数理统计I期考试卷A卷(答案)
《 数理统计 》考试试卷( A 卷)
,,X为来自总体10,b=进行假设检验,可能犯的两类错误是为取自总体,X1. 设n X X X Λ,,21是来自总体)1,0(N 的简单随机样本,则∑=-ni iX X12)(服从分布为( )。
A .)(2n x B. )1(2-n x C. ),0(2n N D. )1,0(nN2. 设X 1,X 2,…,X 15是来自总体N(20,2)的一个样本,则Y=1021152112ii i i XX ==∑∑的分布是( ).(A ) (1,1)F (B)(14)t (C)2(15)χ (D)(10,5)F3. 设随机变量X 服从标准正态分布,对给定的(0,1)α∈,定义数(),u P X u ααα>=满足则1. 64 为( )(A )0.05u(B )0.10u(C )0.95u(D )0.90u4.. 设总体),(~2σμN X ,2σ已知,若样本容量n 和置信度均不变,则对于不同的样本观察值,总体均值μ的置信区间的长度( c )(A )变长 (B)变短 (C)不变 (D)不能确定5.设X ~N (μ,2σ),则随着σ的减小,P (|X -μ|<σ)( )。
(A )单调增大 (B)单调减少 (C)保持不变 (D)增减不定6. 在假设检验中,一般情况下( ).A. 只犯第一类错误B. 只犯第二类错误C. 两类错误都可能发生D. 不会犯错误7.设2*,i iX S表示来自总体2(,)i i N μσ的容量为i n 的样本均值和样本修正方差)2,1(=i ,且两总体相互独立,则( ).A. )1,1(~2121212122--n n F S Sσσ B.)2(~)()(212221212121-++---n n t n n X X σσμμC.)(~/11111n t n S X μ- D.222222~(1)n S n χσ-8.设总体),(~2σμN X ,2σ已知,X 1,X 2,……,X n 是来自总体X 的样本值,现在在显著水平α=0.05下接受了0H :μ=0μ。
《数理统计》考试题及参考答案
《数理统计》考试题及参考答案一、填空题(每小题3分,共15分)1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y的样本,则U =服从的分布是_______ .解:(9)t .2,设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 3,“两个总体相等性检验”的方法有_______ 与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ . 解:正态性、方差齐性、独立性.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计是ˆβ=_______ .解:1ˆ-''X Y β=()X X . 二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)n X X X n ≥为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则____D___ .(A )(0,1)nXN ; (B )22()nS n χ;(C )(1)()n Xt n S-; (D )2122(1)(1,1)nii n X F n X=--∑.2,若总体2(,)XN μσ,其中2σ已知,当置信度1α-保持不变时,如果样本容量n 增大,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是____C___ .(A )α减小时β也减小; (B )α增大时β也增大; (C ),αβ其中一个减小,另一个会增大; (D )(A )和(B )同时成立.4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-;(C )/(1)(1,)/()A e S r F r n r S n r ----; (D )A S 与e S 相互独立.5,在一元回归分析中,判定系数定义为2TS R S =回,则___B____ . (A )2R 接近0时回归效果显著; (B )2R 接近1时回归效果显著; (C )2R 接近∞时回归效果显著; (D )前述都不对. 三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12)(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)已知总体X 的概率密度函数为1,0(),0, xe xf x θθ-⎧>⎪=⎨⎪⎩其它其中未知参数0θ>,12(,,,)n X X X 为取自总体的一个样本,求θ的矩估计量,并证明该估计量是无偏估计量.解:(1)()101()xv E X xf x dx xe dx θθθ-∞∞-∞====⎰⎰,用111ni i v X X n ===∑代替,所以∑===ni iX Xn11ˆθ.(2)11ˆ()()()()ni i E E X E X E X n θθ=====∑,所以该估计量是无偏估计.五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x θθθ=+<<,其中未知参数1θ>-,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计.解:1 (1)() , 01() 0 , nn i i i x x L θθθ=⎧+∏<<⎪=⎨⎪⎩其它当01i x <<时,1ln ()ln(1)ln ni i L n x θθθ==++∑,令1ln ()ln 01ni i d L nx d θθθ==+=+∑,得 1ˆ1ln nii nxθ==--∑.六、(本题10分)设总体X 的密度函数为e ,>0;(;)0,0,x x f x x λλλ-⎧=⎨≤⎩ 未知参数0λ>,12(,,)n X X X 为总体的一个样本,证明X 是1λ的一个UMVUE . 证明:由指数分布的总体满足正则条件可得222211()ln (;)I E f x E λλλλλ⎡⎤∂-⎛⎫=-=-= ⎪⎢⎥∂⎝⎭⎣⎦,1λ的的无偏估计方差的C-R 下界为2221221[()]11()nI n n λλλλλ-⎡⎤⎢⎥'⎣⎦==. 另一方面()1E X λ=, 21V a r ()X n λ=,即X 得方差达到C-R 下界,故X 是1λ的UMVUE .七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=α下, 可否认为该批苹果重量标准差达到要求? (2)如果调整显著性水平0.025α=,结果会怎样?参考数据: 023.19)9(2025.0=χ, 919.16)9(205.0=χ, 535.17)8(2025.0=χ, 507.15)8(205.0=χ.解:(1)()()2222021:0.005,~8n S H σχχσ-≤=,则应有:()()2220.050.0580.005,(8)15.507P χχχ>=⇒=,具体计算得:22280.00715.6815.507,0.005χ⨯==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.(2)新设 20:0.005,H σ≤ 由2220.025280.00717.535,15.6817.535,0.005χχ⨯=⇒==< 则接受假设,即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.解:设22, X Y S S 分别表示总体X Y ,的样本方差,由抽样分布定理可知221121(1)(1)Xn S n χσ--,222222(1)(1)Yn S n χσ--,由F 分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX YY n S n S F F n n n SS n σσσσ--==----.对于置信度1α-,查F 分布表找/212(1,1)F n n α--和1/212(1,1)F n n α---使得 []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭,所求2221σσ的置信度为α-1的置信区间为 22221/212/212//, (1,1)(1,1)X Y X Y S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.。
概率论与数理统计期终考试试卷及参考答案
上海应用技术学院2009—2010学年第二学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073/B2220071 学分: 3 考试时间: 100 分钟课程序号: 1441、1447、1451、1455、1456、1457、1458、1459、1460、1461、1976 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
