(完整word版)高中数学必修一必修四知识点总结(杠杠的),推荐文档

合集下载

(完整)高一上学期数学必修一、必修四期末知识点详解,推荐文档

(完整)高一上学期数学必修一、必修四期末知识点详解,推荐文档

集合及其运算知识点1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.2.集合间的基本关系函数知识点1.函数的基本概念(1)函数的定义一般地,设A,B 是两个非空数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应;那么就称:f:A→B 为从集合A 到集合B 的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段1函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法3.调函数的定义自左向右看图象是上升的自左向右看图象是下降的若函数y=f(x)在区间D 上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做函数y=f(x)的单调区间.5.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M 满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M. (3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M.结论M 为最大值M 为最小值6.奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y 轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称7.奇((1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0 处有定义,则f(0)=0.8.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x 取定义域内的任何值时,都有f(x+T) =f(x),那么就称函数y=f(x)为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.9.幂函数(1)幂函数一般地,形如y=xα 的函数称为幂函数,其中x 是自变量,α 为常数.(2)常见的5 种幂函数的图象(3)常见的5 种幂函数的性质10.(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0 的两实根.(3)二次函数的图象和性质R Rnan4ac -b 2 4a4ac -b 2 y max = 4a11. (1) 根式的概念根式的概念符号表示 备注 如果 x n =a ,那么 x 叫做 a 的 n 次方根n >1 且 n ∈N *当 n 为奇数时,正数的 n 次方根是一个正数,负数的 n次方根是一个负数na零的 n 次方根是零当 n 为偶数时,正数的 n 次方根有两个,它们互为相反数n± a负数没有偶次方根(2) ① =Error!n 为偶数.②(na )n =a .12. 有理数指数幂(1)幂的有关概念①零指数幂:a 0=1(a ≠0).1②负整数指数幂:a -p =ap (a ≠0,p ∈N *);m③正分数指数幂:an =nam (a >0,m ,n ∈ N *,且 n >1);1m 1nam④负分数指数幂:an =m= an(a >0,m ,n ∈N *,且 n >1);⑤0 的正分数指数幂等于 0,0 的负分数指数幂无意义. (2)有理数指数幂的性质①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ).13. 指数函数的图象与性质y =a x a >10<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1)当 x >0 时,y >1;x <0 时,0<y <1当 x >0 时,0<y <1;x <0 时,y >1a a a a a a a a a a在(-∞,+∞)上是增函数 在(-∞,+∞)上是减函数14. 如果 a x =N (a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作 x =log a N ,其中 a 叫做对数的底数,N 叫做真数.15. 对数的性质与运算法则(1)对数的性质几个恒等式(M ,N ,a ,b 都是正数,且 a ,b ≠1) log aNn 1①=N ;②log a a N =N ;③log b N =log ab ;④=m log a b ;⑤log a b =log ba ,推广log a b ·log b c ·log c d =log a d .(2)对数的运算法则(a >0,且 a ≠1,M >0,N >0)M1①log (M ·N )=log M +log N ;②log N =log M -log N ;③log M n =n log M (n ∈R );④log nM =n log M . 16.对数函数的图象与性质a >10<a <1图象性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即 x =1 时,y =0(4)当 x >1 时,y >0 当 0<x <1 时,y <0 (5)当 x >1 时,y <0 当 0<x <1 时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数17.(1) 函数的零点的概念:对于函数 y =f (x ),把使 f (x )=0 的实数 x 叫做函数 y =f (x )的零点. (2) 函数的零点与方程的根的关系方程 f (x )=0 有实数根⇔函数 y =f (x )的图象与 x 轴有交点⇔函数 y =f (x )有零点.(3) 零点存在性定理如果函数 y =f (x )满足:①在闭区间[a ,b ]上连续;②f (a )·f (b )<0;则函数 y =f (x )在(a ,b )上存在零点,即存在c ∈(a ,b ),使得 f (c )=0,这个 c 也就是方程 f (x )=0 的根.平面向量知识点1. 向量的有关概念名称定义备注2.三角形法则平行四边形法则三角形法则(1)|λa|=|λ||a|;3.向量a(a≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b=λa.4.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.5.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2),则x2+y2.a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.→→② 设A(x ,y ),B(x ,y ),则AB=(x -x ,y -y ),|AB|=(x2-x1)2+(y2-y1)2.1 12 2 2 1 2 16.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.7.平面向量的数量积(1)定义:已知两个非零向量a 与b,它们的夹角为θ,则数量|a||b|cos θ叫作a 与b 的数量积(或内积),记作a·b,即a·b=|a||b|cos θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积.8.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b 的夹角.(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.(2) 模:|a|=a·a=x2+y2.a·b(3)夹角:cos θ=|a||b|=x1x2+y1y2 x1+y1·x2+y2.(4)两非零向量a⊥b 的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b 时等号成立)⇔|x1x2+y1y2|≤9.平面向量数量积的运算律x1+y2·x2+y2.(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).10.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b(b≠0)⇔a=λb⇔x1y2-x2y1=0.(2)证明垂直问题,常用数量积的运算性质a⊥b⇔a·b=0⇔x1x2+y1y2=0(a,b 均为非零向量).(3)求夹角问题,利用夹角公式a·b cos θ=|a||b|=x1x2+y1y2x2+y1 x2+y2(θ 为a 与b 的夹角).“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

