函数图像题 知式选图

合集下载

高三数学函数图像试题

高三数学函数图像试题

高三数学函数图像试题1.下列四个图中,函数y=的图象可能是( )A. B. C. D.【答案】C.【解析】当时,有,,∴,故排除A,B,又∵当时,有,,∴,故排除D,∴选C.【考点】1.函数的单调性与奇偶性;2.指对数的性质.2.设表示不超过实数的最大整数,则在坐标平面上,满足的点所形成的图形的面积为__________.【答案】4【解析】设都是整数,则满足的点形成的图形是单位正方形(,),其面积为1,而在椭圆上整点有,共4个,因此满足题设条件的点形成的图形是4个单位正方形,其面积为4.【考点】函数图象,图形面积.3.已知函数的图象大致为()【答案】A【解析】,的图象始终位于的图象的上方,所以函数值为正数,排除当取时,,排除.选.【考点】函数的图象.4.已知定义在R上的函数对任意的x满足,当-l≤x<l时,.函数若函数在上有6个零点,则实数a的取值范围是()A.B.C.D.【答案】【解析】由已知,,所以,是周期为的周期函数.函数在上有个零点,即的图象有个交点.结合函数的图象的示意图可知,当,两函数图象有两个交点,当时,两函数图象有一个交点;所以,时,两函数图象应有三个交点,.解得或,故选.【考点】函数的周期性,函数的图象,函数的零点,对数函数的性质.5.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.6.函数的图像大致为( ).【答案】A【解析】函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A.7.已知函数的图象关于直线对称,则可能是()A.B.C.D.【答案】C【解析】∵函数的图象关于直线对称,∴,∴,当时,,故选C.【考点】由的部分图象确定其解析式.8.已知定义在R上的函数满足:,,则方程在区间上的所有实根之和为( )A.B.C.D.【答案】C【解析】由题意知函数的周期为,则函数在区间上的图象如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.【考点】数形结合图像周期性9.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.10.已知函数,则的图象大致为()【答案】A【解析】,令,则,在同一坐标系下作出两个函数的简图,根据函数图象的变化趋势可以发现与共有三个交点,横坐标从小到大依次设为,在区间上有,即;在区间有,即;在区间有,即;在区间有,即.故选【考点】1转化思想;2函数图像。

