2020年整理人教版初中数学总复习提纲.pdf
人教版2020年初中(7-9年级)数学知识点全总结(打印版)
人教版2020年初中(7-9年级)数学知识点全总结(打印版)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
最新人教版初中数学讲义大纲(适用于中考复习)
人教版初中中考数学复习提纲 1第一章 有理数 2一、正数和负数 31、 正数、负数: 大于零的数叫做正数,小于零的数叫做负数。
4应用:生产收入,海拔高低,气温的冷热,方位的指向,比赛的胜负,比例的增长等等。
5二、有理数 61、概念:整数和分数统称为有理数。
7 2、分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负数零正分数正整数正数或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 8注:分数和小数可以互化,所以小数可以归为分数类。
93、“0”表示的意义: 10(1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有,有时表示一种趋于正负11的状态(4)0是最小的自然数,即是最小的非负整数(5)0不能作为分母(6)0等相反数是120(7)0的绝对值是0(8)0没有倒数(9)0乘以任何数都为0(10)0除以任何不为0的数13都为0. 144、数轴:通常用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素:原点,正方15向,单位长度。
16数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左17边的数小于右边的数。
185、相反数:只有符号不同的两个数叫做互为相反数。
与原点距离相等的两个数互为相反数。
19互为相反数的两个数相加得0(a ,b 互为相反数,则a+b=0) 206、绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a| 21 |a|=⎩⎨⎧<-≥)0()0(a a a a22 两个负数,绝对值大的反而小。
23 三、有理数的加减法24 1、有理数的加法:25 (1)加法法则:26 同号两数相加,取相同的符号,并把绝对值相加;27 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去28 较小的绝对值。
互为相反数的两个数相加得0.29 一个数同0相加,仍得这个数。
30 (2)运算律:加法交换律:a+b=b+a ;加法结合律:(a+b )+c=a+(b+c )31 2、有理数的减法:32 减法法则:减去一个数,等于加上这个数的相反数。
2020年新人教版初中数学总复习提纲
2.1 整式单项式:由数字和字母乘积组成的式子。
系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.单项式的系数:是指单项式中的数字因数;单项数的次数:是指单项式中所有字母的指数的和.多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
多项式的次数是指多项式里次数最高项的次数,a b是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括这里33它前面的性质符号.它们都是用字母表示数或列式表示数量关系。
注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
2.2整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:1、如果遇到括号按去括号法则先去括号.2、结合同类项.3、合并同类项2.3整式的乘法法则 :单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
初中数学总复习方法提纲人教版
初中数学总复习方法提纲人教版一初中数学复习方法1、数学复习的基本要求数学复习的内容可分为基础知识和基础解题技能两部分。
在复习中,要注意基本概念、基本公式、基本定律和法则的辩析比较和灵活运用,做到理解、综合、创新。
所谓“ 理解”,就是力求对中学所学的数学基础知识和基本概念从局部到整体,从微观到宏观,从具体到抽象等多角度、多层次、全方位地融会贯通,有意识地培养自己的分析理解能力、综合概括能力和抽象思维能力。
对于定义、定理、公式的复习,应做到:弄清来龙去脉,沟通相互关系,掌握推证过程,注意表达形式,归纳记忆方法,明确主要用途。
所谓“综合”,是指将不同学科、不同单元、不同年级、不同时间所学的数学知识进行去擅存真、去粗存精、由表及里、由浅入深的提炼加工,建立知识之间的纵横联系,使知识系统化、条理化、网络化,便于记忆,便于储存,便于提取和应用。
例如,复习角的概念,可作如下归纳:(1)由共面直线所成的角—异面直线所成的角—直线和平面所成的角—平面与平面所成的角,从而弄清这一要领的形成和发展,前者如何扩充为后者,后者如何转化为前者来解决。
(2)对倾斜角,辐角,极角,这些易混淆概念类比区别,从而使角的概念更清晰和准确。
(3)三角中:终边相同的角、水平角、垂直角、象限角、区间角、方位角等表达形式和特性,梳理应用规律和方法。
所谓“创新”,是指在融会贯通基础知识后,在解题过程中所表现出来的灵活性、独创性、简捷性、批判性和深刻性。
创新能力不仅表现在综合运用所学过的知识去分析问题、解决问题,更重要的是发现新问题,拓宽和深化所学的知识领域,不断增强自己的应变能力。
为此,每个同学应注意根据学过的知识去发现和挖掘书本上没有的和老师没有讲到的问题。
如理解一个概念的多种内涵,对一个问题从不同的角度去思考(即一题多解),对具有共性的问题总结解题规律(即多题一解),发现解决问题的思想方法等。
2. 数学复习的一般方法(1)课前预习。
复习课的容量大、内容多、时间紧。
初中数学知识点总结pdf