高中数学必修一必修四知识点总结

高中数学必修一必修四知识点总结

数学知识点总结高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)AA A =(2)A ∅=∅(3)A B A ⊆ A B B ⊆ BA并集 A B{|,x x A ∈或}x B ∈(1)AA A =(2)A A ∅=(3)A B A ⊇ A B B ⊇BA补集UA{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式 解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O()()()U U U AB A B =()()()UU U A B A B =【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立). (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性函数的性 质定义 图象判定方法函数的单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)x y f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)y x o x x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图 象下降为减) (4)利用复合函数函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数. (3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 的最大值,记作max ()f x M =.yxo②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性 函数的性 质定义图象 判定方法函数的奇偶性 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的nn 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 【2.2.2】对数函数及其性质(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; ③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2b x a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2bq a ->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p = x x xx0x x(q)0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2bq a ->,则()M f q =①若02b x a -≤,则()m f q = ②02bx a ->,则()m f p =.x <O -=f(p)f (q) ()2b f a -x<O -=f (p) f(q) ()2b f a-x <O -=f (p) f(q) ()2b f a -0x x <O -=f (p)f (q) ()2b f a -x<O -=f (p)f (q) ()2b f a-0x高中数学 必修4知识点第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y 原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭..(3) 倒数关系:tan cot 1αα=12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. ②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T =-<.15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x = tan y x =y=cotx图象y=cotx3π2ππ22π-π-π2oyx定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min1y =-. 既无最大值也无最小值既无最大值也无最小值周期性 2π 2ππ π奇偶性奇函数 偶函数 奇函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对对称中心对称中心对称中心 对称中心函数 性 质()(),0k k π∈Z对称轴()2x k k ππ=+∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z (),02k k π⎛⎫∈Z⎪⎝⎭ 无对称轴(),02k k π⎛⎫∈Z⎪⎝⎭ 无对称轴第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+.baC BAa b C C -=A -AB =B⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。

(完整word)打印版高中数学必修四知识点(非常详细),推荐文档

(完整word)打印版高中数学必修四知识点(非常详细),推荐文档

⎩180 ' 高中数学必修 4 知识点第一章 三角函数⎧正角: 按逆时针方向旋转形成的角 ⎪、任意角负⎨ 角: 按顺时针方向旋转形成的角⎪零角: 不作任何旋转形成的角 2 象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限,叫做轴线角。

