}{2} \times \frac{4}{9}\]#### 二、分式的除法1. 计算以下分式的商:\[\frac{3}{5} \div \frac{2}{3}\]2. 计算以下分式的商:\frac{4}{7} \div \frac{1}{3} \]3. 计算以下分式的商:\[\frac{5}{8} \div \frac{5}{2} \]#### 三、分式的加法1. 计算以下分式的和:\[\frac{1}{3} + \frac{2}{3}\]2. 计算以下分式的和:\[\frac{3}{4} + \frac{1}{4}\]3. 计算以下分式的和:\[\frac{5}{6} + \frac{1}{6}\]#### 四、分式的减法1. 计算以下分式的差:\[\frac{4}{5} - \frac{1}{5}2. 计算以下分式的差:\frac{7}{8} - \frac{3}{8}3. 计算以下分式的差:\[\frac{9}{10} - \frac{2}{5}\]#### 五、混合运算1. 计算以下混合运算的结果:\[\left(\frac{2}{3} + \frac{1}{6}\right) \times \frac{3}{4} \]2. 计算以下混合运算的结果:\[\frac{5}{6} \div \left(\frac{2}{3} \times\frac{3}{4}\right)\]3. 计算以下混合运算的结果:\[\left(\frac{3}{5} - \frac{1}{10}\right) \div \frac{1}{2} \]通过以上练习题,可以有效地提高对分式运算的理解和计算能力。
分式乘除练习题
分式乘除练习题Ⅰ. 乘法练习题1. 计算下列分式的乘积:(答案需以最简形式给出)a) $\frac{4}{5} \times \frac{3}{7}$b) $\frac{2}{9} \times \frac{7}{15}$c) $\frac{9}{12} \times \frac{6}{10}$d) $\frac{5}{8} \times \frac{2}{5}$2. 简化下列分式乘法的结果:a) $\frac{2}{3} \times \frac{3}{4} \times \frac{5}{6}$b) $\frac{4}{7} \times \frac{7}{12} \times \frac{12}{5}$c) $\frac{8}{9} \times \frac{9}{10} \times \frac{10}{11}$d) $\frac{3}{5} \times \frac{5}{7} \times \frac{7}{8}$Ⅱ. 除法练习题1. 用倒数的方法计算下列分式的商:(答案需以最简形式给出)a) $\frac{3}{5} \div \frac{2}{3}$b) $\frac{4}{9} \div \frac{5}{8}$c) $\frac{6}{7} \div \frac{4}{9}$d) $\frac{2}{3} \div \frac{5}{6}$2. 在下列除法中,简化每个阶段的结果,最终以最简形式给出答案:a) $\frac{4}{5} \div \frac{3}{4} \div \frac{5}{6}$b) $\frac{5}{6} \div \frac{7}{8} \div \frac{4}{9}$c) $\frac{6}{7} \div \frac{8}{9} \div \frac{3}{5}$d) $\frac{2}{3} \div \frac{5}{6} \div \frac{7}{8}$Ⅲ. 综合运算练习题1. 计算下列综合运算的结果:(答案需以最简形式给出)a) $\frac{2}{3} \times \frac{3}{4} \div \frac{4}{5}$b) $\frac{5}{6} \times \frac{7}{8} \div \frac{8}{9}$c) $\frac{4}{5} \div \frac{3}{4} \times \frac{2}{3}$d) $\frac{7}{8} \div \frac{4}{3} \times \frac{6}{5}$2. 按正确的顺序计算下列综合运算,并简化最终结果:a) $\frac{3}{4} \times \frac{5}{6} \div \frac{7}{8} \div \frac{4}{9}$b) $\frac{6}{7} \times \frac{8}{9} \div \frac{9}{10} \div\frac{3}{5}$c) $\frac{2}{3} \times \frac{5}{6} \div \frac{7}{8} \times\frac{4}{5}$d) $\frac{4}{5} \times \frac{3}{4} \div \frac{15}{16} \times\frac{7}{9}$经过以上练习题的练习,相信你对于分式的乘除运算已经更加熟练了。