试卷共5页,请先查看试卷有无缺页,然后答题。
一、填空题(每题3分,共计18分)1、设A 、B 、C 为三事件,则事件“A 、B 、C 不都发生”可表示为_______________。
2、设()4.0=A P ,()7.0=+B A P ,若B A ,相互独立,则()=B P ___________。
3、100件产品中有5件次品,任取10件,恰有2件为次品的概率为______________。
4、设随机变量X 的概率密度为()⎩⎨⎧≤≤=其他,0,10,32x x x f ,则()=X E __________。
5、设由总体~(,)X F x θ(θ未知)的样本观察值求得9.0}5.455.35{=<<θP ,则称区间[35.5,45.5]为θ的一个置信度为________的置信区间。
6、设Z Y X ,,相互独立,X 在]6,0[上服从均匀分布,)4,1(~N Y ,Z 服从参数2=λ 的泊松分布,32+--=Z Y X W ,()D W = 。
二、选择题(每题3分,共12分)1、对于任意两个随机变量X 和Y ,若)()()(Y E X E XY E =,则( )。
(A ))()()(Y D X D XY D = (B ))()()(Y D X D Y X D +=+ (C )X 和Y 相互独立(D )X 和Y 不独立2、设321,,X X X 是来自正态总体)1,(μN 的样本,现有μ的三个无偏估计量1123131ˆ5102X X X μ=++,2123115ˆ3412X X X μ=++,3123111ˆ362X X X μ=++其中方差最小的估计量是( )。
数理统计考试题及答案
1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni i p2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X ∙=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=n i iXY 122)(1μσ,则EY=n解:∑=-=n i iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i iX X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i iX X,则⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎭⎫⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi i i i X X P X X P sP s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752三.设总体X 的概率密度为f(x)=(1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
(完整版)数理统计考试题及答案
(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。
概率论与数理统计试卷(A)
贵州大学2010-2011学年第二学期考试试卷(A)概率论与数理统计注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。
2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间为120分钟。
一、选择题(10个小题,每小题2分,共20分)1.已知(5,4)XN ,其均值与标准差分别为( ).①5,2 ②4,5 ③5,4④2,5 2.若假设检验为0H ,则下列说法正确的是( ).①0H 为真时拒绝0H 是犯第二类错误 ②0H 为假时接受0H 是犯第一类错误 ③0H 为真时拒绝0H 是犯第一类错误 ④以上说法都不对3.设随机变量X 与Y 独立且()(0),()4E X a a E XY =≠=,则()E Y =( ). ①4a ②4a③4a ④4a - 4.设两个相互独立随机变量ξ和η的方差分别为4和2,则32ξη-的方差为( ). ① 8 ② 16 ③ 28 ④ 44 5.已知1,2,,n X X X 是来自正态总体2(,)N μσ的样本,其中μ已知,0σ>未知,则下列关于1,2,,n X X X 的函数中,( )不能作为统计量.①211n i i X n =∑②12max{,,}n X X X ③2211ni i X σ=∑④12min{,,}n X X X6.“事件发生的频率趋于事件发生的概率”的是( ).① 切比雪夫不等式②贝努利大数定律③中心极限定理④贝叶斯公式7.设总体X 服从正态分布2(,)N μσ,123,,X X X 为取自X 的容量为3的样本,则μ的三个估计量1123111333X X X μ=++, 2123255X X μ=+, 3123111236X X X μ=++ ①三个都不是μ的无偏估计②三个都是μ的无偏估计,1μ最有效③三个都是μ的无偏估计,2μ最有效④三个都是μ的无偏估计,3μ最有效 8.若A 与自身独立,则( ).①()0P A =②()1P A =③0()1P A <<④()0()1P A P A ==或 9.已知X 服从泊松分布,则()D X 与()E X 的关系为( ). ①()()D X E X >②()()D X E X <③()()D X E X =④以上都不是 10.下列说法错误的是 ( ).①,X Y 相互独立, 则,X Y 一定不相关 ②,X Y 不相关,则,X Y 不一定相互独立 ③对正态分布而言, 不相关和独立性是一致的 ④,X Y 不相关,则,X Y 一定相互独立二、填空题(10小题,每小题2分,共20分)1. 假设检验可分为两类,它们是( )和().2. 若检验的观察值落入拒绝域内,则应().3.出勤率和缺勤率之和等于(). 4.随机变量主要分为()和().5. 设随机变量ξ服从泊松分布,且(1)(2)P P ξξ===,则 (6)()P ξ==.6.某车床一天生产的零件中所含次品数ξ的概率分布如下表所示,则平均每天生产的次品数为().(题6表格)7.设ξ服从0-1分布,且(1)P ξ=是(0)P ξ=的三分之一,则(1)P ξ==(). 8. 已知()0.3P A =,()0.5P B =,则当A 与B 互不相容时,则()P A B ⋃=().9.已知()0.4P A =,()0.6P B A =,则()P AB =(). 10.设随机事件A 、B 满足关系B A ⊂,则()P A B ⋃=( ).三、简答题(5个小题,每小题4分,共20分)1.请写出贝努利大数定律的意义.2. 计算连续型随机变量的数学期望,它的密度函数为 (请写出详细过程),1,10()1,010x x f x x x +-≤≤⎧⎪=-<<⎨⎪⎩其它3.已知2,01()0.y y Yf y <<⎧=⎨⎩其它 ,求().F y4.随机事件的定义域与值域分别是什么?5.设总体X 的概率分布为X 1 2 3k P 2θ2(1)θθ-2(1)θ-其中θ为未知参数.现抽得一个样本1231,2,1X X X ===,求θ的极大似然估计量.四、计算题(3个小题,每小题10分,共30分)1.设随机变量X 满足22[(1)]10,[(2)]6E X E X -=-=。
《数理统计》考试题及参考答案
1 《数理统计》考试题及参考答案一、填空题(每小题3分,共15分)1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y 的样本,则192219X X U Y Y++=++ 服从的分布是服从的分布是_______ ._______ .解:(9)t .2,设1ˆq 与2ˆq 都是总体未知参数q 的估计,且1ˆq 比2ˆq 有效,则1ˆq 与2ˆq 的期望与方差满足的期望与方差满足_______ . _______ .解:1212ˆˆˆˆ()(), ()()E E D D q q q q =<.3,“两个总体相等性检验”的方法有“两个总体相等性检验”的方法有_______ _______ _______ 与与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ .解:正态性、方差齐性、独立性.5,多元线性回归模型=+Y βX e 中,β的最小二乘估计是ˆβ=_______ .解:1ˆ-¢¢X Y β=()X X .二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)nX X X n ³ 为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则____D___ .