第一象限角的集合为{k ⋅ 360<< k ⋅ 360+ 90, k ∈ Z }第二象限角的集合为{k ⋅ 360+ 90< k ⋅ 360+180, k ∈ Z } 第三象限角的集合为{k ⋅ 360+180<< k ⋅ 360+ 270, k ∈ Z }第四象限角的集合为{k ⋅ 360+ 270<< k ⋅ 360+ 360, k ∈ Z }终边在 x 轴上的角的集合为{= k ⋅180 , k ∈ Z } 终边在 y 轴上的角的集合为{= k ⋅180+ 90, k ∈ Z } 终边在坐标轴上的角的集合为{= k ⋅ 90, k ∈ Z }3、与角终边相同的角,连同角在内,都可以表示为集合{| = + k ⋅ 360 , k ∈ Z }4、弧度制:(1)定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。

半径为 r 的圆的圆心角所对弧的长为l ,则角的弧度数的绝对值是= l. r2 度数与弧度数的换算: 360o = 2,180 = rad ,1 rad = ( ) ≈ 57.30 = 57 18注:角度与弧度的相互转化:设一个角的角度为 n o ,弧度为;n o = n o ⋅=n 180o ⎛ 180⎫o①角度化为弧度: 180o 180 ,②弧度化为角度:=⋅(3)若扇形的圆心角为(是角的弧度数),半径为 r ,则:= ⎪ ⎝ ⎭弧长公式: ① l =n (用度表示的),② 180 l =|| r (用弧度表示的);扇形面积:① s 扇 = n r 2 (用度表示的) 360 S = 1 || r 2 扇2 = 1 lr (用弧度表示的) 21 ②y++O__x 2 + y 25、三角函数: (1)定义①:设是一个任意大小的角,的终边上任意一点P 的坐标y是(x , y ),它与原点的距离是 r (OP = r = > 0),P (x ,y )yxy则 sin= , c os = , tan= (x ≠ 0) o rrx定义②:设 α 是一个任意角,它的终边与单位圆交于点 P (x ,y ), y那么 v 叫做 α 的正弦,记作 sin α,即 sin α = y ; u 叫做 α 的余弦,记作 cos α,即 cos α=x ; 当 α 的终边不在 y 轴上时,y y 叫做 α 的正切,记作 tan α, 即 tan α= .xx(2) 三角函数值在各象限的符号:口诀:全正,S 正,T 正,C 正。

(完整word版)高考数学知识点归纳总结,推荐文档

(完整word版)高考数学知识点归纳总结,推荐文档

高中数学必修 + 选修知识点概括必修 1 数学知识点第一章:会合与函数观点1、会合三因素:确立性、互异性、无序性。

2、常有会合:正整数会合:N*或N,整数会合:Z ,有理数会合: Q,实数会合: R.3、并集 . 记作:A B.交集.记作: A B.全集、补集C U A { x | x U ,且 x A}(C U A)∩( C U B) = C U(A∪B) (C U A)∪( C U B) = C U(A∩B);A B B B A;简略逻辑:或:有真为真,全假为假。

且:有假为假,全真为真。

非:真假相反原命题互逆逆命题若 p则 q互若 q 则 p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆原命题:若 P则 q;抗命题:若q 则 p;否命题:若┑ P 则┑q;逆否命题:若┑ q 则┑ p。

