七年级数学下册各单元测试题及答案----
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
第6章 实数 人教版数学七年级下册单元测试(含答案)
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
新人教版数学七年级下册单元测试题1-第7章-平面直角坐标系(含答案解析)
单元测试平面直角坐标系(时间:45分钟满分:100分)一、选择题(每小题3分,共24分)1.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y≤0D.y≥02.小敏的家在学校正南方向150 m,正东方向200 m处,如果以学校位置为原点,以正北、正东为正方向,那么小敏家的位置用有序数对表示为( )A.(-200,-150)B.(200,150)C.(200,-150)D.(-200,150)3.在直角坐标系中,第四象限的点M到横轴的距离为28,到纵轴的距离为6,则点M的坐标为( )A.(6,-28)B.(-6,28)C.(28,-6)D.(-28,-6)4.将点A(3,2)沿x轴先向左平移4个单位长度,再沿y轴向下平移2个单位长度得到点A′,则点A′的坐标是( )A.(-3,2)B.(-1,0)C.(-1,2)D.(1,-2)5.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上6.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-1,0),B(-2,3),C(-3,1).将△ABC向下平移5个单位,得到△AB′C′,则点B′的坐标为( )A.(-7,0)B.(-2,-2)C.(4,1)D.(-5,-2)8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( )A.2B.1C.4D.3二、填空题(每小题4分,共16分)9.如图,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图中左,右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图中右眼的坐标是__________.10.在平面直角坐标系中,将点P(-1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为__________.11.如图所示,把图1中的⊙A经过平移得到⊙O(如图2),如果图1中⊙A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为__________.12.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为__________.三、解答题(共60分)13.(8分)如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.14.(8分)如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.写出下一步“马”可能到达的点的坐标.15.(10分)(1)写出如图1所示的平面直角坐标系中A,B,C,D点的坐标,并分别指出它们所在的象限;(2)如图2,是小明家(图中点O)和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点.①请用距离和方位角表示图中商场、学校、公园、停车场分别相对小明家的位置;②若学校距离小明家400 m,那么商场和停车场分别距离小明家多少米?16.(10分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形;(2)写出A,B,C三点平移后的对应点A′,B′,C′的坐标.17.(12分)小明给右图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?18.(12分)如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.参考答案1.A2.C3.A4.B5.C6.C7.B8.C9.(5,4) 10.(1,1) 11.(m+2,n-1) 12.4913.答案不唯一,如:(1)(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(2)(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3)(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(4)(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(5)(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.14.(0,0),(0,2),(1,3),(3,3),(4,2),(4,0).15.(1)A(2,2),在第一象限内;B(0,-4),在y轴上;C(-4,3),在第二象限内;D(-3,-4),在第三象限内. (2)①商场:北偏西30°,2.5 cm;学校:北偏东45°,2 cm;公园:南偏东60°,2 cm;停车场:南偏东60°,4 cm.②商场距小明家500米,停车场距小明家800米.16.(1)图略.(2)A′(5,2),B′(0,6),C′(1,0).17.(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5);(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限;(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.18.(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1);对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数;(2)由(1)可得a+3=-2a,4-b=-(2b-3).解得a=-1,b=-1.。
人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析
人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。
人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)
人教版七年级数学下册第7章平面直角坐标系单元测试题学校:姓名:班级:考号:一、单选题1.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定2.下列四个点中,在第二象限的点是( ).A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)3.若),轴上的点尸到x轴的距离为3,则点夕的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.点M(根+1,〃2+3)在y轴上,则点M的坐标为()A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)5.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)6.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y大于或等于0D.y小于或等于()7.如图:正方形ABCD中点A和点C的坐标分别为(・2,3)和(3,-2),则点B和点D的坐标分别为( ).A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3) D.(2,2)和(-3,-3)8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)9.线段A8两端点坐标分别为A(-1,4),8(-4,1),现将它向左平移4个单位长度,得到线段4囱,则4、S的坐标分别为()A.Ai(-5,0),Bi(-8,-3)B.4(3,7),B\(0,5)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11 .七年级(2)班教室里的座位共有7排8歹U,其中小明的座位在第3排第7歹U,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作.12 .若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第象限.13 .若点P 到x 轴的距离是12JIJy 轴的距离是15,那么P 点坐标可以是 __________________ (写出一个即可).14 .小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3)、(-2,3),则移动后猫眼的坐标为o15 .