(A )(0,1)nX N ;(B )22()nS n c;(C )(1)()n X t n S- ;(D )2122(1)(1,1)ni i n X F n X =--å .2,若总体2(,)X N m s ,其中2s 已知,当置信度1a -保持不变时,如果样本容量n 增大,则m 的置信区间信区间____B___ . ____B___ .(A )长度变大;(B )长度变小;(C )长度不变;(D )前述都有可能)前述都有可能. .3,在假设检验中,分别用a ,b 表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是下列说法中正确的是____C___ . ____C___ .(A )a 减小时b 也减小;(B )a 增大时b 也增大;(C ),a b 其中一个减小,另一个会增大;(D )(A )和()和(B B )同时成立)同时成立. .4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有和,则总有___A___ . ___A___ .(A )T e A S S S =+;(B )22(1)A S r c s- ;(C )/(1)(1,)/()AeS r F r n r S n r ---- ; ((D )A S 与e S 相互独立相互独立. . 5,在一元回归分析中,判定系数定义为2T S R S=回,则,则___B____ . ___B____ . (A )2R 接近0时回归效果显著;时回归效果显著; ((B )2R 接近1时回归效果显著;时回归效果显著; (C )2R 接近¥时回归效果显著;时回归效果显著; ((D )前述都不对)前述都不对. .三、(本题10分)设总体21(,)X N m s 、22(,)Y N m s ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22XYS S 、分别是它们的样本均值和样本方差,分别是它们的样本均值和样本方差,证明证明证明12121211()()(2)n n X Y t n n S w m m ---+-+ ,其中2221212(1)(1)2X Y n S n S S n n w -+-=+-. 证明:易知易知221212(,)X Y N n n s s m m --+ , 1212()()(0,1)11X Y U N n nm m s ---=+ .由定理可知由定理可知22112(1)(1)Xn S n c s-- ,22222(1)(1)Yn S n c s-- .由独立性和2c 分布的可加性可得分布的可加性可得222121222(1)(1)(2)XYn Sn SV n n c ss--=++- .由U 与V 得独立性和t 分布的定义可得分布的定义可得1212121112()()(2)/(2)n n X Y Ut n n V n n Swm m ---=+-+-+.四、(本题10分)已知总体X 的概率密度函数为1, 0(),0, xe xf x qq -ì>ï=íïî其它其中未知参数0q >, 12(,,,)n X X X 为取自总体的一个样本,求q 的矩估计量,并证明该估计量是无偏估计量.的矩估计量,并证明该估计量是无偏估计量.解:(1)()11()xv E Xxf x dxxe dx q q q-¥¥-¥-¥====òò,用111ni i vX X n ===å 代替,所以代替,所以å===ni i X X n11ˆq .(2)11ˆ()()()()ni i E E X E X E X n q q =====å,所以该估计量是无偏估计.,所以该估计量是无偏估计. 五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x q q q =+<<,其中未知参数1q >-,12(,,)n X X X 是来自总体X 的一个样本,试求参数q 的极大似然估计.的极大似然估计.解:1 (1)() , 01() 0 , nniii x x L qq q =ì+P <<ï=íïî其它 当01i x <<时,1ln ()ln(1)ln n i i L n x q q q ==++å,令1ln ()ln 01ni i d L n x d q q q ==+=+å,得,得 1ˆ1ln nii n x q==--å.六、(本题10分)设总体X 的密度函数为e,>0;(;)0,0,xx f x x l l l -ì=í£î未知参数0l >,12(,,)n X X X 为总体的一个样本,证明X 是1l的一个UMVUE UMVUE..证明:由指数分布的总体满足正则条件可得由指数分布的总体满足正则条件可得222211()ln (;)I E f x E l l l l l éù¶-æö=-=-=ç÷êú¶èøëû, 1l的的无偏估计方差的C-R 下界为下界为2221221[()]11()nI n n l l l l l-éùêú¢ëû==.另一方面另一方面()1E X l =, 21V a r ()X n l=,即X 得方差达到C-R 下界,故X 是1l的UMVUE UMVUE..七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=a 下, 可否认为该批苹果重量标准差达到要求 (2)如果调整显著性水平0.025a =,结果会怎样?,结果会怎样?参考数据参考数据: : 02319)9(2025.0=c , 91916)9(205.0=c, 53517)8(2025.0=c, 50715)8(205.0=c .解:(1)()()2222021:0.005,~8n SH s c c s-£=,则应有:,则应有:()()2220.050.0580.005,(8)15.507P c cc >=Þ=,具体计算得:22280.00715.6815.507,0.005c ´==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.求.(2)新设)新设 20:0.005,H s £ 由2220.025280.00717.535,15.6817.535,0.005cc ´=Þ==< 则接受假设,即可以认为苹果重量标准差指标达到要求.即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X m s ,222~(,)Y m s ,221212, , , m m s s未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122s s的置信度为1a -的置信区间的置信区间.. 解:设22, XY S S分别表示总体X Y ,的样本方差,由抽样分布定理可知的样本方差,由抽样分布定理可知221121(1)(1)Xn S n c s -- , 222222(1)(1)Yn S n c s-- , 由F 分布的定义可得分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX Y Yn Sn S F F nn n SS n ss s s--==---- . 对于置信度1a -,查F 分布表找/212(1,1)F n n a --和1/212(1,1)F n n a ---使得使得[]/2121/212(1,1)(1,1)1P F n n F Fn n a a a---<<--=-,即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n a a s a s-æö<<=-ç÷----èø, 所求2221s s 的置信度为a -1的置信区间为的置信区间为 22221/212/212//, (1,1)(1,1)X Y XY S S S S F n n F n n a a -æöç÷----èø.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.。
10-11Ⅰ概率论与数理统计试卷(A)参考答案
10-11Ⅰ概率论与数理统计试卷(A)参考答案| | | | | | | |装|| | | |订|| | | | |线| | | | | | | | |防灾科技学院2010~2011学年第⼀学期期末考试概率论与数理统计试卷(A )使⽤班级本科各班适⽤答题时间120分钟⼀、填空题(每题3分,共21分)1、设A 、B 、C 是三个事件,4/1)(=A P ,3/1)(=A B P ,2/1)(=B A P ,则=)(B A P1/3 ;2、已知10件产品中有2件次品,在其中任取2次,每次任取⼀件,作不放回抽样,则其中⼀件是正品,⼀件是次品的概率为16/45 ;3、随机变量X 的分布函数是??≥<≤<=.1,110,,0,0)(2x x x x x F ,=)}({2X E X P e21;5、从1,2,3中任取⼀个数,记为X ,再从X ,,1 任取⼀个数,记为Y ,则==}2{Y P 5/18 ;6、设随机变量X 和Y 相互独⽴,且均服从区间[]1,0的均匀分布,则3/4 ;7、设样本4321,,,X X X X 为来⾃总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从⾃由度为2的2χ分布,则=C 1/3 。