第五节函数图像

第五节函数图像

第五节(函数图像)第五节函数的图象[知识能否忆起]一、利用描点法作函数图象其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.二、利用基本函数的图象作图1.平移变换(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.2.对称变换(1)y=f(-x)与y=f(x)的图象关于y轴对称.(2)y=-f(x)与y=f(x)的图象关于x轴对称.(3)y=-f(-x)与y=f(x)的图象关于原点对称.(4)要得到y=|f(x)|的图象,可将y=f(x)的图象在x 轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.(5)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0时的图象.3.伸缩变换(1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标变为原来的A倍,横坐标不变而得到.(2)y=f(ax)(a>0)的图象,可将y=f(x)图象上所有点的横坐标变为原来的1a倍,纵坐标不变而得到.[小题能否全取]1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是()A.(2,2)B.(-1,1)C.(3,2) D.(2,3)解析:选D一次函数f(x)的图象过点A(0,1),B(1,2),则f(x)=x+1,代入验证D满足条件.2.函数y=x|x|的图象大致是()解析:选A函数y=x|x|为奇函数,图象关于原点对称.3.(教材习题改编)在同一平面直角坐标系中,函数f(x)=ax与g(x)=a x的图象可能是下列四个图象中的()解析:选B因a>0且a≠1,再对a分类讨论.4.(教材习题改编)为了得到函数y=2x-3的图象,只需把函数y=2x的图象上所有的点向______平移______个单位长度.答案:右 35.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意a =|x |+x令y =|x |+x =⎩⎨⎧ 2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解则a >0.答案:(0,+∞)1.作图一般有两种方法:直接作图法、图象变换法.其中图象变换法,包括平移变换、伸缩变换和对称变换,要记住它们的变换规律.[注意] 对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.2.一个函数的图象关于原点(y 轴)对称与两个函数的图象关于原点(y 轴)对称不同,前者是自身对称,且为奇(偶)函数,后者是两个不同的函数对称.作函数的图象典题导入[例1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =2x +2;(3)y =x 2-2|x |-1.[自主解答] (1)y =⎩⎨⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图1. (2)将y =2x 的图象向左平移2个单位.图象如图2. (3)y =⎩⎨⎧x2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图3.由题悟法画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.以题试法1.作出下列函数的图象:(1)y =|x -x 2|;(2)y =x +2x -1. 解:(1)y =⎩⎨⎧x -x 2,0≤x ≤1,-(x -x 2),x >1或x <0,即y =⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎪⎫x -122+14,0≤x ≤1,⎝ ⎛⎭⎪⎪⎫x -122-14,x >1或x <0, 其图象如图1所示(实线部分).(2)y =(x -1)+3x -1=1+3x -1,先作出y =3x 的图象,再将其向右平移1个单位,并向上平移1个单位即可得到y =x +2x -1的图象,如图2.识图与辨图典题导入[例2] (2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()[自主解答] 法一:由y =f (x )的图象知f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2). 当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎨⎧ 1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎨⎧-1(0≤x ≤1),x -2(1<x ≤2).法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=-1.观察各选项,可知应选B.[答案] B由题悟法“看图说话”常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.以题试法2.(1)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.(2)(2012·东城模拟)已知函数对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象大致为()解析:(1)∵由图象知f(3)=1,∴1 f(3)=1.∴f⎝⎛⎭⎪⎫1f(3)=f(1)=2.(2)∵对∀x∈R有f(x)+f(-x)=0,∴f(x)是奇函数.f(0)=0,y=f(x)的图象关于原点对称,当x<0时,f(x)=-f(-x)=-ln(-x+1)=-ln(1-x),由图象知符合上述条件的图象为D.答案:(1)2(2)D函数图象的应用典题导入[例3](2011·新课标全国卷)已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个[自主解答]根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:可验证当x=10时,y=|lg 10|=1;0<x<10时,|lg x|<1;x>10时|lg x|>1.结合图象知y=f(x)与y=|lg x|的图象交点共有10个.[答案] A若本例中f(x)变为f(x)=|x|,其他条件不变,试确定交点个数.解:根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:由图象知共10个交点.由题悟法1.利用函数的图象研究函数的性质对于已知或易画出在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象研究方程根的个数当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f(x)=0的根就是函数f(x)图象与x轴的交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象的交点的横坐标.以题试法3.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是________.(注意:min 表示最小值)解析:画出示意图(实线部分),⎩⎪⎨⎪⎧2-x 2(x ≤-2),x (-2<x <1),2-x 2(x ≥1), f (x )*g (x )=其最大值为1. 答案:1[典例] (2012·天津高考)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则 实数k 的取值范围是________.[解析] 因为函数y =|x 2-1|x -1=⎩⎨⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,所以函数y =kx -2的图象恒过点(0,-2),根据图象易知,两个函数图象有两个交点时,0<k <1或1<k <4.[答案] (0,1)∪(1,4)[题后悟道] 所谓数形结合思想,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.解答本题利用了数形结合思想,本题首先作出y=|x2-1|x-1的图象,然后利用图象直观确定直线y=kx-2的位置.作图时应注意不包括B、C两点,而函数y=kx-2的图象恒过定点A(0,-2),直线绕A点可以转动,直线过B、C两点是关键点.针对训练1.(2012·长春第二次调研)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.解析:如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( )A .(1,3)B .(0,3)C .(0,2)D .(0,1)解析:选D 因为方程f (x )-a =0的根,即是直线x =a 与函数f (x )=⎩⎪⎨⎪⎧ |2x -1|,x <2,3x -1,x ≥2的图象交点的横坐标,画出函数图象进行观察可以得知,a 的取值范围是(0,1).1.函数f (x )=2x 3的图象( )A .关于y 轴对称B .关于x 轴对称C .关于直线y =x 对称D .关于原点对称 解析:选D 显然函数f (x )=2x 3是一个奇函数,所以其图象关于原点对称.2.