常用变换:① f ( x y) f ( x) f ( y) f ( x y) f ( x).f ( y)证f ( x y)f ( y)f( )[()]() ( )f ( x)x f x y y f x y f y② f (x) f ( x) f (y) f (x y) f ( x) f ( y)y证:x xf()f()f() f (y)yy4、设 A、B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合A中的随意一个数 x ,在会合B中都有唯一确立的数 f x和它对应,那么就称 f : A B 为会合A到会合B的一个函数,记作: y f x , x A .分母不等于零5、定义域被开方大于等于零对数的幂大于零,底大于零不等于1值域:利用函数单一性求出所给区间的最大值和最小值,6、函数单一性:(1)定义法:设x1、x2[ a, b], x1 x2那么f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是增函数;f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则f ( x)为增函数;若f ( x)0 ,则 f ( x)为减函数 .7、奇偶性f x 为偶函数:f x f x 图象对于y 轴对称.函数 f x 为奇函数f x f x 图象对于原点对称 .若奇函数y f x 在区间0,上是递加函数,则y f x 在区间,0 上也是递加函数.若偶函数 yf x 在区间 0,上是递加函数,则yf x 在区间 ,0 上是递减函数.函数的几个重要性质:① 如 果 函 数 yf x 对 于 一 切 x R , 都 有f ax f ax 或 f ( 2a-x ) =f ( x ),那函数 y f x 的图象对于直线 x a 对称 .②函数 yf x 与函数 y fx 的图象对于直线x 0对称;函数 yf x 与函数 y f x 的图象对于直线y 0 对称;函数 yf x 与函数 yf x的图象对于坐标原点对称 .二、函数与导数1、几种常有函数的导数① C '0 ;② ( x n )' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x) ' sin x ; ⑤ ( a x ) 'a xln a ; ⑥ ( e x) 'e x; ⑦ (log a x)'1 ;⑧ (ln x) ' 1x ln ax2、导数的运算法例( 1) (u v)'u ' v '.( 2) (uv)' u 'v uv ' .( 3) ( u)'u 'v uv ' (v 0) .vv 23、复合函数求导法例复合函数 yf (g (x)) 的导数和函数y f (u), u g ( x) 的导数间的关系为 y x y u u x , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .解题步骤 :分层—层层求导—作积复原导数的应用:1、 yf ( x) 在点 x 0 处的导数的几何意义 :函数 yf (x) 在点 x 0 处的导数是曲线yf ( x) 在P(x 0 , f (x 0 )) 处的切线的斜率 f (x 0 ) ,相应的切线方程是 yy 0 f (x 0 )(xx 0 ) .切线方程 : 过点 P x 0 , y 0 的切线方程,设切点为x 1, y 1 ,则切线方程为 y y 1 f ' x 1 x x 1 ,再将 P 点带入求出 x 1 即可 2、函数的极值 (---- 列表法 )(1) 极值定义:极值是在 x 0 邻近全部的点,都有f ( x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值;极值是在 x 0 邻近全部的点,都有 f ( x) > f (x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极小值 .(2) 鉴别方法:①假如在 x 0 邻近的左边 f ' (x) > 0,右边 f ' (x) < 0,那么 f ( x 0 ) 是极大值;②假如在 x 0 邻近的左边 f ' (x) < 0,右边 f ' (x) > 0,那么 f ( x 0 ) 是极小值 .3、求函数的最值(1) 求 y f (x) 在 (a, b) 内的极值(极大或许极小值)(2) 将 y f (x) 的各极值点与 f (a), f (b) 比较,此中最大的一个为最大值,最小的一个为极小值。