⼆、单项选择题(本⼤题共7⼩题,每题3分,共21分)1、某⼈向同⼀⽬标独⽴重复射击,每次射击命中⽬标的概率为p ,则在第4次射击时恰好第2次命中⽬标的概率为( B )(A) 22)1(4p p -; (B) 22)1(3p p -; (C) 22)1(2p p -; (D) 3)1(p p -; 2、设随机变量X 的概率分布律为,2,1,0,!}{===k k A k X P ,则参数=A ( D )(A) 0 ; (B) 1; (C) e ; (D) 1-e ;3、设随机变量X 的分布函数为()F x ,则31Y X =+的分布函数为( A )(A )11()33F y -;(B ) (31)F y +;(C ) 3()1F y +;(D 11()33F y -;4、设连续型随机变量X 的概率密度为?<≥=-.0,0,0,)(x x e x f x λλ,则=≥})({X D X P ( C )(A) 0 ; (B) 1; (C) 1-e ; (D) e ;5、设随机变量X 与Y 相互独⽴,其概率分布分别为10.40.6XP 01(A )1}{==Y X P ;(B )0}{==Y X P ;(C )52.0}{==Y X P ;(D )5.0}{==Y X P ;6、若)2(,,,21≥n X X X n 为来⾃总体)1,0(N 的简单随机样本,X 为样本均值,2S为样本⽅差,则(C )(A ))1,0(~N X n ;(B ))(~22n nSχ;(C ))1(~/-n t nS X ;(D ))1,0(~N X ;7、总体X 的分布律 ()1/,0,1,2,,1P X k N k N ===- .已知取⾃总体的⼀个样本为(6,1,3,5,3,4,0,6,5,2),则参数N 的矩估计值是 ( A ))(A 8; )(B 7; )(C 6; )(D 5.(本⼤题共2⼩题,每题7分,共14分。
14-15I 概率论与数理统计试卷(A)48学时参考答案与评分标准
| | | | | | | |装|| | | |订| | | | | |线|| | | | | | |防灾科技学院2014~2015年 第一学期期末考试概率论与数理统计试卷(A )考试形式 闭卷 使用班级本科48学时班 答题时间120分钟(请将答案写在答题纸上)一 、填空题(本大题共7小题,每题3分,共21分)1、若以事件i A 表示“一个工人生产的第i 个零件是合格品”(n i ≤≤1),则事件“没有一个零件是不合格品”用i A 表示为 12n A A A ;2、已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P 0.62 .3、假设某潜在震源区年地震发生数X 服从参数为2=λ的泊松分布,则未来一年该震源区发生至少一次地震的概率为21--e ;4、10张彩票中有5张是有奖彩票。
每人依次抽取一张彩票,第2个人抽中奖的概率为 1/2 ;5、假设英语四级考试有60个选择题,每题有四个选项,其中只有一个为正确选项。
小明没有复习而选择 “裸考”,答案全是随便“蒙”的,则Ta “蒙”对题数的期望是 15 ;6、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,6.011,4.01,0)(,则X 的分布律是1130.40.20.4X-⎛⎫ ⎪⎝⎭,=≤<-)31(X P 0.6 ;二、单项选择题(本大题共7小题,每题3分,共21分)7、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β(A )11-=αβ (B )1+=αβ (C )11+=αβ (D )不能确定 ( C ) 8、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则)2(>X P 的值为(A ))]2(1[2Φ-. (B )1)2(2-Φ.(C ))2(2Φ-. (D ))2(21Φ-. ( A )9、某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数 学期望与方差分别为 ( D ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 10、设随机变量X 和Y 不相关,则下列结论中正确的是( B ) (A )X 与Y 独立. (B ))()()(Y D X D Y X D +=-. (C ))()()(Y D X D Y X D -=-. (D ))()()(Y D X D XY D =.11、设离散型随机变量X 和Y 的联合概率分布为若Y X ,独立,则βα,的值为(A )91,92==βα. (B )92,91==βα.(C ) 61,61==βα (D )181,185==βα. ( A ) 12、设样本4321,,,X X X X 为来自总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从自由度为2的2χ分布,则=C ( B )(A) 3; (B) 1/3; (C) 0; (D) -3 . 13、设随机变量与相互独立,其概率分布分别为则有(A ) (B )(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβX Y 010.40.6X P 010.40.6Y P ()0.P X Y ==()0.5.P X Y ==(C ) (D ) ( C ) 14、设总体)4,2(~2N X ,n X X X ,,,21 为来自X 的样本,则下列结论中正确的是 (A ))1,0(~42N X -. (B ))1,0(~162N X -. (C ))1,0(~22N X -. (D ))1,0(~/42N nX -. ( D ) 三、解答题(本大题共5小题,每题10分,共50分)15、计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。
08-09I概率论与数理统计试卷(A)参考答案
| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年 第一学期期末考试概率论与数理统计试卷(A )使用班级07601/ 07602/07103 答题时间120分钟一填空题(每题2分,共20分)1、已知事件A ,B 有概率4.0)(=A P ,条件概率3.0)|(=A B P ,则=⋂)(B A P 0.28 ;2、设),(~1p n b X ,),(~2p n b Y 则~Y X +),(21p n n b +;3、若)2(~πX ,则=)(2X E 6 ;4、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,8.011,6.01,0)(,则=≤<-)31(X P0.4 ;5、连续型随机变量的概率密度函数为)0(0,)(>⎩⎨⎧≤>=-λλλx x ex f x,则分布函数为⎩⎨⎧≤>-=-000,1)(x x e x F x λ;6、若)1,0(~),1,0(~N Y N X 且X 与Y 相互独立,则~2/)(22Y X X +)2(t ;7、若随机变量X ,1)(,2)(==X D X E ,则利用切比雪夫不等式估计概率()≥<-32X P 98;8、若总体),(~2σμN X ,则样本方差的期望=)(2S E 2σ;9、设随机变量)2,1(~-U X ,令⎩⎨⎧<≥=.0,0,0,1X X Y ,则Y10、已知灯泡寿命)100,(~2μN X ,今抽取25只灯泡进行寿命测试,得样本1200=x 小时,则μ的置信度为95%的置信区间是 (1160.8,1239.2) (96.1025.0=z )。
二、单项选择题(本大题共5小题,每题2分,共10分)1、若6.0)(,4.0)(,5.0)(===B A P B P A P ,则=)(A B P ( C )(A) 0.2 ; (B) 0.45; (C) 0.6; (D) 0.75;2、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β( C )(A )11-=αβ ;(B )1+=αβ;(C )11+=αβ;(D )不能确定; 3、设随机变量X 和Y 不相关,则下列结论中正确的是( B )(A )X 与Y 独立; (B ))(4)()2(Y D X D Y X D +=-;(C ))(2)()2(Y D X D Y X D +=-; (D ))(4)()2(X D Y D Y X D -=-;4、若)1,0(~N X ,则)2|(|>X P =( A )(A ))]2(1[2Φ-;(B )1)2(2-Φ;(C ))2(2Φ-;(D ))2(21Φ-; 5、下列不是评价估计量三个常用标准的是( D ))(A 无偏性; )(B 有效性; )(C 相合性; )(D 正态性。
(完整版)概率论与数理统计试题及答案