函数y =⎩⎨⎧x 2,x <0,2x -1,x ≥0的图象大致是( )解析:选B 当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x 的图象在y 轴右侧的部分向下平移1个单位即可,故大致图象为B.3.(2012·北京海淀二模)为了得到函数y =12log 2(x -1)的图象,可将函数y =log 2x 的图象上所有的点的( )A.纵坐标缩短到原来的12,横坐标不变,再向右平移1个单位长度B.纵坐标缩短到原来的12,横坐标不变,再向左平移1个单位长度C.横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度D.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度解析:选A本题考查图象的平移和伸缩.将y=log2x的图象横坐标不变,纵坐标缩短到原来的12,得y=12log2x的图象,再将y=12log2x的图象向右平移1个单位长度即可.4.(2011·陕西高考)设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()解析:选B表达式“f(x)=f(-x)”,说明函数是偶函数,表达式“f(x+2)=f(x)”,说明函数的周期是2,再结合选项图象不难看出正确选项为B.5.(2012·济南模拟)函数y=lg 1|x+1|的大致图象为()解析:选D由题知该函数的图象是由函数y=-lg|x|的图象左移一个单位得到的,故其图象为选项D中的图象.6.(2011·天津高考)对实数a和b,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,32 B.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,-34 C.⎝⎛⎭⎪⎪⎫-1,14∪⎝ ⎛⎭⎪⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎪⎫-1,-34∪⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ 解析:选B由题意可知f (x )=错误! =⎩⎪⎨⎪⎧ x 2-2,-1≤x ≤32,x -x 2,x <-1或x >32作出图象,由图象可知y =f (x )与y =c 有两个交点时,c ≤-2或-1<c <-34, 即函数y =f (x )-c 的图象与x 轴恰有两个公共点时实数c 的取值范围是(-∞,-2]∪⎝⎛⎭⎪⎪⎫-1,-34. 7.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log 2f (x )有意义, 由函数f (x )的图象知满足f (x )>0的x ∈(2,8]. 答案:(2,8]8.函数f (x )=x +1x 图象的对称中心为________.解析:f (x )=x +1x =1+1x ,把函数y =1x 的图象向上平移1个单位,即得函数f (x )的图象.由y =1x 的对称中心为(0,0),可得平移后的f (x )图象的对称中心为(0,1).答案:(0,1)9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎨⎧ -k +b =0,b =1,得⎩⎨⎧k =1,b =1. ∴y =x +1. 当x >0时,设解析式为y =a (x -2)2-1,∵图象过点(4,0),∴0=a (4-2)2-1,得a =14. 答案:f (x )=⎩⎨⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 10.已知函数f (x )=错误! (1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x取什么值时f(x)有最值.解:(1)函数f(x)的图象如图所示.(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].(3)由图象知当x=2时,f(x)min=f(2)=-1,当x=0时,f(x)max=f(0)=3.11.若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,求a的取值范围.解:当0<a<1时,y=|a x-1|的图象如图1所示,由已知得0<2a<1,即0<a<12.当a>1时,y=|a x-1|的图象如图2所示,由已知可得0<2a<1,即0<a <12,但a >1,故a ∈∅. 综上可知,a 的取值范围为⎝⎛⎭⎪⎪⎫0,12. 12.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.解:(1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x .(2)由题意g (x )=x +a +1x ,且g (x )=x +a +1x ≥6,x ∈(0,2].∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,故a 的取值范围为[7,+∞).1.(2013·威海质检)函数y =f (x )(x ∈R)的图象如图所示,下列说法正确的是( )①函数y =f (x )满足f (-x )=-f (x );②函数y =f (x )满足f (x +2)=f (-x );③函数y =f (x )满足f (-x )=f (x );④函数y =f (x )满足f (x +2)=f (x ).A .①③B .②④C .①②D .③④解析:选C 由图象可知,函数f (x )为奇函数且关于直线x =1对称,所以f (1+x )=f (1-x ),所以f [1+(x +1)]=f [1-(x +1)],即f (x +2)=f (-x ).故①②正确.2.若函数f (x )的图象经过变换T 后所得图象对应函数的值域与函数f (x )的值域相同,则称变换T 是函数f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中变换T 不属于函数f (x )的同值变换的是( )A .f (x )=(x -1)2,变换T 将函数f (x )的图象关于y 轴对称B .f (x )=2x -1-1,变换T 将函数f (x )的图象关于x轴对称C .f (x )=2x +3,变换T 将函数f (x )的图象关于点(-1,1)对称D .f (x )=sin ⎝ ⎛⎭⎪⎪⎫x +π3,变换T 将函数f (x )的图象关于点(-1,0)对称解析:选B 对于A ,与f (x )=(x -1)2的图象关于y 轴对称的图象对应的函数解析式为g (x )=(-x -1)2=(x +1)2,易知两者的值域都为[0,+∞);对于B ,函数f (x )=2x -1-1的值域为(-1,+∞),与函数f (x )的图象关于x 轴对称的图象对应的函数解析式为g (x )=-2x -1+1,其值域为(-∞,1);对于C ,与f (x )=2x +3的图象关于点(-1,1)对称的图象对应的函数解析式为2-g (x )=2(-2-x )+3,即g (x )=2x +3,易知值域相同;对于D ,与f (x )=sin ⎝⎛⎭⎪⎪⎫x +π3的图象关于点(-1,0)对称的图象对应的函数解析式为g (x )=sin ⎝⎛⎭⎪⎪⎫x -π3+2,其值域为[-1,1],易知两函数的值域相同.3.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.解:(1)证明:设P(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),点P关于直线x=2的对称点为P′(4-x0,y0).因为f(4-x0)=f(2+(2-x0))=f(2-(2-x0))=f(x0)=y0,所以P′也在y=f(x)的图象上,所以函数y =f(x)的图象关于直线x=2对称.(2)因为当x∈[-2,0]时,-x∈[0,2],所以f(-x)=-2x-1.又因为f(x)为偶函数,所以f(x)=f(-x)=-2x-1,x∈[-2,0].当x∈[-4,-2]时,4+x∈[0,2],所以f(4+x)=2(4+x)-1=2x+7.而f(4+x)=f(-x)=f(x),所以f(x)=2x+7,x∈[-4,-2].所以f (x )=⎩⎨⎧ 2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].1.设D ={(x ,y )|(x -y )(x +y )≤0},记“平面区域D 夹在直线y =-1与y =t (t ∈[-1,1])之间的部分的面积”为S ,则函数S =f (t )的图象的大致形状为()解析:选C 如图平面区域D为阴影部分,当t =-1时,S =0,排除D ;当t =-12时,S >14S max ,排除A 、B.2.(2012·深圳模拟)已知定义在区间[0,1]上的函数y =f (x )的图象如图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2);③f (x 1)+f (x 2)2<f ⎝ ⎛⎭⎪⎫x 1+x 22. 其中正确结论的序号是________.(把所有正确结论的序号都填上)解析:①错误,①即为f (x 2)-f (x 1)x 2-x 1>1,在(0,1)上不恒成立;由题图知,0<x 1<x 2<1时,f (x 1)x 1>f (x 2)x 2,②正确;图象是上凸的,③正确.答案:②③。