分式的乘除运算专题练习
分式得乘除乘方专题练习一、典型例题例1、下列分式”,中最简分式得个数就是()、A、1B、2C、31、约分把一个分式得分子与分母得公因式约去,叫做约分、约分得依据就是分式得基本性质、若分式得分子、分母就是多项式,必须先把分子、分母分解因式,然后才能约去公因式、分子与分母没有公因式得分式,叫做最简分式,又叫做既约分式、分式得运算结果一定要化为最简分式、2、分式得乘法3、分式得除法例3、若,求得值、例4、计算⑴ (2)⑶(4)分式得乘方求n个相同分式得积得运算就就是分式得乘方,用式子表示就就是n、分式得乘方,就是把分子、分母各自乘方、用式子表示为:n=(n为正整数)针对性练习:|(2)(3)( xy - x2)宁(4)宁(5)⑹2、如果,且2,求得值三、巩固练习:1、计算(1) (2)2• 3• 2(3)3• 22、先化简再求值:3*,[]2,其中a=,b=3、(1)先化简后求值:*(a2+a),其中a=-.⑵先化简,再求值:十,其中x=1.4•已知m+=2,计算得值.7. (宁夏)计算:(9a2b—6ab2)- (3ab)= ____ .8. (北京)已知x —3y=0,求・(x —y)得值.9. (杭州)给定下面一列分式:,—,,—,…(其中X M 0).(1) _________ = ____________ (2) _________ =___________(3) __________ =____________(1) 把任意一个分式除以前面一个分式,您发现了什么规律?(2) 根据您发现得规律,试写出给定得那列分式中得第7个分式.11. (结论开放题)请您先化简,再选取一个使原式有意义而您又喜爱得数代入求值12. (阅读理解题)请阅读下列解题过程并回答问题计算:—(x+3) •.解:十(x+3) •=• (x +x —6)①=• (x+3)(x —2)②= ③上述解题过程就是否正确?如果解题过程有误,请给出正确解答13、已知a2+10a+25= —|b—3 |,求代数式•十得值.(一)、填空题1、把一个分式得分子与分母得_________ 约去,叫做分式得约分、2、在分式中,分子与分母得公因式就是、3、将下列分式约分:4、计算= ________________5、计算= ------------------------ -6、计算2• 3十4 (二)、解答题7、计算下列各题-(4x2y2)(3) (4)8 某厂每天能生产甲种零件a个或乙种零件b个,且a : b=2 : 3、甲、乙两种零件各一个配成一套产品,30天内能生产得产品得最多套数为多少?1、已知x2+4y24x+4y+5=0,求•十2得值、得值。
分式的乘除练习(含答案)
分式的乘除课前自主练1.计算下列各题:(1)32×16=______;(2)35÷45=_______;(3)3a·16ab=________;(4)(a+b)·4a b2=________;(5)(2a+3b)(a-b)=_________.2.把下列各式化为最简分式:(1)2216816aa a--+=_________;(2)2222()()x y zx y z--+-=_________.3.分数的乘法法则为_____________________________________________________;分数的除法法则为_____________________________________________________.4.分式的乘法法则为____________________________________________________;分式的除法法则为____________________________________________________.课中合作练题型1:分式的乘法运算5.(技能题)2234xyz·(-28zy)等于()A.6xyz B.-23384xy zyz-C.-6xyz D.6x2yz6.(技能题)计算:23xx+-·22694x xx-+-.题型2:分式的除法运算7.