2008-2009学年 第1学期 概率论与数理统计(46学时) A一、单项选择题(本大题共5小题,每小题3分,共15分)。
1、A B 、为两个随机事件,若()0P AB =,则(A )A B 、一定是互不相容的; (B )AB 一定是不可能事件; (C )AB 不一定是不可能事件; (D )()0P A =或()0P B =.2、二维离散型随机变量(,)X Y 的分布律为(,)F x y 为(,)X Y 的联合分布函数,则(1.5,1.5)F 等于(A )1/6; (B )1/2; (C )1/3; (D )1/4.3、X Y 、是两个随机变量,下列结果正确的是 (A )若()E XY EXEY =,则X Y 、独立; (B )若X Y 、不独立,则X Y 、一定相关;(C )若X Y 、相关,则X Y 、一定不独立; (D )若()D X Y DX DY -=+,则X Y 、独立.YX 0 1 2 1 1/61/3 0 21/41/61/124、总体2212~(,),,,,,n X N X X X μσμσ均未知,为来自X 的一个简单样本,X 为样本均值,2S 为样本方差。
若μ的置信度为0.98的置信区间为(X c X c -+,则常数c 为(A )0.01(1)t n -; (B )0.01()t n ;(C )0.02(1)t n -; (D )0.02()t n .5、随机变量12,,,n X X X 独立且都服从(2,4)N 分布,则__11ni i X X n ==∑服从(A )(0,1)N ; (B )(2,4)N n ;(C )(2,4)N n n ; (D )4(2,)N n .二、填空题(本大题共5小题,每小题3分,共15分)。
6、已知A B 、为两个随机事件,若()0.6,()0.1,P A P AB ==则(|)P A AB =1.7、已知随机变量X 服从区间(0,2)上的均匀分布,则(2)E X =( ).8、已知连续型随机变量X 的概率密度函数为2,01()0,x x f x <<⎧=⎨⎩其它,则概率(||12)P X <=( ).9、随机变量12(3,),(3,)33Xb Yb ,且,X Y 独立,则()D X Y -=( ).10、已知随机变量,1,2,3i X i =相互独立,且都服从(0,9)N 分布,若随机变量2222123()(3)Y a X X X χ=++,则常数a =( ).三、解答题(本大题共6小题,每小题10分,共60分)。
2010-2011学年第一学期数理统计学期末考试试卷(A卷)(闭卷部分)答案
北 京 交 通 大 学2010~2011学年第一学期数理统计学期末考试试卷(A 卷)(闭卷部分)答案一.(本题满分10分)设总体X 存在二阶矩,()μ=X E ,()2v a r σ=X ,()n X X X ,,,21 是从中抽取的一个样本,X 是样本均值,2S 是样本方差.⑴ 计算()X var ;⑵ 如果()2,~σμN X ,计算()2var S .解:⑴ ()()n n n n X nX n X ni ni in i i 22212212111var 11var var σσσ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===. ⑵ 因为总体()2,~σμN X ,()n X X X ,,,21 是取自总体X 中的一个样本,所以()()1~1222--n S n χσ.所以,()()()()()()121211v a r 111v a r v a r 42422242222-=-⋅-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⋅-=n n n S n n S n n S σσσσσσ.二.(本题满分10分) 设总体()2,~σμN X ,()921,,,X X X 是取自总体X 中的一个样本,令∑==61161i i X Y , ∑==97231i i X Y ,()∑=-=9722221i i Y X U .计算统计量()U Y Y Z 212-=的分布(不需求出Z 的密度函数,只需指出Z 所服从的分布及其参数). 解:由题设可知,⎪⎪⎭⎫ ⎝⎛6,~21σμN Y ,⎪⎪⎭⎫⎝⎛3,~22σμN Y ,所以有 ⎪⎪⎭⎫ ⎝⎛-2,0~221σN Y Y .因此有()1,0~221N Y Y σ-. 又由()∑=-=9722221i i Y X U ,得()2~2222χσU .因此由t 分布的构造,得 ()()2~21222222121t UY Y UY Y Z ⋅-=-=σσ.三.(本题满分10分) 设总体()θθ2,~U X ,其中0>θ是未知参数.()n X X X ,,,21 是从中抽取的一个样本.试求出θ的一个充分统计量. 证明:总体X 的密度函数为()⎪⎩⎪⎨⎧<<=其它021θθθx x p .所以,样本()n X X X ,,,21 的联合密度函数为()nni i x p θθ11=∏=;,()()n i x i ,,2,1,2 =<<θθ()()θθθ211<≤<=n x x nI .令()θθθθ221211,,<≤<=t t nI t t g ,()1,,,21≡n x x x h ,则有 ()()()n ni i x x x h t t g x p ,,,,,21211θθ=∏=;.因此由因子分解定理,知统计量()()()n X X T ,1=是未知参数θ的充分统计量.四.(本题满分6分) 设总体X 的密度函数为()()⎪⎩⎪⎨⎧<<-=其它0022θθθx x x p其中0>θ是未知参数.()n X X X ,,,21 是从中抽取的一个样本.试求出θ的一个矩估计量.解:()()()3623122232032202θθθθθθθθθ=⋅=⎪⎭⎫ ⎝⎛-=-==⎰⎰+∞∞-x x dx x x dx x xp X E .得方程 ()3θ=X E ,解方程,得()X E 3=θ.将()X E 替换成X ,得未知参数θ的矩估计量X 3ˆ=θ. 五.(本题满分14分)⑴ 设总体X 等可能地取值1,2,3, ,N ,其中N 是未知的正整数.()n X X X ,,,21 是取自该总体中的一个样本.试求N 的最大似然估计量.(10分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的最大似然估计值.(4分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1 =. 所以似然函数为 (){}n ni i i Nx X P N L 11===∏=, ()()n i N x i ,,2,1,1 =≤≤.当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1 =≤≤,即{}()n n x x x x N =≥,,,max 21 .所以,N 的最大似然估计量为()n X N =ˆ. ⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N . 六.(本题满分14分) 设总体()2,~σμN X ,其中μ与2σ都是未知参数,+∞<<∞-μ,0>σ.()n X X ,,1 是取自该总体中的一个样本.试求:⑴ μ与2σ的最大似然估计量(10分);⑵ ()5>=X P p 的最大似然估计量(4分). 解:⑴ X 的密度函数为()()()⎭⎬⎫⎩⎨⎧--=-2221222exp 2,σμπσσμx x p ;,()+∞<<∞-x . 所以,似然函数为 ()()()()⎭⎬⎫⎩⎨⎧--==∑∏=-=ni i nni ix x p L 1222212221exp 2,,μσπσσμσμ;. 取对数,得 ()()()∑=---=ni i x n L 12222212ln 2,ln μσπσσμ. 分别对μ与2σ求偏导数,并令其为0,得似然方程组()()()()()⎪⎪⎩⎪⎪⎨⎧=---=∂∂=-=∂∂∑∑==0212,ln 01,ln 124222122ni i n i i x n L x L μσσσμσμσσμμ . 解方程组,得x x n n i i ==∑=11μ,()∑=-=n i i x x n 1221σ,因此得μ与2σ的最大似然估计量为X X n n i i ==∑=11ˆμ,()∑=-=n i i X X n 1221ˆσ. ⑵ 由于⎪⎪⎭⎫⎝⎛n N X 2,~σμ,所以()()⎪⎭⎫⎝⎛-Φ-=⎪⎪⎭⎫ ⎝⎛-≤--=≤-=>=n n n X P X P X P p σμσμσμ5151515, 所以()5>=X P p 的极大似然估计量为⎪⎪⎭⎫⎝⎛-Φ-=n SXp 51ˆ. 七.(本题满分6分) 设总体()p B X ,1~,其中10<<p 是未知参数.()n X X X ,,,21 是取自该总体中的一个样本,样本量2≥n .试求待估函数()2p p g =一个无偏估计量. 解:令21X X T =,由于()()()()22121p X E X E X X E T E ===, 所以21X X T =就是()2p p g =的一个无偏估计量.八.