2022新高考数学高频考点题型归纳11函数图像(学生版)

2022新高考数学高频考点题型归纳11函数图像(学生版)

专题11函数图像一、关键能力1.在实际情境中,会根据不同的需要选择图象法、列表法、解析式法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解集的问题. 二、教学建议1.学生应掌握图象的平移变换、对称变换、翻折变换、伸缩变换等;2.函数图象的应用很广泛,研究函数的性质、解决方程解的个数、不等式的解等都离不开函数的图象,对图象的控制能力往往决定着对函数的学习效果.3.函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法. 三、自主梳理 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )―——————―→关于x 轴对称y =-f (x ); ②y =f (x )――——————―→关于y 轴对称y =f (-x ); ③y =f (x )―――——————→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――——————―→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )―――——————→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――——————―→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)翻折变换(☆☆☆)①y =f (x )――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |);②y =f (x )――――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.(4)伸缩变换①y =f (x ) 至 y =f (ax ).②y =f (x ) 至 y =af (x ).――——————―——————―→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变四、高频考点+重点题型 考点一、作图例1-1(対称、翻折、分段作图)画下列函数图像 (1)y =|lg x |; (2)y =x 2-2|x |-1;例1-2.(平移作图)(1)y =2x +2; (2)y =x +2x -1.例1-3(周期、类周期函数作图)定义函数f (x )=⎪⎪⎩⎪⎪⎨⎧>≤≤--2,)2(2121|,23|84x x f x x 则函数g (x )=xf (x )-6在区间[1,2n ](n ∈N *)内所有零点的和为( )A .nB .2n C.34(2n -1) D.32(2n -1)对点训练1.已知函数()2,101x x f x x --≤≤⎧⎪=<≤,则下列图象错误的是( )A .()y f x =的图象:B .()1y f x =-的图象:C .()y fx =的图象:D .()y f x =-的图象:对点训练2.(2019年高考全国Ⅱ卷理)设函数的定义域为R ,满足,且当时,.若对任意,都有,则m 的取值范围是A .B .C .D .考点二、识图例1-1.(由解析式选图像) 【2020·天津卷】函数241xy x =+的图象大致为 ( )()f x (1) 2 ()f x f x +=(0,1]x ∈()(1)f x x x =-(,]x m ∈-∞8()9f x ≥-9,4⎛⎤-∞ ⎥⎝⎦7,3⎛⎤-∞ ⎥⎝⎦5,2⎛⎤-∞ ⎥⎝⎦8,3⎛⎤-∞ ⎥⎝⎦A BC D例2-2.(由图像选解析式)(2021·浙江高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =-- C .()()y f x g x = D .()()g x y f x =例2-3.(实际应用识图像)在2 h 内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减.下面能反映血液中药物含量Q 随时间t 变化的图象是( )例2-4(两个函数图像对比)在同一直角坐标系中,函数y=ax2-x+a2与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是()对点训练1.函数y=2x2-e|x|在[-2,2]的图象大致为()对点训练2.以下四个选项中的函数,其函数图象最适合如图的是()A.y=||2xexB.y=2(1)||xx exC .y =|2|xe xD .y =22xe x对点训练3.(2020·江西临川一中模拟) 广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”.如图,是由一个半径为2的大圆和两个半径为1的半圆组成的“阴阳鱼太极图”,圆心分别为O ,O 1,O 2,若一动点P 从点A 出发,按路线A →O →B →C →A →D →B 运动(其中A ,O ,O 1,O 2,B 五点共线),设P 的运动路程为x ,y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象为( )对点训练4.(2021·四川高三三模(理))函数()()log a f x x b =--及()g x bx a =+,则()y f x =及y g x 的图象可能为( )A .B .C .D .考点三、利用图像解不等式 例3-1(转化为两个图像的上下方)【2020年高考北京】已知函数()21xf x x =--,则不等式()0f x >的解集是A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞例3-2(图像在x 轴的上下方)函数f (x )是定义域为(-∞,0)∈(0,+∞)的奇函数,在(0,+∞)上单调递增,f (3)=0,若x ·[f (x )-f (-x )]<0,则x 的取值范围为________.对点训练1.(2021·浙江高三专题练习)若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦对点训练2.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________.考点四、利用图像求解方程问题 例4-1.(方程根的个数)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.例4-2.已知12,x x 是方程x2210,log 10x x x +=+=的两个根,则12x x +=对点训练1.已知函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)对点训练2.若满足225xx +=, 满足()222log 15x x +-=, 则+=考点五、利用图像研究函数性质 例5-1.(利用图像研究单调性)1x 2x 1x 2x已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)例5-2(利用图像研究函数最值或值域)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值 _.对点训练1.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a 的取值范围是_____.对点训练2.(2020·全国高三其他(文))已知函数在区间的值域为,则( ) A .2 B .4 C .6 D .8()()()22241x x f x x x ee x --=--++[]1,5-[],m M m M +=巩固训练 一、单项选择题1.函数f (x )=x cos x 2在区间[0,4]上的零点个数为________. A. 4 B. 3 C. 2 D. 62.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( ) A.{x |-1<x ≤0} B.{x |-1≤x ≤1} C.{x |-1<x ≤1} D.{x |-1<x ≤2}3.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k的取值范围是________.4.(2021·四川达州市·高三二模(理))已知函数()f x 与()g x 的部分图象如图1,则图2可能是下列哪个函数的部分图象( )A .(())y f g x =B .()()y f x g x =C .(())y g f x =D .()()f x yg x =5.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .二、多项选择题7.设f (x )的定义域为R ,给出下列四个命题其中正确的是( )A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称;B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称;C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称;D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.8.观察相关的函数图象,对下列命题的真假情况进行判断,其中真命题为( )A .10x =x 有实数解B .10x =x 2有实数解C .10x >x 2在x ∈(0,+∞)上恒成立D .10x =-x 有两个相异实数解.三、填空题9. 设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________.10.函数f (x )=⎩⎨⎧ln x (x >0),--x (x ≤0)与g (x )=|x +a |+1的图象上存在关于y 轴对称的点,则实数a 的取值范围是________.四、解答题11.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围.12.(1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x=m对称;(2)若函数y=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值.。