高一数学4册全册知识点

高一数学4册全册知识点

高一数学4册全册知识点第一章:数与代数1. 自然数和整数- 自然数的概念和性质- 整数的概念和性质- 自然数和整数之间的转化2. 有理数和无理数- 有理数的概念和性质- 无理数的概念和性质- 有理数和无理数的表示3. 实数- 实数的概念和性质- 实数的表示和分类4. 分数- 分数的概念和性质- 分数的运算- 分数的化简和比较大小5. 百分数- 百分数的概念和性质- 百分数与分数、比例的转化和运算6. 平方根和立方根- 平方根的概念和性质- 平方根的运算和应用- 立方根的概念和性质- 立方根的运算和应用7. 代数式和方程式- 代数式的概念和性质- 方程式的概念和性质- 代数式的运算和化简- 一元一次方程的解法和应用第二章:平面几何1. 点、线、面和角- 点的定义和性质- 线的定义和性质- 面的定义和性质- 角的定义和性质- 角的运算和性质2. 直线和线段- 直线的定义和性质- 线段的定义和性质- 线段的运算和应用3. 平行和垂直- 平行线的概念和性质- 平行线的判定- 垂直线的概念和性质- 垂直线的判定4. 三角形- 三角形的定义和性质- 三角形的分类和判定- 三角形的内角和外角5. 相似三角形- 相似三角形的定义和性质 - 相似三角形的判定和性质 - 相似三角形的应用6. 角平分线和垂心- 角平分线的性质和判定 - 垂心的概念和性质- 垂心的运用7. 圆- 圆的定义和性质- 圆的构造和表示- 圆的切线和切点第三章:函数与图像1. 函数的概念- 函数的定义和性质- 函数的表示和表示域2. 函数的性质和运算- 函数的奇偶性- 函数的单调性- 函数的复合和反函数3. 初等函数- 幂函数的性质- 指数函数的性质- 对数函数的性质4. 函数的图像- 函数图像的绘制和性质- 函数图像的平移、伸缩和反射5. 二次函数- 二次函数的定义和性质- 二次函数的图像和性质- 二次函数的最值和应用第四章:概率与统计1. 等可能事件和事件的概率- 等可能事件的概念和性质 - 事件的概率和性质- 事件的运算和应用2. 条件概率和独立事件- 条件概率的概念和性质- 独立事件的概念和性质- 条件概率和独立事件的应用3. 统计调查和样本调查- 统计调查的方法和步骤- 样本调查的概念和性质- 样本调查的误差和应用4. 数据的表示和分析- 数据的收集和整理- 数据的表示和描述- 数据的分析和应用5. 正态分布- 正态分布的概念和性质- 正态分布的标准化和应用- 正态分布与统计推断以上是高一数学4册全册的主要知识点,通过学习这些内容,可以帮助学生打好数学的基础,并为将来的学习打下坚实的基础。

高中数学最全知识点汇总(必修一二三四)

高中数学最全知识点汇总(必修一二三四)

高中数学最全知识点汇总(必修一二三四)
本文档总结了高中数学必修一至必修四的最全知识点,供学生
复和参考使用。

必修一
数学基础
- 数的表示与比较
- 数的性质
- 数轴与坐标
- 有理数与实数
代数初步
- 代数ic计算
- 整式的加法与乘法
- 因式及其运算
- 分式及其运算
- 方程
几何初步
- 平面直角坐标系
- 直线与方向角
- 点、线、面
- 三角形初步
- 三角形的证明初步
必修二
数与式
- 二次根式
- 算式的组合与解法
- 实数的运算与性质
几何线与线段的位置关系
- 线、线段、角
- 垂直、平行

- 圆与圆的位置关系- 圆的切线
- 圆与直线的位置关系三角函数
- 角度制与弧度制
- 三角比的正切与余切必修三
平面向量
- 向量空间
- 向量的运算
- 向量的数量积
函数基本性质
- 函数的概念与性质
- 函数的图象与性质
三角函数的应用
- 平面解析几何
- 三角函数的图像和性质数列与数学归纳法
- 数列的概念与性质
- 等差数列与等比数列- 数学归纳法
必修四
解三角形
- 生活中的几何问题
- 三角形的周长和面积
- 三角形的相似性
幂指对数函数
- 整函数
- 指对数运算律
概率初步
- 随机事件与概率
- 条件概率与独立性
- 排列与组合问题的概率计算
感谢您阅读本文档!如有任何疑问或其他需要,请随时与我联系。

高中数学必修一第四章知识点归纳

高中数学必修一第四章知识点归纳

高中数学必修一第四章知识点归纳全文共5篇示例,供读者参考高中数学必修一第四章知识点归纳篇1指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质【函数的应用】1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高中数学必修一第四章知识点归纳篇2(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(a,b不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(c为常数) (二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(c为常数) (三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中数学必修一第四章知识点归纳篇3对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