(技能题)22abcd÷34axcd-等于()A.223bxB.32b2x C.-223bxD.-222238a b xc d8.(技能题)计算:23a a -+÷22469a a a -++. 课后系统练基础能力题9.(-3a b)÷6ab 的结果是( ) A .-8a 2 B .-2a b C .-218a b D .-212b10.-3xy ÷223y x的值等于( ) A .-292x y B .-2y 2 C .-229y xD .-2x 2y 2 11.若x 等于它的倒数,则263x x x ---÷2356x x x --+的值是( ) A .-3 B .-2 C .-1 D .012.计算:(xy-x 2)·xy x y-=________. 13.将分式22x x x +化简得1x x +,则x 应满足的条件是________. 14.下列公式中是最简分式的是( )A .21227b a B .22()a b b a -- C .22x y x y ++ D .22x y x y -- 15.计算(1)(2)(1)(2)a a a a -+++·5(a+1)2的结果是( ) A .5a 2-1 B .5a 2-5 C .5a 2+10a+5 D .a 2+2a+116.(2005·南京市)计算22121a a a -++÷21a a a -+.17.已知1m+1n=1m n+,则nm+mn等于()A.1 B.-1 C.0 D.2 拓展创新题18.(巧解题)已知x2-5x-1 997=0,则代数式32(2)(1)12x xx---+-的值是()A.1 999 B.2 000 C.2 001 D.2 00219.(学科综合题)使代数式33xx+-÷24xx+-有意义的x的值是()A.x≠3且x≠-2 B.x≠3且x≠4C.x≠3且x≠-3 D.x≠-2且x≠3且x≠420.(数学与生活)王强到超市买了a千克香蕉,用了m元钱,又买了b千克鲜橙,•也用了m元钱,若他要买3千克香蕉2千克鲜橙,共需多少钱?(列代数式表示).答案1.(1)14(2)34(3)48a2b (4)4a2b2+4ab3(5)2a2+ab-3b22.(1)44aa+-(2)x y zx y z-+++3.分数与分数相乘,把分子、分母分别相乘;除以一个数等于乘以这个数的倒数4.分式乘以分式,把分子、分母分别相乘;除以一个分式等于乘以这个分式的倒数5.C 6.32xx--•7.C 8.32aa++9.D 10.A 11.A 12.-x2y 13.x≠014.C 15.B 16.1a17.B 18.•C •19.D 20.(3ma+2mb)元。
初二数学分式乘除练习题
初二数学分式乘除练习题一、乘法练习题1. 计算下列各题。
(1) $\frac{2}{3} × \frac{1}{4}$(2) $\frac{3}{5} × \frac{7}{8}$(3) $\frac{5}{6} × \frac{3}{10}$(4) $\frac{2}{9} × \frac{5}{7}$(5) $\frac{4}{15} × \frac{9}{10}$2. 按要求简化下列乘法表达式。
(1) $(\frac{2}{3}) × (\frac{4}{5}) × (\frac{6}{7})$(2) $(\frac{3}{8})^2 × (\frac{4}{3})^3$(3) $(\frac{5}{9})^4 × (\frac{3}{7})^2$3. 解决下列应用题。
(1) 一本书共有80页,其中的$\frac{3}{4}$页已经装订好了。
请问还有多少未装订的页数?(2) 小明花费总资金的$\frac{2}{5}$买了一部手机,剩下的$\frac{3}{4}$资金又用于购买相机。
请问相机花了总资金的多少?二、除法练习题1. 计算下列各题。
(1) $\frac{3}{4} ÷ \frac{2}{5}$(2) $\frac{5}{6} ÷ \frac{3}{10}$(3) $\frac{7}{8} ÷ \frac{4}{9}$(4) $\frac{2}{5} ÷ \frac{6}{7}$(5) $\frac{9}{10} ÷ \frac{4}{15}$2. 计算下列各题。
(1) $\frac{4}{5} ÷ \frac{2}{3} ÷ \frac{3}{4}$(2) $\frac{4}{3} ÷ (\frac{2}{3})^2$(3) $\frac{5}{9} ÷ (\frac{3}{7})^2$3. 解决下列应用题。