已知点P(x,y)在第四象限,且|x|二3,|y|=5,则点P 的坐标是 ___________________ . 16 .如图,中国象棋中的“象”,在图中的坐标为(1,0),•若"象''再走一步,试写出下一步它可能走到的位置的坐标.17 .如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标.三、解答题18 .已知点N 的坐标为(2-a,3a+6),且点N 到两坐标轴的距离相等,求点N 的坐标.C.Ai (-5, 4), Bi (-8, 1)D.Ai (3, 4), Bi (0, 1)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像什么?⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.23.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,参考答案1. D【分析】1、分析题意,回忆用坐标确定位置的方法;2、观察发现题中没有规定排和列的前后顺序;3、接下来根据有序实数对的知识,解答本题.【详解】解:题中没有规定排在前,列在后;还是列在前,排在后,因此无法确定该同学的所坐位置.故选D.【点睛】在使用有序数对前,一定要先对有序数进行定义,否则很可能导致前后数表示的意义不明确, 从而确定不出位置.例如本题没有规定有序数对的列和排谁在前,所以无法得知其所表示的含义.2. C【分析】根据第二象限内点的横坐标为负,纵坐标为正进行判断即可.【详解】解:A.(2,-3)在第四象限内;B.(2,3)在第一象限内;C.(-2,3)在第二象限内;D.(-2,-3)在第三象限内.故选C.【点睛】本题主要考查平面直角坐标系,熟练掌握各个象限的坐标特点是解此题的关键.3. D【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】・・万轴上的点P,・・・尸点的横坐标为0,又丁点P到x轴的距离为3,・・・P点的纵坐标为±3,所以点。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
七年级下册数学单元测试卷及答案人教版
人教版七年级下数学第5章相交线与平行线单元测试卷一、选择题1. 已知:如图,AB//CD,∠1=∠2.求证:AM//CN.以下是排乱的证明过程:①∴AM//CN;②∵∠1=∠2;③∴∠EAM=∠ECN;④∴∠EAB=∠ECD;⑤∵AB//CD.证明步骤正确的顺序是( )A.②③⑤④①B.②④⑤③①C.⑤③②④①D.⑤④②③①2. 如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C 路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线3. 如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等4. 下列说法正确的是( )A.若线段AC=BC,则点C是线段AB的中点B.相等的角是对顶角C.过一点有且只有一条直线与已知直线垂直D.从直线外一点到这条直线的垂线段,叫做点到直线的距离5. 平面上三条直线相互间的交点个数是( )A.3B.1或3C.1或2或3D.不一定是1,2,36. 在同一平面内,下列说法正确的是( )A.两直线的位置关系是平行、垂直和相交B.不平行的两条直线一定互相垂直C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行7. 在同一平面内,两直线的位置关系必是( )A.相交B.平行C.相交或平行D.垂直二、填空题8. 如图,面积为6cm2的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ABED的面积为________ cm2.9. 如图CD⊥AB,垂足为C,∠1=130∘,则∠2=________度.10. 如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100∘,则∠AOC的度数为________度.11. 如图所示,∠1的内错角是________,∠B的同旁内角有________(只写一个).12. 如图,在一块长方形ABCD草地上,AB=10,BC=15,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2个单位),空白部分表示的草地面积是________.13. 命题“两个锐角的和是钝角”是________命题(填“真”或“假”).三、解答题14. 如图,在△ABC中,AC⊥BC,CD⊥AB垂足为D.(1)AB,AC,CD之间的大小关系为________(用“<”号连接起来).(2)若AC=4,BC=3,AB=5,求点C到直线AB的距离.15. 观察下面的变形规律:11×2=1−12;12×3=12−13;13×4=13−14;…解答下面的问题:(1)计算15×6=________;(2)若n为正整数,请你猜想1n(n+1)=________;(3)利用你的结论求:11×2+12×3+13×4+...+19×10.16. 如图,在△ABC中,AB>AC,点D在边上.(1)过点D,作平行线DE//BC,交AC于点E.(尺规作图,不写作法,保留作图痕迹)(2)在上(1)中,若∠B=50∘,∠A=60∘,求∠ADE的度数.17. 如图所示,有两条宽均为1米的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,若要硬化这两条小路,且每平方米造价50元,则硬化这两条小路需要多少钱?18. 宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?19. 问题解决:如图一,已知AB//CD,E是直线AB,CD内部一点,连接BE,DE若∠ABE=40∘,∠CDE=60∘,求∠BED的度数.嘉琪想到了如图二所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程,解:过点E作EF//AB,∴ ∠ABE=∠BEF=40∘.∴ AB//CD,∴ EF//CD,⋯请你补充完成嘉淇的解答过程:问题迁移:请你参考嘉琪的解题思路,完成下面的问题:如图三,AB//CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系参考答案与试题解析2021年新人教版七年级下数学第5章相交线与平行线单元测试卷(1)一、选择题1.【答案】D【解析】只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.2.【答案】B【解析】根据垂线段的性质解答即可.3.【答案】A【解析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.4.【答案】C【解析】利用相关定义,逐个判断说法的严谨性,即可得到答案.5. 【答案】D【解析】此题要根据直线的不同位置关系分析:①三直线平行;②三条直线相交于一点;③两直线平行被第三直线所截;④两直线相交,又被第三直线所截.故可得出答案.6.【答案】D【解析】在同一平面内,两直线的位置关系有2种:平行、相交,根据以上结论判断即可.7.【答案】C【解析】利用同一个平面内,两条直线的位置关系解答,同一平面内两条直线的位置关系有两种:平行、相交.二、填空题8.【答案】24【解析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.9.【答案】40【解析】此题暂无解析10.【答案】40【解析】利用邻补角性质可得∠EOD的度数,再利用角平分线定义核对顶角相等可得答案.11.【答案】∠ABC,∠C【解析】根据同位角和同旁内角的定义即可得出答案.12.【答案】130【解析】根据图形列出算式,再求出即可.13.【答案】假【解析】此题暂无解析三、解答题14. 【答案】CD<AC<AB(2)∵S△ACB=12AC⋅CB=12AB⋅CD,∴AC⋅CB=AB⋅CD,∵AC=4,BC=3,AB=5,∴12=5CD,∴CD=125.∴点C到直线AB的距离是125.【解析】(1)根据垂线段最短可得AC<AB,CD<AC,进而可得CD<AC<AB;(2)根据△ABC的面积可得AC⋅CB=AB⋅CD,再代入数可得答案.15.【答案】15−16.1n−1n+1.(3)11×2+12×3+13×4+...+19×10=1−12+12−13+...+19−110=1−110=910.【解析】(1)(2)将分数拆分即可求解;(3)先将分数拆分,再用抵消法即可求解.16.【答案】解:(1)如图所示,DE即为所求作的平行线.(2)∵DE//BC,∴∠ADE=∠B=50∘(两直线平行,同位角相等).【解析】此题暂无解析17.【答案】解:84×60−(84−1)×(60−1)=143(m2).143×50=7150(元)答:硬化这两条小路需要7150元钱.【解析】四边形ABCD是矩形,则AF // EC,又AF=CE,进而可判断四边形AECF的形状,继而面积可以利用底边长乘以高进行计算.18.【答案】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,∴买地毯至少需要20×40=800元.【解析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.19.【答案】问题解决:剩余过程:∴ ∠FED=∠CDE=60∘,∴ ∠BED=∠BEF+∠FED=40∘+60∘=100∘.问题迁移:解(1)∠APC=α+β.理由如下:过点P作PE//AB,交AC于点E,∴ AB//CD,∴ PE//AB//CD,∴ ∠APE=α,∠EPC=β.∴ ∠APC=∠APE+∠EPC=α+β.(2)①当点P在直线DB延长线上时,过点P作PE//AB,∵PE//AB,AB//CD,∴PE//AB//CD.∴∠EPC=β,∠APC=α,∴∠APC=β−α.②当点P在直线DO上时,过点P作PE//CD,∵PE//CD,AB//CD,∴PE//CD//AB.∴∠CPE=α,∠APE=β,∴∠APC=α−β.【解析】此题暂无解析。