初中数学知识点总结pdf一、数与代数1. 有理数- 整数与分数- 正数、负数和零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念及性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 代数式的加减运算- 乘法公式,如平方差公式和完全平方公式- 分式的运算,包括约分和通分4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 用方程解决实际问题- 不等式的概念及基本性质- 解一元一次不等式5. 二元一次方程组- 方程组的解法,如代入法和消元法- 三元一次方程组的解法6. 函数的基本概念- 函数的定义- 函数的表示方法,如表格、图形和解析式- 线性函数和二次函数的图像及性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念,包括邻角、对角和同位角- 直线和射线,以及它们之间的关系- 角的度量,包括度、分、秒的换算2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形和直角三角形的性质 - 三角形的内角和外角性质- 三角形的中线、高和角平分线3. 四边形- 平行四边形、矩形、菱形和正方形的性质- 四边形的内角和外角性质- 四边形的对角线性质4. 圆- 圆的基本性质- 圆的直径、半径、弦、弧、切线等概念- 圆周角和圆心角的关系- 切线的性质和圆的公切线5. 面积和体积- 平面图形的面积计算,如三角形、四边形和圆- 立体图形的体积计算,如长方体、正方体、圆柱和圆锥6. 相似与全等- 全等图形的判定条件- 相似图形的判定条件- 相似三角形的性质和应用三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制,如条形图、折线图和饼图- 算术平均数、中位数和众数的计算2. 概率- 随机事件的概念- 可能性的判断- 概率的初步认识和简单计算四、综合应用题- 解决实际问题,如购物、旅行等场景中的数学应用- 应用所学知识解决综合性问题,培养逻辑思维和解题能力以上是初中数学的主要知识点总结,学生应熟练掌握这些概念和技能,为高中数学学习打下坚实的基础。
2020年中考数学总复习全套基础知识点总结提纲(精华版)
中考数学复习提纲第一章实数考点一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a= - b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a-,这说明三次根号内的负号可以移到根号外面。
初中数学总复习提纲
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数 整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
2020年中考数学必考全套基础知识复习提纲(完整版)
2020年中考数学必考全套基础知识复习提纲(完整版)代数部分 第一章:实数基础知识点: 一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
初中数学知识点中考总复习总结归纳(人教版)
初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3?5a3b2c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整理人教版初三数学_人教版初中数学复习提纲
人教版初三数整理人尼克学正数与负数→有理数数轴、相反数乘除绝对值、倒数有理数运算有理数的运算律→运算结果→符号/绝对值乘方/开方→科学计数法→近似数/有效数/精确度混合运算第二章整式的加减2.1 整式单项式:由数字和字母乘积组成的式子。
系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.单项式的系数:是指单项式中的数字因数;单项数的次数:是指单项式中所有字母的指数的和.多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。
注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
2.2整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:1、如果遇到括号按去括号法则先去括号.2、结合同类项.3、合并同类项2.3整式的乘法法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
人教版八年级数学下册复习提纲
人教版八年级数学下册复习提纲
一、整数和有理数
1. 整数概念及性质
2. 整数的加减法运算
3. 整数的乘法和除法运算
4. 整数的混合运算和运算规律
5. 有理数概念及性质
6. 有理数的加减法运算
7. 有理数的乘法和除法运算
8. 有理数的混合运算和运算规律
二、平方根和实数
1. 平方根的概念及性质
2. 平方根的运算法则
3. 二次根式的概念及性质
4. 二次根式的加减法运算
5. 二次根式的乘法和除法运算
6. 实数的概念及性质
7. 实数的加减法运算
8. 实数的乘法和除法运算
三、图形的性质
1. 平面直角坐标系
2. 点、线、面的基本概念
3. 图形的相似性质
4. 图形的对称性质
5. 图形的投影性质
6. 图形的旋转性质
四、一元一次方程与一元一次不等式
1. 一元一次方程的基本概念
2. 一元一次方程的解集及解的性质
3. 一元一次方程的加减消元和倍增消元
4. 一元一次方程的应用问题
5. 一元一次不等式的基本概念
6. 一元一次不等式的解集及解的性质
7. 一元一次不等式的加减消元和倍增消元
8. 一元一次不等式的应用问题
以上为人教版八年级数学下册复习提纲,以帮助复习重要知识点和概念。
请根据提纲进行系统性的复习和练习,以加深对数学知识的理解和掌握。
2020年整理初中数学总复习提纲(全初中).pdf
☆ 内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三
边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
7.算术平方根
⑴正数 a 的正的平方根( a [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, a2 =│a│
②区别:│a│中,a 为一切实数; a 中,a 为非负数。
8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的
学海无涯
因数或因式。
把分母中的根号划去叫做分母有理化。
9.