(完整word版)高中数学必修4知识总结完整版,推荐文档

(完整word版)高中数学必修4知识总结完整版,推荐文档

高中数学必修四知识点总结⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z oooo第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z oooo终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z oo 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度的角.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=o,1180π=o,180157.3π⎛⎫=≈ ⎪⎝⎭oo . 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+, 21122S lr r α==.9、(一)设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=;(2)x 叫做α的余弦,记做cos α,即cos x α=;(3)yx叫做α的正切,记做tan α,即tan (0)yx xα=≠。

(完整版)高一数学知识点必修1,4,推荐文档

(完整版)高一数学知识点必修1,4,推荐文档

高中数学必修 1 知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

如:集合A = {x | y = lg x },B = {y | y = lg x },C = {(x , y ) | y = lg x },A 、B 、C中元素各表示什么?A 表示,B 表示,而 C 表示2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

如:集合A = {x|x 2 - 2x - 3 = 0},B = {x|ax = 1}若B ⊂ A ,则实数a 的值构成的集合为3. 注意下列性质:(1) 集合{a 1,a 2,……,a n }的所有子集的个数是要知道它的来历:若 B 为 A 的子集,则对于元素 a 1 来说,有 2 种选择(在或者不在)。

同样, 对于元素 a 2, a 3,……a n ,都有 2 种选择,所以,总共有2n 种选择, 即集合 A 有 个子集。

故真子集个数为,非空真子集个数为(2) 若A ⊆ B ⇔ A B = A ,A B = B ;(3) 德摩根定律:C U (A B )= C U (A B )=4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于x 的不等式 ax - 5< 0的解集为M ,若3 ∈M 且5 ∉M ,求实数ax 2 - a的取值范围。

注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数 f(x)=ax 2+bx+c(a>0) 在(-∞,1) 上单调递减,在(1, +∞) 上单调递增,就应该马上知道函数对称轴是 x=1.4. 函数的三要素是什么?如何比较两个函数是否相同?相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)5. 求函数的定义域有哪些常见类型?x (4 - x )例:函数 y = lg (x - 3)2 的定义域是函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。

必修1和必修4数学基础知识点

必修1和必修4数学基础知识点

必修1数学基础知识第一章、集合与函数概念§1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R.4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A Y .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A I .3、全集、补集§1.2.10、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:证:任取[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(称为定义法证明,非重点)例题参考:必修一P.78重点是利用导数求、求证单调性。

高中数学必修一必修四知识点总结杠杠的

高中数学必修一必修四知识点总结杠杠的

高中数学必修一必修四知识点总结杠杠的Document number:PBGCG-0857-BTDO-0089-PTT1998数学知识点总结高中数学 必修1知识点第一章 集合与函数概念〖〗集合【】集合的含义与表示(1)集合的概念集合中的元素具有 确定性、互异性和无序性. (2)常用数集及其记法N 表示 自然数集,N *或N +表示 正整数集,Z 表示 整数集,Q 表示 有理数集,R 表示 实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 只要构成两个集合的元素是一样的,就称这两个 集合相等。

(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

【】集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集,21n -个真子集. 名称 记号 意义 性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆A(B)或B A(4)若B A ⊆且B A ⊆,则A B =真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于 A(1)A ⊆B (2)B ⊆A A(B)6、已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【】集合的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集{|,}U C A x x U x U =∈∉且 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集 A B {|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U A A U =【】函数的概念1、函数的概念✍ 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.✍函数的三要素:定义域、值域和对应法则.()()()U U U A B A B =()()()UU U A B A B =✍如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等【】函数的表示法2、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.✍解析法:就是用数学表达式表示两个变量之间的对应关系.✍列表法:就是列出表格来表示两个变量之间的对应关系.✍图象法:就是用图象表示两个变量之间的对应关系.3、映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做→.集合A到B的映射,记作:f A B②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数. (3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【】奇偶性(4)函数的奇偶性①定义及判定方法函数的性 质定义图象 判定方法函数的奇偶性 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)yxo②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去第二章 基本初等函数(Ⅰ)〖〗指数函数【】指数与指数幂的运算1、根式的概念(1) 一般地,如果a x n =,那么x 叫做a 的n 次方根。