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

函数的图象(精品课件)

函数的图象(精品课件)
解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12

高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析1.如图,点A、C都在函数的图象上,点B、D都在轴上,且使得△OAB、△BCD都是等边三角形,则点D的坐标为.【答案】.【解析】如下图所示,分别过点A、C作轴的垂线,垂足分别为E,F.设,,则,,所以点A、C的坐标为、,所以,解得,所以点D的坐标为.【考点】反比例函数图像上点的坐标特征;等边三角形的性质.2.偶函数与奇函数的定义域均为,在,在上的图象如图,则不等式的解集为()A.B.C.D.【答案】C【解析】是偶函数,偶函数的图像关于轴对称,结合图像知的解集,的解集;是奇函数,奇函数的图像关于原点对称,结合图像知的解集,的解集;等价于或,所以解集为,故选C.【考点】1.函数的图像;2.函数的奇偶性.3.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)(如f(2)=3是指开始买卖后两个小时的即时价格为3元g(2)=3表示2个小时内的平均价格为3元),下图给出四个图象:其中可能正确的图象序号是 .A.①②③④B.①③④C.①③D.③【答案】D【解析】①错,因为即时价格是下降的,所以从开始后,平均价格应在即时价格的上面,不会有交点;②错,因为,如果平均价格不变,那么即时价格也应不变;③正确,因为开始即时价格是上升的,所以一段时间的平均价格应该在他的下面,后即时价格下降了,那么经过一段时间,会出现平均价格在即时价格的上面;④错,即时价格为折线,平均价格应为曲线.故选D.【考点】函数的图像4.已知 ,,则函数的图象必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】函数的图象可以看作是由函数的图象向下平移个单位而得到;因为,所以函数单调递减,又,函数图象与轴交点纵坐,如图所示,图象不可能过第一象限.故选A.【考点】1、指数函数的图象与性质;2、函数图象变换.5.已知,若对任意与的值至少有一个为正数,则实数的取值范围是()A.B.C.D.【答案】B【解析】(采用特值检验法),若,满足题意,可排除A、D,若,,显然满足题意,故选B.【考点】二次函数、一次函数的图像与性质的综合运用.6.已知幂函数的图象经过点(4,2),则()A.B.4C.D.8【答案】B【解析】因为幂函数的图象经过点(4,2),所以有,解得,所以.【考点】幂函数解析式与图象.7.函数的图象的大致形状是A. B. C. D.【答案】C【解析】由题意函数可化为,又,故当时,函数为增函数,且,那么可排除B、D选项;而当时,函数为减函数,且.所以正确答案为C.【考点】1.分段函数;2.函数单调性、图像.8.同时满足以下三个条件的函数是()①图像过点;②在区间上单调递减③是偶函数.A.B.C.D.【答案】C【解析】选项A中,函数对称轴为x=-1,所以不是偶函数,排除A;选项B中,函数在区间上单调递增,排除B;选项D中,函数图像不过点,排除D.故选择C.【考点】函数的图像和性质.9.已知函数,则函数的反函数的图象可能是()【答案】D【解析】函数的图像恒过(0,1)点,函数的图像恒过(-1,1),则其反函数的图像恒过(1,-1)而选项A恒过(0,0),选项B恒过(2,0),选项C恒过(1,0),故排除;所以正确选项为D【考点】1、函数图像的平移;2、反函数的性质.10.设函数的图像过点,其反函数的图像过点,则等于 ( ) A.1B.2C.3D.【答案】D【解析】本题考查了互为反函数的函数图象之间的关系、指数式和对数式的互化等函数知识;根据反函数的图象过点,则原函数的图象过点,再由函数的图象过点,构建方程即可求得的值.由图象过点,得转化为解得故选D【考点】对数函数性质,反函数.11.设奇函数f(x)的定义域为[-5,5],在上是减函数,又f(-3)=0,则不等式xf(x)<0的解集是 .【答案】【解析】先根据奇函数图象关于原点对称得到其在上的图象,在把所求不等式转化结合图象即可得到结论.由题意可画之内的示意图,因为所以自变量和函数值符号相反,由图可知【考点】函数奇偶性的性质;函数的图象;其他不等式的解法.12.定义运算则函数的图象是 ().【答案】A【解析】本题主要考查学生阅读理解能力,关键是能不能把所定义的新运算转化为大家已经熟悉的知识.时,,时,,∴∴的图象选A.【考点】分段函数的图象.13.函数在上取得最小值,则实数的集合是()A.B.C.D.【答案】C【解析】由零点分段法,我们可将函数f(x)=(2-x)|x-6|的解析式化为分段函数的形式,然后根据分段函数分段处理的原则,画出函数的图象,进而结合图象数形结合,可得实数a的集合。