七年级数学下册《第五章分式》单元测试卷-附答案(浙教版)
七年级数学下册《第五章分式》单元测试卷-附答案(浙教版)一、单选题1.当x=-2时,下列各式哪个无意义( )A .-1x x B .224x - C .2224x x -+ D .24x x ++ 2.如果把分式32a bab+中的a 和b 都扩大两倍,则分式的值( ) A .变为原来的4倍 B .变为原来的12C .不变D .变为原来的2倍3.计算 2310635x y y x -⋅ ,结果是( ) A .24x y -B .24y x-C .4yx- D .215yx-4.计算12a a +的值是( ) A .3a B .32aC .22a D .23a 5.下列方程中,是分式方程的个数是( )①113x += ,②341x =+ ,③2111x x -=+ ,④1223x x -+= ,⑤12x x π++= . A .1个B .2个C .3个D .4个6.不论x 取何值,下列代数式的值不可能为0的是()A .21x -B .11x - C .()21x -D .11x x -+ 7.把分式2xyx y- 中x ,y 的值都扩大为原来的3倍,则分式的值( ) A .为原来的6倍B .为原来的3倍C .不变D .为原来的9倍8.计算-a 2÷( 2a b )•( 2b a)的结果是( )A .1B .3b a-C .-3a b D .-149.如果 4x y -= ,那么代数式222222x yx y x y +-- 的值是( )A .-2B .2C .12D .12-10.甲、乙两人做某种机械零件,已知甲做350个零件的时间是乙做240个零件所用时间的54倍,两人每天共做130个零件.七(1)班同学根据条件提出了不同的问题,设出相应的未知数x ,并列出如下方程,数学老师批阅后,发现一个不正确,这个不正确的方程一定是( )A .35052404130x x =⨯- B .35024054130x x⨯=⨯-C .35024013054x x+= D .35024013054x x+= 二、填空题11.化简: 22224ab a b = .12.23(2)x y y ⎛⎫-⋅- ⎪⎝⎭= 。
人教版七年级数学下册全册单元测试试卷及答案
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.如图,点在延长线上,下列条件中不能判定的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第3题图第4题图第5题图4.如图,,∠3=108°,则∠1的度数是()A.72°B.80°C.82°D.108°5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第6题图第8题图7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A.①B.①②C.①②③D.①②③④8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个9. 点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线l的距离()A.小于2 cm B.等于2 cmC.不大于2 cm D.等于4 cm10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.如图,当剪子口∠AOB增大15°时,∠COD增大.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.第22题图23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第24题图第五章检测题答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以点P到直线l的距离等于4 cm,故选C.3. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.4. A 解析:∵a∥b,∠3=108°,∴∠1=∠2=180°∠3=72°.故选A.5. C 解析:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.又∵BE平分∠ABC,∴∠ABE=∠EBC.即∠ABE=∠DEB.所以图中相等的角共有5对.故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. C 解析:①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质.故选C.8. D 解析:如题图,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),又2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.10. B 解析:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.二、填空题11. 144°解析:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 15°解析:因为∠AOB与∠COD是对顶角,∠AOB与∠COD始终相等,所以随∠AOB变化,∠COD也发生同样变化.故当剪子口∠AOB增大15°时,∠COD也增大15°.13. 垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 52°解析:∵EA⊥BA,∴∠EAD=90°.∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°∠EAD∠EDA=52°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与a相交于D,∵a∥b,∴∠ADC=∠50°.∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 65°解析:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65°.三、解答题19.解:(1)(2)如图所示.(3)∠PQC =60°. ∵ PQ ∥CD ,∴ ∠DCB +∠PQC =180°. ∵ ∠DCB =120°,∴ ∠PQC =180°120°=60°. 20. 解:(1)小鱼的面积为7×6121 ×5×6121 ×2×5121 ×4×2121 ×1.5×121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD . ∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2. 即∠EAP =∠APF . ∴ AEF ∥P . ∴ ∠E =∠F . 22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1, ∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°, ∴ ∠ACB =∠AED =80°. ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°, ∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行同旁内角互补). ∵ ∠B =65°,∴ ∠BCE =115°. ∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°, ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.第六章《实数》水平测试题班级 学号 姓名 成绩一、选择题 (每题3分,共30分。
七年级数学下册各单元测试试卷含答案
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
七年级数学(下)第六章《实数》单元测试题含答案
12.比较大小: (填“>”“<”“=”).