高中数学必修1、4知识点归纳

高中数学必修1、4知识点归纳

高中数学必修1、4知识点归纳高中数学必修1、4知识点归纳一、必修11.数的性质与分类数的分类有有理数和无理数两类。

有理数又分为整数、有理数、不是整数和有理数、非整数,其中有理数包含有限小数和无限循环小数两种形式。

2.整式代数基础整式是由字母与常数通过四则运算和指数运算得到的代数表达式。

整式的相加减法要先化简同类项,再合并、消去同类项,从而简化计算。

3.多项式与因式分解多项式可以通过因式分解的方式拆分成多个因子的乘积形式。

因式分解的方法有提公因式法、公式法、待定系数法等。

4.一次函数一次函数是指以一次方程为函数表达式的函数。

其中,对于f(x)=kx+b,k称为斜率,b称为截距。

5.二次根式与一元二次方程二次根式是指含有平方根的表达式。

一元二次方程是指最高次项是二次的方程。

6.平面向量平面向量是指有大小和方向的量,常用其模和方向两个量来表示。

平面向量可以进行加法、减法、数乘和数量积等运算。

7.平面向量的基本定理与坐标法平面向量的基本定理包括位移定理、平行四边形定理、三角形面积定理、平行四边形面积定理等。

坐标法是指利用平面直角坐标系表示向量的方法。

二、必修41.平面解析几何初步平面解析几何是指通过代数的方法研究平面上点、直线的几何性质。

其基本原理包括点的坐标、两点间距离、点与直线的关系等。

2.圆的相关性质圆是由平面上到定点距离相等的点构成的集合。

圆的相关性质包括弦长、弧长、切线、割线等。

3.三角形的相关性质三角形是平面上由三条线段相交构成的图形。

三角形的相关性质包括内角和定理、外角和定理、中位线定理、高定理等。

4.三角函数初步三角函数是指在三角形中以角的大小比例表示的函数。

常用的三角函数有正弦函数、余弦函数、正切函数等,它们的定义域、值域和性质各不相同。

5.统计与概率初步统计学是研究数据及其处理、分析、解释的学科。

概率是指某件事情发生的可能性。

统计与概率的相关知识点包括统计数据的图表表示、概率的基本概念和计算方法等。

(完整word版)高一数学必修四知识点总结,推荐文档

(完整word版)高一数学必修四知识点总结,推荐文档

高一数学必修4知识点总结第一章 三角函数一、任意角 1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; 2.象限角的概念:①定义:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.如果角的终边在坐标轴上,则这个角不属于任何象限第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z oooo第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z oooo第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z oooo终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o二、弧度制正角:按逆时针方向旋转形成的角 零角:没有任何旋转形成的角 负角:按顺时针方向旋转形成的角始边终边顶点AO BP xyAOM T 1.定义长度等于半径长的弧所对的圆心角叫做1弧度. 1弧度记做1rad. 弧度来度量角的单位制叫做弧度制.2、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=.3.弧度制的性质:①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl4.角度与弧度之间的转换:①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360π=o;180157.3π⎛⎫=≈ ⎪⎝⎭oo5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.6、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、任意角的三角函数1、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 2、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .4、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.5、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限. 四、三角函数的图象与性质1、正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线.2、用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0)y=cosxy=sinxπ2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11y x-11o xy余弦函数y=cosx x[0,2π]的五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度要求不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握。

(完整)高中数学必修一必修四知识点总结(杠杠的),推荐文档

(完整)高中数学必修一必修四知识点总结(杠杠的),推荐文档

数学知识点总结第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有 确定性、互异性和无序性. (2)常用数集及其记法N 表示 自然数集,N *或N +表示 正整数集,Z 表示 整数集,Q 表示 有理数集,R 表示 实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 只要构成两个集合的元素是一样的,就称这两个 集合相等。