20道已知函数解析式判断函数图像问题

20道已知函数解析式判断函数图像问题

20道已知函数解析式判断函数图像问题1.函数xx y ln =的图象大致是( )2.设函数()sin cos f x x x x =+的图象在点x t =处切线的斜率为()g t ,则()y g t =函数的图象一部分可以是( )A .B .C .D .3.函数xy xln 2=的图象大致为4.已知函数a kx y +=的图象如图所示,则函数k x a y +=的图象可能是5.函数3()2x y x x =-⋅的图象大致是( )6.函数()43tan f x x x =-在,22ππ⎛⎫- ⎪⎝⎭上的图象大致为( ). A .B .C .D .7. 函数()(1)ln f x x x =-的图象可能为( ).8.已知函数151)(--=x e x f x (其中e 为自然对数的底数),则y=f(x)的大致图像为( )9. 已知a>0且a ≠1,函数f(x)=log a (x +x 2+b)在(-∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a ||x|-b|的图象是( )A .B. C .D .10.(5分)函数2()(1)sin 1xf x x e=-+图象的大致形状是( )A .B .C .D .11.函数的大致图象为( )A. B.C. D.12.函数的图象大致为A. B.C. D.13.函数的部分图象大致是14.函数的大致图象是()()21xf xx-=A .B .C .D .15.函数()ln f x x x =的图像可能是( )16.函数()()122ln 1222++⋅-=x x x y 的部分图像是( )A .B .C .D .17.已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象A. B.C. D.18.函数xx x y 2)(3-=的图象大致是( )19.函数f (x )=2sin 1x x +的图象大致为( )A .B .C .D .20.函数2sin 2x y x =-的图像大致是( )A. B.C. D.答案1. C2. B3. D4. B5. B6. D7. A8. D9. D10. 【解答】解:21()(1)sin sin 11xx xe f x x x e e -=-=++,则111()sin()(sin )sin ()111x x xx x xe e ef x x x x f x e e e ------=-=-==+++,则()f x 是偶函数,则图象关于y 轴对称,排除B ,D , 当1x =时,f (1)1sin101e e-=<+,排除A ,故选:C . 11.【答案】A 【解析】【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于y轴对称,排除C,D,当,排除B,故选:A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键12.D13.C14.D15.A16.C17.B18.B19.A20.C。

指数函数的图像及性质

指数函数的图像及性质

∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;

xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是

解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.

第04讲 函数的图象(解析版)

第04讲 函数的图象(解析版)