13.已知 + ,那么 .
14.在 中,________是无理数.
15. 的立方根的平方是________.
16.若 的平方根为 ,则 .
17._____和_______统称为实数.
18.若 、 互为相反数, 、 互为负倒数,则 =_______.
因为 ,所以 的算术平方根为
因为 所以 平方根为
因为 ,所以 的算术平方根为
23.解:因为 ,所以 的立方根是 .
因为 所以 的立方根是 .
因为 ,所以 的立方根是 .
因为 ,所以 的立方根是 .
24.解:因为 ,所以源自,即 ,所以 .故 ,
从而 ,所以 ,
所以 .
25.解:可知 ,由于 ,
所以 .
C.如果一个数有立方根,则它必有平方根
D.不为0的任何数的立方根,都与这个数本身的符号同号
8.下列各式成立的是( )
A. B. C. D.
9.在实数 , , , , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10.在-3,- ,-1,0这四个实数中,最大的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
4.当 时, 的值为( )
A. B. C. D.
5.下列关于数的说法正确的是()
A.有理数都是有限小数
B.无限小数都是无理数
C.无理数都是无限小数
D.有限小数是无理数
6.与数轴上的点具有一一对应关系的数是()
A.实数B.有理数C.无理数D.整数
7.下列说法正确的是( )
A.负数没有立方根
七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)
七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。
人教版七年级数学下册《第10章 数据的收集、整理与描述》单元测试卷及答案
人教新版七年级下册《第10章数据的收集、整理与描述》单元测试卷(1)一、选择题(每题3分,共30分)1.(3分)在反映某种股票的涨跌情况时,选择()A.条形统计图B.折线统计图C.扇形统计图D.直方图2.(3分)下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.(3分)为了了解某校学生的每日运动量,收集数据正确的是()A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校某一班级的学生每日的运动量4.(3分)去年我市有5.6万学生参加联招考试,为了了解他们的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,下列说法错误的是()A.这种调查方式是抽样调查B.5.6万学生是总体C.2000是样本容量D.2000名考生的数学成绩是总体的一个样本5.(3分)一组数据中的最小值是31,最大值是101,若取组距为9,则组数为()A.7B.8C.9D.7或86.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.47.(3分)为了了解某地八年级男生的身高情况,从当地某学校选取了一个容量为60的样本(样本容量指样本中的数据个数),60名男生的身高(单位:cm)分组情况如下表所示,则表中a、b的值分别为()分组147.5~157.5157.5~167.5167.5~177.5177.5~187.5频数1026a频率0.3bA.18,6B.0.3,6C.18,0.1D.0.3,0.1 8.(3分)超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示>或等于6分钟而<7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为()A.5B.7C.16D.339.(3分)某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是()A.2﹣6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌10.(3分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人二、填空题(每题3分,共24分)11.(3分)妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这应该属于.(填普查或抽样调查)12.(3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有人.13.(3分)一个样本含有20个数据:68,69,70,66,68,64,65,65,69,62,67,66,65,67,63,65,64,61,65,66,在列频数分布表时,64.5~66.5这组的频数为.14.(3分)一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%.由此在广告中宣传,他们的产品占国内同类产品销售量的40%.请你根据所学的统计知识,判断该广告宣传中的数据(填“可靠”或“不可靠”),理由是.15.(3分)为了了解某所初级中学学生是否知道6月5日是“世界环境日”,从该校全体1200名学生中,随机抽查了80名学生,结果显示有2名学生“不知道”,由此估计该校全体学生中有名学生“不知道”6月5日是“世界环境日”.16.(3分)八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是.17.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.18.(3分)本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动,为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据给绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(10分)某校为了解七年级新生入学时的数学水平,随机抽取若干名学生的数学成绩调查统计,整理后绘制成如图所示的频数分布直方图(每组含最小值,不含最大值),观察图形回答下列问题:(1)本次随机抽查学生的人数是人;(2)若80分及以上的成绩为良好,试估计该校880名七年级新生中数学成绩良好的有多少人?20.(10分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和如图所示的扇形图.(1)直接写出m,a,b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量是多少本.学生读书数量统计表阅读量/本学生人数1152a3b4521.(10分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <55≤x <61020%6≤x <712%7≤x <836%8≤x <924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x <3,8≤x <9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.22.