(本题满分12分)设总体X 服从指数分布,其密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex p xθθ,()n X X X ,,,21是取自该总体中的一个样本.⑴ 求出统计量()i n i X X ≤≤=11min 的密度函数()()x p 1,并指出该分布是什么分布(4分)?⑵ 求常数a ,使得i ni X a T ≤≤=1min 为θ的无偏估计(4分);⑶ X 为样本均值,指出X 与T 哪一个更有效(4分). 解:⑴ 由于总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex p xθθ,因此其分布函数为 ()()⎪⎩⎪⎨⎧>-≤==-∞-⎰0100x ex dt t p x F x xθ .所以()i ni X X ≤≤=11min 的密度函数为()()()()()θθθθθnx x n x n e n e e n x p x F n x p -----=⋅⎪⎪⎭⎫ ⎝⎛=-=11111,()0>x . 即随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布.⑵ 由于随机变量()i n i X X ≤≤=11min 服从参数为n θ的指数分布,所以()()()nX E X E i n i θ==≤≤11min .所以,若使()()()θθ=⋅==≤≤na X aE X E i ni 11min ,只需取n a =即可.即若取n a =,即i ni X n T ≤≤=1min ,则T 是未知参数θ的无偏估计量.⑶ 由于()θ=T E 以及()θ=X E ,因此i ni X n T ≤≤=1min 与X 都是未知参数θ的无偏估计量.又由于随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布,因此()221min var n X i n i θ=≤≤,所以()()()2222121m i n v a r m i n v a r v a rθθ=⋅===≤≤≤≤n n X n X n T i ni i ni ,又 ()()nn X X 2v a r v a r θ==, 由于 ()()T nX v a r v a r 22=≤=θθ,所以X 比T 更有效.九.(本题满分8分)设总体()θ,0~U X ,其中0>θ是未知参数.()n X X X ,,,21 是从中抽取的一个样本.试验证()n X T =是参数θ的一个完备统计量. 解:()n X T =的密度函数为 ()nn n nx x p θ1-=,()θ<<x 0.设()n X T =的函数()()n X ϕ满足()()()0=n X E ϕ,即有 ()()()()()()001===⎰⎰-+∞∞-θϕθϕϕdx x x ndx x p x X E n nn n ,()0>θ. 则有 ()001=⎰-θϕdx x x n .对θ求导,得()01=⋅-n θθϕ,()0>θ. 因此得 ()0≡θϕ,()0>θ.这表明,()()10==X P ϕ,因此()n X T =是参数θ的一个完备统计量.十.(本题满分10分) 设总体()p B X ,1~,其中10<<p 是未知参数.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 一致最小方差无偏估计量. 解:X 的分布列为 ()()xx p p x X P --==11,()1,0=x .所以样本()n X X X ,,,21 的联合分布列为()()∑-∑====-=∏ni i n i ix n x ni i i p px X P 1111()⎭⎬⎫⎩⎨⎧-⋅-=∑=p p x p n i i n1ln exp 11令()()np p -=1α,()∑==ni i n x x x x T 121,,, ,()ppp -=1lnϕ,()1,,,21≡n x x x h ,则有 ()()()(){}()n n ni i i x x x h p x x x T p x X P ,,,,,,exp 21211ϕα⋅==∏=并且p 的定义域为()1,0,()ppp -=1lnϕ的值域为()∞+∞-,,都是一维开集, 所以()∑==ni i n X X X X T 121,,,是参数p 的充分完备统计量.又∑==ni i X n X 11是参数p 的无偏估计量,而且是()∑==ni i n X X X X T 121,,,的函数,因此∑==ni i X n X 11是参数p 的一致最小方差无偏估计量.。
4概率论与数理统计试卷A及答案
概率论与数理统计试卷A一、 单项选择(每小题3分,共18分) 1.事件表达式AB 的意思是 ( )A . 事件A 与事件B 同时发生B. 事件A 与B 都不发生C . 事件A 与B 至少一个不发生 D. 事件A 与事件B 至少有一个发生2、设A B ⊂,则下面正确的等式是 ( )A .)(1)(A P AB P -= B. )()()(A P B P A B P -=-C .)()|(B P A B P = D. )()|(A P B A P =.3. 随机变量(X , Y )的联合分布函数为(,)F x y ,则(X , Y )关于X 的边缘分布函数)(x F X 为( ) A .(,)F x +∞ B .(,)F x -∞C .(,)F y -∞D .(,)F y +∞4. 把3个球随机地放入3个盒子中,每个球放入各个盒子的可能性是相同的,设X 、Y 分别表示放入第一个、第二个盒子中的球的个数,则在1=Y 的条件下1=X 的概率为 ( ) A .21 B .31 C .41D .32 5. 已知12,,,n X X X L 是来自总体2~(,)X N μσ的样本,其中μ未知,而0σ>已知,则下列关于12,,,n X X X L 的函数不是统计量的是( )A .()222121n X X X n +++L B.()2221221n X X X σ+++L C. ()()()22212n X X X μμμ-+-++-L D. 12max{,,,}n X X X L6. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P =( ) A .)4(Φ B .)4()2(-Φ-ΦC .)4()2(Φ-ΦD .以上都不对学院 专业 级 班 姓 名 学 号二.填空题(每空2分,共32分)1. 两人相约于8时至9时之间在某地会面,先到者等候另一个人20分钟后即可离开,则两人能够会面的概率为 .2. 设随机变量X 的分布函数为()1xAF x e-=+,则A = ; X 的概率密度为_______; ()0P X ≤=_______3.将一根长为a 的细绳随意剪成两段,则有一段长度是另一段长度3倍以上的概率为_______.4.设随机变量(X , Y )的联合概率密度为 (),0,0(,)0,x y e x y f x y -+⎧>>=⎨⎩其它则2YX Z +=的概率密度为________________. 5.设随机变量n X X X ,,,21Λ相互独立,并且服从同一分布,数学期望为μ,方差为2σ,令11ni i X X n ==∑,则)(X E = , )(X D = 。
(完整版)数理统计试卷及答案1
----------------------------------------说明:本试卷总分100分,全试卷共 页,完成答卷时间2小时。
----------------------------------------一、填空题(本大题共 9 题,每题 3 分,共 27 分).1.已知3.0)(=A P , 6.0)(=+B A P ,那么①、若A 与B 互不相容,则=)(B P ,②、若A 与B 相互独立,则=)(B P ( ),③、若B A ⊂,则=)(B P 。
2.设随机变量X ~),,(n p k B k n k k n q p C --=)1(。
则X 最可能发生的次数是 ,当p很小、n 很大时,有近似公式),,(n p k B λλ-≈e k k!,其中≈λ 。
3.设)(x F 是随机变量X 的分布函数,若)()()(a F b F b X a p -=ππ,则==)(b X p 。
4.已知随机变量X 的概率分布是Nak X p ==)(,N k 2,,2,1Λ=。
则a = 。
5.设随机变量X 是参数为λ的泊松分布,且)2()1(===X p X p ,则EX= ,DX= 。
6.总体X 的一个样本为7,3,5,2,8。
则X = ,=2S ,SX= 。
7.设n X X X ,,,21Λ是正态总体X~),(2σμN 的样本,2,S X 分别是其样本均数和样本方差,其中2σ未知。
则μ的置信度为α-1的置信区间的长度为 。
8.单因素试验方差分析中,总离差平方和A e SS SS SS +=,其中e SS 称为 ,A SS 称为 9.总体X 与Y 的样本相关系数为yyxx xy l l l r =,则xy l 的计算公式xy l = 。
xx l 的计算公式xx l = 。