(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

【1.1.2】集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集. 5、子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)6、已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A Y .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A I .3、全集、补集{|,}U C A x x U x U =∈∉且 名称 记号意义性质示意图交集A BI{|,x x A ∈且}x B ∈(1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆IBA并集A BU{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇UBA补集 U A ð{|,}x x U x A ∈∉且1()U A A =∅I ð2()U A A U =U ð【1.2.1】函数的概念1、函数的概念① 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. ②函数的三要素:定义域、值域和对应法则.③如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等【1.2.2】函数的表示法2、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. ①解析法:就是用数学表达式表示两个变量之间的对应关系. ②列表法:就是列出表格来表示两个变量之间的对应关系. ③图象法:就是用图象表示两个变量之间的对应关系. 3、映射的概念()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在yxo[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算1、根式的概念(1) 一般地,如果a x n=,那么x 叫做a 的n 次方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学知识点总结第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有 确定性、互异性和无序性. (2)常用数集及其记法N 表示 自然数集,N *或N +表示 正整数集,Z 表示 整数集,Q 表示 有理数集,R 表示 实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 只要构成两个集合的元素是一样的,就称这两个 集合相等。

(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

【1.1.2】集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集. 5、子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)6、已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集{|,}U C A x x U x U =∈∉且 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【1.2.1】函数的概念1、函数的概念① 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. ②函数的三要素:定义域、值域和对应法则.③如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等【1.2.2】函数的表示法2、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. ①解析法:就是用数学表达式表示两个变量之间的对应关系. ②列表法:就是列出表格来表示两个变量之间的对应关系. ③图象法:就是用图象表示两个变量之间的对应关系. 3、映射的概念()()()U U U A B A B =()()()UU U A B A B =①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在yxo[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算1、根式的概念(1) 一般地,如果a x n=,那么x 叫做a 的n 次方根。

其中+∈>N n n ,1. (2) 当n 为奇数时,a a n n =; (3)当n(0)|| (0) a a a a a ≥⎧==⎨-<⎩(4) 我们规定: ①m n mna a =()1,,,0*>∈>m N n m a ;②()01>=-n aan n; (5) 运算性质:①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈注意口诀:底数取倒数,指数取相反数.【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log a N a N =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 ⑦倒数关系:ab b a log 1log =()1,0,1,0≠>≠>b b a a .【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)二次函数图象的性质①对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min4()4ac bf xa-=;当0a<时,抛物线开口向下,函数在(,]2ba-∞-上递增,在[,)2ba-+∞上递减,当2bxa=-时,2max4()4ac bf xa-=.③二次函数2()(0)f x ax bx c a=++≠当240b ac∆=->时,图象与x轴有两个交点(3)一元二次方程20(0)ax bx c a++=≠根的分布设一元二次方程20(0)ax bx c a++=≠的两实根为12,x x,且12x x≤.令2()f x ax bx c=++,从以下四个方面来分析此类问题:①开口方向:a②对称轴位置:2bxa=-③判别式:∆④端点函数值符号.(4)二次函数2()(0)f x ax bx c a=++≠在闭区间[,]p q上的最值设()f x在区间[,]p q上的最大值为M,最小值为m,令1()2x p q=+.(Ⅰ)当0a>时(开口向上)①若2bpa-<,则()m f p=②若2bp qa≤-≤,则()2bm fa=-③若2bqa->,则()m f q=①若2bxa-≤,则()M f q=②bx->,则()M f p=(Ⅱ)当0a<时(开口向下)①若bp-<,则()M f p=②若2bp qa≤-≤,则()2bM fa=-③若2bqa->,则()M f q=①若bx-≤,则()m f q=②2bx->,则()m f p=.xxxxxxf f x。

相关文档
最新文档