(12分)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A 、B 、C 、D 四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B 等级所占圆心角的度数.23.(12分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?24.(12分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.人教新版七年级下册《第10章数据的收集、整理与描述》单元测试卷(1)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)在反映某种股票的涨跌情况时,选择()A.条形统计图B.折线统计图C.扇形统计图D.直方图【考点】统计图的选择.【分析】条形统计图能清楚地表示出每个项目的具体数目;折线统计图表示的是事物的变化情况;扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据.【解答】解:根据题意,得直观反映某种股票的涨跌情况,即变化情况.结合统计图各自的特点,应选择折线统计图.故选:B.2.(3分)下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、要了解市民对电影《南京》的感受,应随机抽查一部分市民,只采访了8名初三学生,具有片面性;B、要了解全校学生用于做数学作业的时间,应从全校中随机抽查部分学生,不能在网上向3位好友做调查,不具代表性;C、要保证“嫦娥一号”卫星零部件的状况,是精确度要求高、事关重大的调查,往往选用全面调查;D、要了解全国青少年儿童的睡眠时间,范围广,宜采用抽查方式;故选:C.3.(3分)为了了解某校学生的每日运动量,收集数据正确的是()A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校某一班级的学生每日的运动量【考点】抽样调查的可靠性.【分析】要采用抽样调查,必须让样本具有代表性.所调查的对象都有被抽到的机会.【解答】解:要采用抽样调查,必须让样本具有代表性.A、B、C都比较特殊,不具有代表性.D、某一班级的学生每日的运动量,可以代表这个学校的每日运动量,因而收集的数据是正确的.故选:D.4.(3分)去年我市有5.6万学生参加联招考试,为了了解他们的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,下列说法错误的是()A.这种调查方式是抽样调查B.5.6万学生是总体C.2000是样本容量D.2000名考生的数学成绩是总体的一个样本【考点】总体、个体、样本、样本容量.【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.【解答】解:A、为了了解这5.6万名考生的数学成绩,从中抽取了2000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;B、5.6万名考生的数学成绩是总体,故说法错误;C、2000是样本容量,故说法正确;D、2000名考生的数学成绩是总体的一个样本,故说法正确;故选:B.5.(3分)一组数据中的最小值是31,最大值是101,若取组距为9,则组数为()A.7B.8C.9D.7或8【考点】频数(率)分布表.【分析】根据组数=(最大值﹣最小值)÷组距计算即可.【解答】解:∵数据的最小值是31,最大值是101,∴101﹣31=70,∵组距为9,∴70÷9=7,∴组数为8,故选:B.6.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选:A.7.(3分)为了了解某地八年级男生的身高情况,从当地某学校选取了一个容量为60的样本(样本容量指样本中的数据个数),60名男生的身高(单位:cm)分组情况如下表所示,则表中a、b的值分别为()分组147.5~157.5157.5~167.5167.5~177.5177.5~187.5频数1026a频率0.3bA.18,6B.0.3,6C.18,0.1D.0.3,0.1【考点】频数(率)分布表.【分析】因为和a对应的频率已知,所以根据频数=总数×频率,求出a的值,再求出b 对应的频数,然后求出频率b的值.【解答】解:∵a=60×0.3=18,∴60﹣10﹣26﹣18=6,∴b=6÷60=0.1.故选:C.8.(3分)超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示>或等于6分钟而<7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为()A.5B.7C.16D.33【考点】频数(率)分布直方图.【分析】分析频数分布直方图,找等待时间不少于6分钟的小组,读出人数再相加可得答案.【解答】解:由频数分布直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选:B.9.(3分)某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是()A.2﹣6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌【考点】折线统计图.【分析】根据增长率均为正数,即后边的月份与前面的月份相比是增加的,据此即可求出答案.【解答】解:图示为增长率的折线图,读图可得:这七个月中,增长率为正,故每月生产量不断上涨,D的说法不对;故选:D.10.(3分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.二、填空题(每题3分,共24分)11.(3分)妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这应该属于抽样调查.(填普查或抽样调查)【考点】全面调查与抽样调查.【分析】根据普查和抽样调查的定义,显然此题属于抽样调查.【解答】解:妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这应该属于抽样调查.故答案为:抽样调查.12.(3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.【考点】用样本估计总体;扇形统计图.【分析】先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.【解答】解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280(人).故答案为:280.13.(3分)一个样本含有20个数据:68,69,70,66,68,64,65,65,69,62,67,66,65,67,63,65,64,61,65,66,在列频数分布表时,64.5~66.5这组的频数为8.【考点】频数(率)分布表.【分析】根据数据,找出64.5~66.5这组的数字即可.【解答】解:根据题意得,在列频数分布表时,64.5~66.5这组的数据有66,65,65,66,65,65,65,66,所以频数为8.故答案为:8.14.(3分)一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%.