yy l 的计算公式yy l = 。
二、单项选择题(本大题共 11 题,每题 3 分,共 33分)每一小题有4个答案,其中只有一个答案是对的,请选出正确的答案填入下列表中。
概率论与数理统计考试a(含答案)
深圳大学期末考试试卷参考解答及评分标准开/闭卷 闭卷A/B 卷A 课程编号 2219002801-2219002811课程名称概率论与数理统计学分3命题人(签字) 审题人(签字) 年 月 日 基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一(每道选择题选对满分,选0分)事件表达式A B 的意思是 ( ) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( ) 是不可能事件 (B) 是可能事件 发生的概率为1 (D) 是必然事件 A ,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布。
已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
概率论与数理统计考试试题及答案
)0.6B =2.015.0121武汉理工大学教务处试题标准答案及评分标准用纸课程名称概率论与数理统计(A 卷)一、选择题(每小题3分,总计15分)1.D ;2.C ;3.C ;4.B ;5.B二、填空题(每小题3分,总计15分)6.;7.;8.;9.;10.三、计算题(共52分)11.解:设A i 分别表示所取产品是由甲、乙、丙车间生产(i=1,2,3);B 表示所取产品为不合格品.由题设有,%25)(,%35)(,%40)(321===A P A P A P.05.0)(,04.0)(,02.0)(321===A B P A B P A B P ---------4分1)由全概率公式,得345.0)|()()(31==∑=i i iA B P AP B P ---------3分2)4058.06928345.004.035.0)()()|()()()|(2222≈=⨯===B P A P A B P B P B A P B A P --------3分 12.解:1)1210)(02==+=⎰⎰⎰+∞∞-∞-+∞-A dx Ae dx dx x f x ,故A =2 --------- 3分2).3679.02)5.0(15.02≈==>-+∞-⎰e dx e X P x ----------- 3分3)对100,12<<>-=-y x e y x 时有当. 所以当0≤y 或1≥y 时,0)(=y f Y ; 当10<<y 时,分布函数{}⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=-)1ln(21)1ln(211)(2y F y X P y e P y F XX Y ; 11121)1ln(21)()(=⎪⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛--==∴y y f dy y dF y f X Y Y . ⎩⎨⎧<<=∴其他,,0101)(y y f Y . ―――― 6分 13.解:(,)X Y 的联合分布律和边缘分布律为————8分由上表可看到,j i ij p p p ..∙≠,所以X 和Y 不相互独立. --------2分14.解:设i X 表示第i 次射击时命中目标的炮弹数,则由题设有:)100,,2,1(5.1)(,2)(2 ===i X D X E i i 。
07-1数理统计A卷答案
系别: 班级: 姓名: 学号: 密 封 线 内 不 要 答 题南京大学数学课程试卷A 答案4. 设随机变量X 和Y 的期望分别为-2和2,方差分别为1和4,0.5XY ρ=-,则根据切比雪夫不等式≤≥+)6|(|Y X P 1215.设(621,,,X X X )是来自正态分布)1,0(N 的样本,264231)()(∑∑==+=i i i i X X Y当c =31 时, cY 服从2χ分布,)(2χE = 2 .三. 是非题(共10分,每题2分)1.设随机事件,A B 满足0)(,0)(>>B P A P ,则下面两个等式 (1) AB =Ø, (2) ()()()P AB P A P B =不能同时成立. ( 是 )2. 二维均匀分布的边缘分布未必是一维均匀分布. ( 是 )3. 若随机变量X 的方差不存在,则X 的数学期望也不存在. (非 ) 4.对期望和方差存在的随机变量序列12,,,,n X X X ,(,)x ∀∈-∞+∞有22()lim .t n k x n X nE X P x d t -→∞⎛⎫- ⎪⎪≤=⎪⎪⎝⎭∑⎰ ( 非 )5.若()0D X =的充分必要条件是(())1P X E X ==. (是 )四.(12分)设二维随机向量的联合密度函数为⎩⎨⎧<<<=其它,010,8),(x y xy y x p (1)求X 和Y 的概率密度函数;(2)计算E(X),E(Y), Cov(X ,Y)。
解: )4(22541585494),(9488)4(,158,54)4(),1(44)('12222''2)(3=⨯-======-==⎰⎰⎰⎰Y X Cov dy y dx x dxdy y x EXY EY EX y y p x x p xy Y X2007-2008学年度第 一 学期 考试形式: 闭卷 课程名称: 概率论与数理统计考试时间: 2008年1月4号考试成绩:[备查分布表](1.18)0.8810Φ= 9943.0)53.2(=Φ 0.05(9) 1.8331,t =0.025(9) 2.2622,t = 0.025(10) 2.2281,t =220.9750.025(10) 3.247,(9)20.483.χχ==一. 选择题(15分,每题3分)1. 设事件 ,,,A B C D 相互独立,则在下列四对事件中不相互独立的是 ( B ))(A A 与BC D ⋃;)(B AC D ⋃与BC ;)(C BC 与A D -; )(D C A -与BD .2. 设事件,,A B C 满足,,B A B C ⊂⊂()0.8,()0.6,()0.5P A P AC P A B ==-=,则()P ABC 等于 )(A 0.1; )(B 0.2; )(C 0. 3; )(D 0.4. (C )3. 设随机变量,X Y 相互独立,(),(),(),cov(,)D X D Y D XY X Y 都存在, 则下列不等式成立的是)(A cov(,)()X Y D XY ≤; )(B cov(,)()X Y D XY ≥; ( A ) )(C ()()cov(,)D X D Y X Y ≤; )(D ()()()D X D Y D XY ≥.4. 设),,,(21n X X X 为来自正态总体),(~2σμN X 的样本,X 和2S 分别表示样本均值和修正的样本方差.又),(~2σμN Y ,且与),,,(21n X X X 相互独立,则统计量n n S X Y 1+-服从的分布为)(A (1)t n -; )(B ()t n ; )(C (1)t n +; )(D (2)t n +. (A ) 5. 设总体X 的分布律()1/,0,1,2,,1P X k N k N ===- .(6,1,3,5,3,4,0,6,5,2) 是取自总体的一个样本,则参数N 的矩估计值是 ( D ))(A 5; )(B 6; )(C 7; )(D 8.二. 填空题(15分,每题3分)1. 已知男人寿命大于60岁的概率为74%,大于50岁的概率为85%.若某人今年已50岁,则他活过60岁 的概率为0.8706 .2. 在次品率为0.05的一批产品中,随机有放回地抽取产品40次,每次抽一件.记X 为40次抽取中抽到次品的次数,则E(X) 2 , Var(X)= 1.9 .3.已知二维随机变量),(Y X 的联合分布函数为),(y x F , 则 P(X=6,Y=21)= F(6,21)-F(6,21-0)-F(6-0,21)+F(6-0,21-0) .第一页(共四页)第二页(共四页)密封线内不要答题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京林业大学 2006---2007学年第一学期考试试卷(A 卷)(适用专业: 草坪04;草业05;林学05-1、2、3、4;水保05-1、2、3;营销05-1、2;游憩05)注:这是以往数理统计I 的考试试卷,数理统计II 的学生若将该份试题作为复习资料的话,第一题的第7小题、第七题以及第八题可以不用做,因为已经超出了数理统计II 的教学大纲试卷名称: 数理统计I 课程所在院系: 理学院考试班级: 学号: 姓名: 成绩: 试卷说明:1. 本次考试为闭卷考试。