指数
⑴ a·a…a= an ( an —幂,乘方运算)
n个
① a>0 时, an >0;②a<0 时, an >0(n 是偶数), an <0(n 是奇数)
⑵零指数: a0 =1(a≠0)
负整指数: a − p =1/ a p (a≠0,p 是正整数)
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的
两个数据的平均数)
二、计算方法
1.样本平均数:⑴
x
=
1 n
( x1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版初中数学复习提纲
第一章 有理数
1.1 正数与负数 ①在以前学过的 0 以外的数前面加上负号“—”的数叫负数(negative number)。与负数具有相反意义,即以
前学过的 0 以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。 ②大于 0 的数叫正数。 ③0 既不是正数也不是负数。0 是正数和负数的分界,是唯一的中性数。 ④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
这里 a3b3 是次数最高项,其次数是 6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括
它前面的性质符号. 它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。 单项式和多项式统称为整式。 2.2 整式的加减 同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。 同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与
2.3 整式的乘法法则 : 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ; 单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。 多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
2.4 整式的除法法则 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数
分类
正数与负数→有理数
数轴、相反数 绝对值、倒数
有理数大小的比较 加减
有理数运算
乘除 有理数的运算律→运算结果→符号/ 绝对值
乘方/开方→科学计数法→近似数/有效数/精确度
混合运算
学海无涯
第二章 整式
2.1 整式 单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一 个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系, 即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式. 单项式的系数:是指单项式中的数字因数; 单项数的次数:是指单项式中所有字母的指数的和. 多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式 称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,
相反数的两个数相加得 0。 3.一个数同 0 相加,仍得这个数。 加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。 1.4 有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同 0 相乘,都得 0。 乘积是 1 的两个数互为倒数。乘法交换律/结合律/分配律 ②有理数除法法则:除以一个不等于 0 的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0 除以任何一个不等于 0 的数,都得 0。
把一个大于 10 的数表示成 a×10 的 n 次方的形式,使用的就是科学计数法,注意 a 的范围为 1≤a <10。 从一个数的左边第一个非 0 数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。 四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449 精确 到 0.01 就是 3.54 而不是 3.55.
系数大小、字母的排列顺序无关 合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。 合并同类项法则: 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变; 字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。 如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。 整式加减的一般步骤: 1、如果遇到括号按去括号法则先去括号. 2、结合同类项. 3、合并同类项
作为商的一个因式。 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
列式子→整式
单项式:单项式的次数、系数 分类
多项式:多项式的项数、系数、次数→升降幂排列
对值是两点间的距离。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0。两个负数,绝对值大的反而
小。 1.3 有理数的加减法
①有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为
1.5 有理数的乘方 求 n 个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在 a 的 n 次方中,a 叫做底数(base number),
n 叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,最后加减;同级运算,从左到右进行;如有括号,先做括号内的 运算,按小括号、中括号、大括号依次进行。
1.2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。整数和分数统称有理数
(rational number). 以用 m/n(其中 m,n 是整数,n≠0)表示有理数。 通常用一条直线上的点表示数,这条直线叫数轴(number axis)。 数轴三要素:原点、正方向、单位长度。 在直线上任取一个点表示数 0,这个点叫做原点(origin)。 数轴上的点和有理数的关系: 所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。 只有符号不同的两个数叫做互为相反数(opposite number)。(例:2 的相反数是-2;0 的相反数是 0) 数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值(absolute value),记作|a|。从几何意义上讲,数的绝