由此在广告中宣传,他们的产品占国内同类产品销售量的40%.请你根据所学的统计知识,判断该广告宣传中的数据不可靠(填“可靠”或“不可靠”),理由是调查不具有代表性.【考点】抽样调查的可靠性.【分析】抽样时要注意样本的代表性和广泛性,应该从这两方面考虑.【解答】解:该广告宣传中的数据不可靠,理由是:抽样时要注意样本的代表性和广泛性,所以由于选择的样本在一个城市,太片面,所以不具有广泛性.数据不可靠.理由是调查不具有代表性.故答案是:不可靠;调查不具有代表性.15.(3分)为了了解某所初级中学学生是否知道6月5日是“世界环境日”,从该校全体1200名学生中,随机抽查了80名学生,结果显示有2名学生“不知道”,由此估计该校全体学生中有30名学生“不知道”6月5日是“世界环境日”.【考点】用样本估计总体.【分析】用总人数乘以样本中“不知道”6月5日是“世界环境日”的人数所占比例即可.【解答】解:估计该校全体学生中“不知道”6月5日是“世界环境日”的有1200×=30(名),故答案为:30.16.(3分)八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是30%.【考点】频数(率)分布直方图.【分析】首先求得总人数,确定优秀的人数,即可求得百分比.【解答】解:总人数是:5+10+20+15=50(人),优秀的人数是:15人,则该班这次成绩达到优秀的人数占全班人数的百分比是:×100%=30%.故答案是:30%.17.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为16000人.【考点】用样本估计总体.【分析】用毕业生总人数乘以“综合素质”等级为A的学生所占百分比即可求得结果.【解答】解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:1600018.(3分)本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动,为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据给绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是15.【考点】条形统计图;扇形统计图.【分析】根据骑自行车的学生人数和所占的百分比求出调查的总学生数,再根据随机抽查的教师人数为学生人数的一半,得出教师人数,再用教师人数减去步行、乘公交车和骑自行车的教师数,即可得出乘私家车出行的教师人数.【解答】解:调查的学生人数是:15÷25%=60(人),则教师人数为30人,教师乘私家车出行的人数为30﹣(3+9+3)=15(人).故答案为:15.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(10分)某校为了解七年级新生入学时的数学水平,随机抽取若干名学生的数学成绩调查统计,整理后绘制成如图所示的频数分布直方图(每组含最小值,不含最大值),观察图形回答下列问题:(1)本次随机抽查学生的人数是44人;(2)若80分及以上的成绩为良好,试估计该校880名七年级新生中数学成绩良好的有多少人?【考点】频数(率)分布直方图;用样本估计总体.【分析】(1)根据频数分布直方图中的数据,可以计算出本次随机抽查学生的人数;(2)根据直方图中的数据,可以计算出该校880名七年级新生中数学成绩良好的有多少人.【解答】解:(1)本次随机抽查学生的有:1+2+3+8+10+14+6=44(人),故答案为:44;(2)880×=400(人),即该校880名七年级新生中数学成绩良好的有400人.20.(10分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和如图所示的扇形图.(1)直接写出m ,a ,b 的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量是多少本.学生读书数量统计表阅读量/本学生人数1152a 3b 45【考点】扇形统计图;调查收集数据的过程与方法;用样本估计总体;统计表.【分析】(1)根据题意和统计图中的数据可以求得m 、a 、b 的值;(2)先求出样本平均数,再用样本估计总体.【解答】解:(1)由题意可得,m =15÷30%=50,b =50×40%=20,a =50﹣15﹣20﹣5=10,即m 的值是50,a 的值是10,b 的值是20;(2)(1×15+2×10+3×20+4×5)××500=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.21.(10分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t )频数百分比2≤x <324%3≤x<41224%4≤x<51530%5≤x<61020%6≤x<7612%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.【考点】频数(率)分布直方图;列表法与树状图法;用样本估计总体;频数(率)分布表.【分析】(1)根据第一组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解;(2)利用总户数450乘以对应的百分比求解;(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <51530%5≤x <61020%6≤x <7612%7≤x <836%8≤x <924%(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x <3范围的两户用a 、b 表示,8≤x <9这两个范围内的两户用1,2表示.则抽取出的2个家庭来自不同范围的概率是:=.22.(12分)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A 、B 、C 、D 四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.【考点】折线统计图;扇形统计图.【分析】(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,然后画出折线统计图;(3)用360°乘以B等级所占的百分比即可得到B等级所占圆心角的度数.【解答】解:(1)10÷20%=50,所以抽取了50个学生进行调查;(2)B等级的人数=50﹣15﹣10﹣5=20(人),画折线统计图;(3)图乙中B等级所占圆心角的度数=360°×=144°.23.(12分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:。
浙教版七年级数学下册单元测试题全套及参考答案
浙教版七年级数学下册单元测试题全套及参考答案浙教版七年级数学下册单元测试题全套(含答案)第1章检测卷时间:90分钟满分:100分)一、选择题(共10小题,每小题3分,共30分)1.如图,若直线a,b被直线c所截,则∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠52.如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()A。