第04讲 函数的图象【知识点总结】一、掌握基本初等函数的图像 (1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等). 2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的;②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的;③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的;④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的;(2)对称变换①()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的②()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数. 三、函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.【典型例题】例1.(2022·浙江·高三专题练习)函数2ln ()1||x f x x =+的大致图象为( ) A . B .C .D .【答案】C 【详解】当0x >时2ln ()1x f x x=+,则()222222212ln 2ln 2(1ln )x x x x x f x x x x ⋅---'===. 当0e x <<时,()0f x '>,所以()f x 在区间(0,e)上单调递增, 当e x >时()0f x '<,所以()f x 在区间(e,)+∞上单调递减,排除A ,B . 又2ln e 2(e)110lel ef =+=+>,排除D . 故选:C .例2.(2022·全国·高三专题练习)已知()21πsin 42f x x x ⎛⎫=++ ⎪⎝⎭,()f x '为()f x 的导函数,则()f x '的大致图象是( )A .B .C .D .【答案】A 【详解】 ∵()221π1sin cos 424f x x x x x ⎛⎫=++=+ ⎪⎝⎭, ∴()1sin 2f x x x '=- 易知()1sin 2f x x x '=-是奇函数,其图象关于原点对称,故排除B 和D ,由ππ106122f ⎛⎫'=-< ⎪⎝⎭,排除C ,所以A 正确.故选:A.例3.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x hr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H Hπππ==⋅⋅=⋅, 令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例4.(2022·全国·模拟预测)函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .3()cos f x x x =-B .1()sin f x x x =+C .21()cos f x x x =- D .1()sin f x x x=-【答案】D 【详解】由图知0x ≠,排除A 选项;当0x >,且x 趋近于0时,由图知()f x 趋近于-∞,排除B ; 又C 选项中2211()cos()cos ()()f x x x f x x x -=--=-=-,其图象关于y 轴对称,不符合. 故选:D.例5.(2022·全国·高三专题练习)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.【技能提升训练】一、单选题1.(2022·全国·高三专题练习)函数()()1xxa f x a x=>的大致图象是( ) A . B .C .D .【答案】C 【分析】按x 的正负分类讨论,结合指数函数图象确定结论. 【详解】由题意,0,0x x a x y a x ⎧>=⎨-<⎩,∵1a >,∴只有C 符合. 故选:C.2.(2022·全国·高三专题练习)函数()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭的图象大致形状为( ).A .B .C .D .【答案】A 【分析】首先判断函数的奇偶性,再根据特殊点的函数值判断可得; 【详解】解:因为()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭,所以定义域为R ,且()()()221sin 1sin 11x xf x x x f x e e -⎛⎫⎛⎫-=--=-= ⎪ ⎪++⎝⎭⎝⎭,即()f x 为偶函数,函数图象关于y 轴对称,故排除C 、D ;当2x =时,222210111e e e--=<++,sin 20>,所以()2221sin 201f e ⎛⎫=-< ⎪+⎝⎭,故排除B ; 故选:A3.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A4.(2022·江苏·高三专题练习)设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .【答案】B 【分析】根据导函数看正负,原函数看升降,分析出大致图像,在结合每个选项可得出答案.【详解】由函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值, 所以当1x >时,()0f x '<;1x =时,()0f x '=;1x <时,()0f x '>; 所以当0x <时,()0y xf x '=->,当01x <<时,()0y xf x '=-<, 当0x =或1x = 时,()0y xf x '=-=,当1x >时,()0y xf x '=->, 可得选项B 符合题意. 故选:B .5.(2022·全国·高三专题练习)函数()ln ,0ln(),0x x e x x f x e x x -⎧>=⎨-<⎩在[)(]2,00,2-上的大致图象是( )A .B .C .D .【答案】D 【分析】通过函数的奇偶性可排除A ,B ;通过计算(2)f 的值可排除C ,进而可得结果. 【详解】由题可知函数()f x 的定义域关于原点对称,且当0x >时,0x -<,[]()()ln ()ln ()x x f x ex e x f x ---=⋅--=⋅=, 当0x <时,0x ->,()ln()()x f x e x f x --=⋅-=,故()f x 为偶函数,排除A ,B ;而222(2)ln 232e f e e =>>,排除C .故选:D .6.(2022·全国·高三专题练习)已知函数f (x )=x +12x -,x ∈(2,8),当x =m 时,f (x )有最小值为n .则在平面直角坐标系中,函数1()log mg x x n =+的图象是( )A .B .C .D .【答案】A 【分析】由均值不等式易知m =3,n =4,则函数13()log |4|g x x =+,判断函数g (x )的单调性,结合选项即可得解. 【详解】∵函数1()2224,(2,8)2f x x x x =-++≥=∈-,当且仅当122x x -=-,即m=3时取等号, ∴m =3,n =4, 则函数13()log |4|g x x =+的图象在(﹣4,+∞)上单调递减,在(﹣∞,﹣4)上单调递增,观察选项可知,选项A 符合. 故选:A .7.(2022·全国·高三专题练习)函数()||3e x x xf =的部分图象大致为( )A .B .C .D .【答案】C 【分析】先求解()f x 的定义域并判断奇偶性,然后根据()1f 的值以及()f x 在()0,∞+上的单调性选择合适图象. 【详解】()e3xf x x =定义域为()(),00,-∞⋃+∞,()e 3xf x x-=-, 则()()f x f x -=-,()f x 为奇函数,图象关于原点对称,故排除B ;()e113f =<,故排除A ; ∵()e3xf x x =,当0x >时,可得()()21e 3xx f x x -'=,当1x >时,()0f x '>,()f x 单调递增,故排除D. 故选:C.8.(2022·全国·高三专题练习)函数y 3)A .B .C .D .【答案】A 【分析】判定奇偶性,根据奇函数的图象性质排除C;考察在(0,1)和(1,+∞)上的函数值的正负,进一步取舍判定.(也可使用赋值法) 【详解】 由题意,设3()f x =3()()f x f x -==-,所以函数的奇函数,故排除C;当01x <<时,()410,0x f x -<∴<,当1x >时,()41,0x f x >∴>,排除BD ,故选:A.9.(2022·全国·高三专题练习(文))已知函数()2,101x x f x x --≤≤⎧⎪=<≤,则下列图象错误的是( )A .()y f x =的图象:B .()1y f x =-的图象:C .()y f x =的图象:D .