本试卷共4页,共八大部分,请勿漏答;2. 考试时间为120分钟,请掌握好答题时间;3. 所有试题答案写在试卷上;4. 答题中可能用到的数据如下:(3.1)0.9990Φ=,0.025 1.96Z =,0.025(5) 2.571t =,0.025(9) 2.262t =,0.025(11) 2.201t =,0.025(15). 2.131t =,9.21)11(2025.0=χ, 82.3)11(2975.0=χ,26.4)9,2(05.0=F , 7545.0)5(05.0=r一. 填空(每空2分,共30分)1. 设 A 、B 、C 为三个随机事件,则事件“A 、B 发生但C 不发生” 可表示为 C AB 。
2. 将一枚骰子连续投掷两次,第二次出现的点数为3的概率等于 1/6 。
3.每次试验结果相互独立,设每次试验成功的概率为p 。
则重复进行试验直到第10次才取得k )101(≤≤k 次成功的概率等于 C 9kp k (1-p)10-k。
4.已知x 为从某个总体ξ中抽取出来的容量为20的简单随机样本的样本平均,且ξE =7,ξD =4,则 =x E 7 ,=x D 0.2 。
5. 已知到连续型随机变量ξ的概率密度函数为||)(x Ae x f -=,则=A 0.5 。
6. 已知41)(=A P ,31)/(=AB P ,21)/(=B A P ,则=+)(B A P 1/3 ,=-)(B A P 1/6 。
*7. 为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。
则大学生近视眼所占的百分比的95%的置信区间为 [0.2743,0.4057]或 [0.278,0.408] 。
8.已知1021,,x x x Λ是来自总体X 的简单随机样本,μ=EX 。
令∑∑==+=1076181ˆi i i i x A x x ,则当=A 1/16时,xˆ为总体均值μ的无偏估计。
9.已知随机变量X 和Y 相互独立,且)2,2(~-N X ,)4,3(~N Y ,则Y X 3-所服从的分布为N(-11,38) 。
10.已知ξD =25, =ηD 36,且ξ和η的相关系数4.0),(=ηξρ,则=-)(ηξD 37 。
11.ξ为随机变量,且μξ=E ,=ξD 2σ.由车比雪夫不等知≥<-}4|{|σμξP 0.9375 。
12.已知ξ和η都是连续型随机变量,ξηln =,设ξ的概率密度函数)1(1)(2x x f +=πξ,则η的概率密度函数=)(x f η )1(2xxe e +π 。
13.已知ξ服从参数为1的泊松分布,则2ξE = 2 。
二. (12分)一个口袋里有三个球,这三个球上面依次标有数字0、1、1。
现在从袋里任取一个球,不放回袋中,接着再从袋里取出一个球。
设ξ表示第一次取到的球上标有的数字, η表示第二次取到的球上标有的数字。
(1) 求),(ηξ的联合概率分布律;(2)求),(ηξ关于 ξ的边缘概率分布和关于η的边缘概率分布,判断ξ和η是否独立;(3)求ξ和η 协方差),cov(ηξ。
解:(1)(2)ξ和η不独立。
(3)3/2=ξE , 3/2=ηE ,3/1)(=ξηE ,1)(),cov(-=-=ηξξηηξE E E 三.(8分)某商场所供应的电视机中,甲厂产品与乙厂产品各占50%;甲厂产品次品率是10% ,乙厂产品次品率是15% 。
(1)求该商场电视机的次品率;(2)现某人从该商场上买了一台电视,发现它是次品,求它由甲厂生产的概率。
解:用A 表示“甲厂产品”, 用B 表示“次品率”, 则10050)(,10050)(==A P A P , 10010)|(=AB P , 10015)|(=A B P (1))|()()|()()(A B P A P A B P A P B P +=675.010015100501001010050=⨯+⨯=. ----- 4分(2))|()()|()()|()()()()|(A B P A P A B P A P A B P A P B P AB P B A P +==074.0675.010********=⨯=. ---- 8分四.(8分)设某研究所有200名研究人员,现该研究所准备在会议厅举行一个内部学术交流会。
假设每个研究人员都以0.6的概率去参加这个学术交流会,并且每一位研究人员是否去参加是相互独立的,问会议厅应至少准备多少个座位,才能以99.9%概率保证去参加交流会的人员都有座位坐。
解:假设准备x 个座位条,用ξ表示与会的人数,显然ξ 服从B (200,0.6), 1分np=120,np(1-p)=48, 2分因为n=10000,充分大由中心极限定理可以认为ξ近似服从)48,120(N , 4分, 根据题意知道:999.0)(≥≤∴x P ξ 6分 所以:120()0.99948x -Φ≥,即1.348120≥-x ,解得141≥x , 至少准备141个座位 8分五.(10分)一批糖袋的重量(单位:千克)服从正态分布。
现在从该批糖袋中随机抽取12袋,测得这12糖袋的平均重量为057.3,方差为0.1292(1) 求这批糖袋的平均重量μ的置信度为95%的置信区间,并计算估计的精度。
(2) 求这批糖袋的重量方差2σ的置信度为95%的置信区间。
解: 3593.0=S , 1分( 1)95.01=-α,05.0=α,11112=-=f ,查表得 0.0252(11) 2.201t t α==( 2.2010.2283t n α∆=-== μ的置信度为95%的置信区间为[,](3.0570.2383.0570.238)[2.819,3.295]X X -∆+∆=-+= 4 分估计精度为%2.92922.01==∆-=xA 7分 (2)2σ置信度为95%的估计: 查表得9.21)11()1(2025.022==-χχαn82.3)11()1(2975.0221==--χχαn2222(1)110.35930.06489(1)21.9n s n αχ-⨯==- 22212(1)110.35930.372(1) 3.82n s n αχ--⨯==- 所以,新生男婴儿体重的方差2σ的区间估计为[0.06489,0.372]. 10分六.(8分)某批电子元件的寿命(单位:小时)服从正态分布。
正常情况下,元件的平均寿命为225。
现在从中该批电子元件中任意抽取16件,测得它们的平均寿命为241,样本方差为92。
据此以显著水平=α0.05来判断是否可以认为这批电子元件的平均寿命与225无显著差异?解:样本标准差=s 9.591(1)建立统计假设.225:;225:100≠==μμμH H 1分 (2)建立统计量:x T =分(3)在.0H 成立前提下计算: 6.461T == 5分由.=α0.05求得2(15). 2.131t α= 6分(4)因为)15(αt T >,拒绝.0H 即不可以认为这批电子元件的寿命与225无显著差异.8分*七.(12分)一批由同一种原料织成的布,用不同的印染工艺处理,然后进行缩水处理。
假设采用A 、B 、C 三种不同的工艺,每种工艺处理4块布样,测得缩水率(单位:%)的数据如表1所示。
根据这些数据,完成下列问题:(1) 填写下列未完成的方差分析表(表2),并根据方差分析表以显著水平05.0=α来判断不同的工艺对布的缩水率的影响是否有显著差异?(2) 若有显著差异,则用费歇检验法(即LSD 检验法)做进一步多重比较,并且指出存在显著差异的工艺的总体均值差的置信度为95%的置信区间。
(10分)表2解:(1)完成方差分析表如上 4分(其中F 值1分,其他每空格0.5分) 由05.0=α知26.4)9,2(=αF , F= 5.366>26.4)9,2(=αF , 5分 可认为有显著差异. 6分(2)计算LSD 7分多重比较结果 10分均值差的取间估计 12分*八.(12分)为了研究某地区年度汽车拥有量y (单位:百台)与货运周转量x(1)求y 对x 的线性回归系数与回归剩余标准差,写出经验线性回归方程。
(2)计算样本相关系数,并进行线性回归的显著性检验(显著水平α=0.05)。
(3)求当货运周转量x=0.5时,该地区年度汽车拥有量y 的置信度为95%的置信区间。
解∶5503.12)(2111=-=∑∑==xni i ni i inSy x y xb 1分958.136.174251.2910=⨯-=-=x b y b 2分2212xy e nS b nS SS ⋅-= 206.004256.0)2/(==-=⋅n SS S e x y 4分(1):经验线性回归方程为 x y5503.12958.13ˆ+= 5分 (2)9986.0)(2211=-=∑∑==yxni i ni i inSnS y x y xr 7分检验假设0H :y 对x 的线性回归关系不显著。
α=0.05, 7545.0)5()2(05.0==-rn r α因为 )2(->n r r α 所以拒绝0H ,认为y 对x 的线性回归关系显著, 0>r y 关于x 是正相关的。
9分(3)因为经验回归方程为: x y5503.12958.13ˆ+=。
所以 5.00=x 时,233.205.05503.12958.13ˆ0=⨯+=y==-)5()2(05.0t n t α 2.571∑=⋅--++-=∆n i i xy x x x x nS n t 1220)()(11)2(α 0y 的置信区间为[19.67, 20.80],可靠性为95% 12分。