∠C=60° B。
∠DAB=60° C。
∠EAC=60° D。
∠BAC=60°3.已知,如图,AB∥CD,∠DCE=80°,则∠BEF的度数为()A。
120° B。
110° C。
100° D。
80°4.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠XXX的度数是()A.30° B.45° C.60° D.75°5.如图,有一块含45°角的直角三角板的两个顶点放在直尺的对边上。
如果∠2=60°,则∠1=()A.10° B。
15° C。
20° D。
25°6.如图所示,下列判断错误的是()A.若∠1=∠3,AD∥BC,则BD是∠ABC的平分线B.若AD∥BC,则∠1=∠2=∠3C.若∠3+∠4+∠C=180°,则AD∥BC D.若∠2=∠3,则AD∥BC7.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A。
23° B。
16° C。
20° D。
26°8.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40° B.50° C.60° D.140°9.如图所示,AB∥EF∥CD,EM∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个 B.5个 C.4个 D.2个10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的大小是()A.150° B.130° C.140° D.120°二、填空题(共8小题,每小题3分,共24分)11.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是______.12.如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,则∠2=______°.13.如图,把一块含30°角的三角板ABC沿着直线AB向右平移,点A,B,C的对应点分别为D,F,E,则∠CEF的度数是______°.14.已知C岛在A岛的XXX方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=75°。
华师大版数学七年级下册全册单元测试卷含答案
华师大版数学七年级下册全册单元测试卷含答案绝密★启用前初一数学一元一次方程单元测试评卷人得分一、选择题(每小题2分,共30分)1.下列方程中,是一元一次方程的是()(A)(B)(C)(D)2.在解方程-=1时,去分母正确的是A、3(x-1)-2(2+3x)=1B、3(x-1)-2(2x+3)=6C、3x-1-4x+3=1D、3x-1-4x+3=63.下列方程变形不正确的是()A、4x+8=0x+2=0B、x+5=3-3x4x=-2C、2x=15D、3x=-1x=-34.关于的方程的解是3,则的值是()A.4B.—4C.5D.—55.某工厂计划每天烧煤5吨,实际每天少烧2吨,吨煤多烧了20天,则可列的方程是()A.B.C.D.6.某个体户在一次买卖中同时卖出两件上衣,售价都是165元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A、赚22元B、赚36元C、亏22元D、不赚不亏.7.下列方程中,解是x=1的是()A.B.C.D.8.、若是一元一次方程,则m的值是()A.±1B.-1C.1D.29.某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7。
若由外校转入1人加入乙队,则后来乙与丙的人数比为何?A.3:4B.4:5C.5:6D.6:710.下列方程中,一元一次方程的有()个。
①2x-3y=6②x2-5x+6=0③3(x-2)=1-2x④⑤3x-2(6-x)A.1B.2C.3D.411.方程2x+1=3与2-=0的解相同,则a的值是()A.7B.0C.3D.512.有m辆客车及n个人,若每辆乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①;②;③;④,其中正确的是().A.①②B.②④C.①③D.③④13.若与互为倒数,那么x的值等于()A.B.C.D.14.若代数式(a-1)x│a│+8=0是关于x的一元一次方程,则a的值为()A.-1B.0C.1D.1或-115.下面是一个被墨水污染过的方程:,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是A.1B.-1C.D.二、填空题(每小题3分,共30分)16.若方程2x-5=1和的解相同,则a=17..写出满足下列条件的一个一元一次方程:①未知数的系数是;②方程的解是3,这样的方程可以是:____________.18.若式子的值比式子的值少5,那么__________.19.若,,则的取值为_____________.20.小李在解方程(x为未知数)时,误将-x看作+x,解得方程的解,则原方程的解为___________________________。
人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)
1
1
2
2
BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若点 P 在 C、D 两点的外侧运动时(P 点与点 C、D 不重合),则有两种情形:
(1)如图 1,有结论:∠APB=∠PBD-∠PAC.理由是:过点 P 作 PE∥l ,则∠APE=∠ 1
PAC,又因为 l ∥l ,所以 PE∥l ,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB
1. 下列运算正确的是( )
A. 9 3
B. 3 3 C. 9 3
2. 下列各组数中互为相反数的是(
)
D. 32 9
A.-2 与 (2)2 B.-2 与 38
C.-2 与 1 2
D.2 与 2
3. 下列实数 371, π,3.14159, 8 , 3 27 ,12 中无理数有(
)
A. 2 个
9. 81的平方根是
。
10. 在数轴上离原点距离是 5 的点表示的数是_________。
11. 化简: 2 3 3 =
。
12. 写出 1 到 2 之间的一个无理数___________。
13. 计算: (1)2009 9 3 8 =____________。
14. 当 x≤ 0 时,化简 1 x x2 的结果是 15. 若 0 x 1,则 x、x2、1x 、 x 中,最小的数是
13.观察图 7 中角的位置关系,∠1 和∠2 是______角,∠3 和∠1 是_____角,∠1•和∠4 是
_______角,∠3 和∠4 是_____角,∠3 和∠5 是______角.
12 3
5
4
李庄
A
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。
人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)
第七章平面直角坐标系单元测试一、单项选择题(共7 题;共 28 分)1.以下是甲、乙、丙三人看地图时对四个坐标的描绘:甲:从学校向北直走500 米,再向东直走100 米可到图书室.乙:从学校向西直走300 米,再向北直走200 米可到邮局.丙:邮局在火车站西200 米处.依据三人的描绘,若从图书室出发,判断以下哪一种走法,其终点是火车站()A. 向南直走300 米,再向西直走200 米B. 向南直走300 米,再向西直走100 米C. 向南直走700 米,再向西直走200 米D. 向南直走700 米,再向西直走600 米2.平面直角坐标系中,以下各点中,在y 轴上的点是 ()A.(2,0)B. ( -2,3 )C.(0,3)D.(1,-3)3.若 y 轴上的点P 到 x 轴的距离为 3,则点 P 的坐标是()A. (3, 0)B. ( 0,3)C. ( 3, 0)或(﹣ 3, 0)D. (0, 3)或( 0,﹣ 3)4.已知 M(1,﹣ 2), N(﹣ 3,﹣2),则直线 MN 与 x 轴, y 轴的地点关系分别为()A. 订交,订交B. 平行,平行C. 垂直订交,平行D. 平行,垂直订交5.点 P(a,b)在第四象限 ,则点 P 到 x 轴的距离是 ()A. a-B. b-C. -aD. -b6.如图是某校的平面表示图的一部分,若用“(0,0)”表示校门的地点,“(0,3)”表示图书室的地点,则教课楼的地点可表示为()A. (0, 5)B(.5, 3)C(. 3, 5)D(.﹣ 5, 3)7.已知点 P 的坐标( 2a, 6﹣ a),且点 P 到两坐标轴的距离相等,则点P 的坐标是()A. (12,﹣ 12)或( 4,﹣ 4)B. (﹣ 12, 12)或( 4, 4)C.(﹣ 12, 12)D.(4,4)二、填空题(共 6 题;共 30 分)8.假如“2街 5 号”用坐标( 2,5)表示,那么(3 ,1)表示 ________9.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后获得的点A′的坐标为 ________.10.以下图的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是________.111.电影院里 5 排 2 号能够用( 5, 2)表示,则( 7, 4)表示 ________12.( 2015?广安)假如点 M ( 3, x)在第一象限,则 x 的取值范围是 ________ .13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A( 0,4),点 B 是 x 轴正半轴上的整点,记△ AOB 内部(不包含界限)的整点个数为m.如当点 B 的横坐标为 4 时, m=3;那么当点的横坐标为 4n( n 为正整数)时, m= ________ .(用含 n 的代数式表示)三、解答题(共 4 题;共 42 分)14.在平面直角坐标系中,点 A 在 y 轴正半轴上,点 B 与点 C 都在 x轴上,且点 B在点 C的左边,知足BC=OA.若﹣ 3a m﹣1b2与 a n b2n﹣2是同类项且 OA=m, OB=n,求出 m 和 n 的值以及点 C的坐标.15.某水库的景区表示图以下图(网格中每个小正方形的边长为1).若景点 A 的坐标为( 3 ,3),请在图中画出相应的平面直角坐标系,并写出景点B、 C、 D 的坐标.16.在平面直角坐标系中,已知 A(0, 0)、 B( 4, 0),点 C 在 y 轴上,且△ ABC的面积是 12.求点 C 的坐标.17.在雷达探测地区,能够成立平面直角坐标系表示地点.在某次行动中,当我两架飞机在A(- 1, 2)与B( 3, 2)地点时,可疑飞机在(-1,- 3)地点,你能找到这个直角坐标系的横、纵坐标的地点吗?把它们表示出来并确立可疑飞机的地点,谈谈你的做法.2答案一、单项选择题1-7.ACDDDBB二、填空题8.3街1号9.(﹣ 2, 2)10.(﹣ 3, 0)11.7排 4号12.x> 013.6n﹣ 3三、解答题14.解:∵﹣3a m﹣1b2与 a n b2n﹣2是同类项,∴,m = 3解得:{,∵OA=m=3, OB=n=2,∴B( 2,0)或(﹣ 2, 0),∵点 B 在点 C 的左边, BC=OA,∴C( 5,0)或( 1, 0)15.解:以下图:B(﹣ 2,﹣ 2), C( 0, 4), D( 6,5).16.解:∵ A( 0,0)、 B( 4, 0),∴AB=4,且 AB 在 x 轴上,设点 C 坐标是( 0, y),则依据题意得,112AB× AC=12,即2× 4× |y|=12,解得 y=±6.3∴点 C 坐标是:( 0, 6)或( 0, -6)17.解:能.以以下图,先把 AB 四平分,而后过凑近 A 点的分点 M 作 AB 的垂线即为 y 轴,以 AM 为单位长度沿 y 轴向下 2 个单位即为 O 点,过点 O 作 x 轴垂直于 y 轴,而后描出敌机地点为点 N.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章《相交线与平行线》测试卷答案
一、1、D ;2、C ;3、C ;4、A ;5、A ;6、C ;7、B ;8、D ;9、D ;10、C
二、11、80°; 12、11,平行于同一条直线的两条直线互相平行;13、EF 、HG 、DC ;14、过表示运动员的点作水面的垂线段;15、如果两个角相等,那么这两个角的补角也相等;16、40°,140°。
三、17、105°;18、∠COB =40°,∠BOF =100°;19、3秒 四、20、略;21、∠1=60°;22、∠1=70°,∠2=110° 五、23、略;24、(1)45°,45°,(2)∠DOE =
2
1
∠AOB
第6章《实数》测试卷答案
一、1、C ;2、C ;3、A ;4、D ;5、D ;6、B ;7、C ;8、D ;9、D ;10、B
二、11、9,1.2 ; 12、1,0;13、2;14、<;15、503、6;16、a =3,b =10-3 三、17、1;18、-
4
11
;19、x =±2;20、35;
四、21、256;22、37 23、9 五、24、5-13;
234567891011
第7章《平面直角坐标系》测试卷答案
一、1、D;2、D;3、C;4、D;5、A;6、B;7、D;8、B;9、A;10、D
二、11、(-4,3)或(4,3);12、-2;13、三;14、(3,-5);15、2;
16、(-5,-3)
三、17、A(0,0)B(3,0)C(3,3)D(-3,3);18、点p在x轴上或y轴上或原点;19、A(0,4)B(-4,0)C(8,0)
四、20、A'(5,-3)B'(5,-4)C'(2,-3)D'(2,-1);21、有12个;22、∠1=70°,∠2=110°
五、23、(1)A(-1,-1)B(4,2)C(1,3),(2)7;(3)A'(1,1)B'(6,4)C'(3,5)
商店经营?说说你的理由。
(可以直接用(1)(2)中的已知条件)
两个出口的被调查游客在园区共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?
第十章《数据的收集,整理和描述》单元测试卷参考答案
选择1---10 CDDCABBDDC
填空11 ①④⑥⑤②③ 12. 抽样 13. 288, 336 , 576 14. 15 0.75 15. 1 3.5 16. 45 405 162 17. 30 18. 20% 40
解答题
19.略
20.①200 ②720 ③900
21.①60 ②2瓶③9万
22. ①②图略③400人。