()y f x =-的图象:【答案】C 【分析】作出函数()2,101x x f x x --≤≤⎧⎪=<≤,结合四个选项的函数及图象变换,即可得出图象错误的选项,得到答案. 【详解】先作出()2,101x x f x x --≤≤⎧⎪=<≤的图象,如图所示,所以A 正确;对于B ,()1y f x =-的图象()f x 是由的图象向右平移一个单位得到,故B 正确; 对于C ,当0x >时,()y f x =的图象与()f x 的图象相同,且函数()y f x =的图象关于y 轴对称,故C 错误;对于D ,()y f x =-的图象与()f x 的图象关于y 轴对称而得到,故D 正确. 故选:C .10.(2022·全国·高三专题练习(文))下列四个图象中,与所给三个事件吻合最好的顺序为( )①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ②我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.其中y 表示离开家的距离,t 表示所用时间. A .④①② B .③①②C .②①④D .③②①【答案】A 【分析】根据三个事件的特征,分析离家距离的变化情况,选出符合事件的图像. 【详解】对于事件①,中途返回家,离家距离为0,故图像④符合;对于事件②,堵车中途耽搁了一些时间,中间有段时间离家距离不变,故图像①符合; 对于事件③,前面速度慢,后面赶时间加快速度,故图像②符合; 故选:A.11.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x hr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A12.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >【答案】A 【分析】 由()b xf x a-=,可得1()x bf x a -⎛⎫= ⎪⎝⎭,由图像可知函数是减函数,则101a<<,从而可求出a 的范围,由0(0)1f <<可求出b 的取值范围 【详解】 由()b xf x a-=,可得1()x bf x a -⎛⎫= ⎪⎝⎭,因为由图像可知函数是减函数,所以101a<<,所以1a >, 因为0(0)1f <<,所以001b a a <<=,所以0b <, 故选:A13.(2022·浙江·高三专题练习)函数2()x xe ef x ax bx c-+=++的图象如图所示,则( )A .0,0,0a b c <=<B .0,0,0a b c <<=C .0,0,0a b c >=>D .0,0,0a b c >=<【答案】D 【分析】由函数的奇偶性可求出0b =,再由函数图象不连续即可知分母等于零有解,即可排除AC. 【详解】解:由图象可知,函数的偶函数,即()()f x f x -=,即22x x x xe e e e ax bx c ax bx c--++=+++-,则0b =,B 不正确;由图象可知,20ax bx c ++=有解,即0ac <,故AC 不正确, 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.14.(2022·全国·高三专题练习)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B 【分析】 令()0f x =得到1ln x n m=,再根据函数图象与x 轴的交点和函数的单调性判断. 【详解】令()0f x =得mx e n =,即ln mx n =, 解得1ln x n m=, 由图象知1l 0n x mn =>, 当0m >时,1n >,当0m <时,01n <<,故排除AD , 当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B15.(2022·全国·高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【分析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可. 【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ; 当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .16.(2022·江苏·高三专题练习)为调整某学校路段的车流量问题,对该学校路段115时的车流量进行了统计,折线图如图,则下列结论错误的是( )A .9时前车流量在逐渐上升B .车流量的高峰期在9时左右C .车流量的第二高峰期为12时D .9时开始车流量逐渐下降【答案】D 【分析】根据图象得出车流量的增减性与最值,由此可得出结论. 【详解】由折线图知,9时前车流量在逐渐增加,选项A 正确; 车流量的高峰期在9时左右,选项B 正确;12时是车流量的第二高峰期,选项C 正确;12时左右车流量又有些回升,所以9时开始车流量逐渐下降错误,选项D 错误.故选:D .17.(2022·全国·高三专题练习)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .【答案】D 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 18.(2022·全国·高三专题练习)函数(1)lg ||()|1|x x g x x +=+的图象向右平移1个单位长度得到函数()f x 的图象,则()f x 的图象大致为( )A .B .C .D .【答案】D【分析】根据函数图象的变换,求得函数lg |1|()||x x f x x -=,根据当0x <时,得到()0f x <,可排除A 、B ;当01x <<时,得到()0f x <,可排除C ,进而求解. 【详解】由题意,可得lg |1|()(1)||x x f x g x x -=-=,其定义域为(,0)(0,1)(1,)-∞⋃⋃+∞, 当0x <时,11x -+>,函数lg |1|lg(1)()||x x x x f x x x--+===-lg(1)0x --+<, 故排除A 、B 选项;当01x <<时,011x <-+<,故函数lg |1|()||x x f x x -==lg(1)lg(1)0x x x x-+=-+<,故排除C 选项;当x 1>时,函数lg |1|lg(1)()lg(1)||x x x x f x x x x--===-, 该函数图象可以看成将函数lg y x =的图象向右平移一个单位得到,选项D 符合. 故选:D .19.(2022·全国·高三专题练习)已知函数f (x )的图像如图所示,则函数f (x )的解析式可能是( )A .()()44||x xf x x -=+ B .()2()44log ||x xf x x -=-C .()2()44log ||x xf x x -=+D .()12()44log ||x xf x x -=+【答案】C 【分析】()(44)||x x f x x -=+, f (1)≠0,A 不正确;2()(44)log ||x x f x x -=-是奇函数,不满足题意,B 不正确;12()(44)log ||x x f x x -=+,当x ∈(0,1)时,()0f x >,不满足题意,D 不正确.【详解】由函数f (x )的图像知函数f (x )是偶函数,且当x=1时,f (1)=0. ()(44)||x x f x x -=+是偶函数,但是f (1)≠0,A 不正确; 2()(44)log ||x x f x x -=-是奇函数,不满足题意,B 不正确;12()(44)log ||x x f x x -=+是偶函数,f (1)=0,但当x ∈(0,1)时,()0f x >,不满足题意,D不正确. 故选:C.20.(2022·全国·高三专题练习)已知函数f (x )的图象如图所示,则函数f (x )的解析式可能是( )A .f (x )=(4x ﹣4﹣x )|x |B .f (x )=(4x ﹣4﹣x )log 2|x |C .f (x )=(4x +4﹣x )|x |D .f (x )=(4x +4﹣x )log 2|x |【答案】D 【分析】根据题意,用排除法分析:利用函数的奇偶性可排除A 、B ,由区间(0,1)上,函数值的符号排除C ,即可得答案. 【详解】根据题意,用排除法分析:对于A ,f (x )=(4x ﹣4﹣x )|x |,其定义域为R ,有f (﹣x )=(4﹣x ﹣4x )|x |=﹣f (x ),则函数f (x )为奇函数,不符合题意;对于B ,f (x )=(4x ﹣4﹣x )log 2|x |,其定义域为{x |x ≠0},有f (﹣x )=(4﹣x ﹣4x )log 2|x |=﹣f (x ),则函数f (x )为奇函数,不符合题意;对于C ,f (x )=(4x +4﹣x )|x |,在区间(0,1)上,f (x )>0,不符合题意;对于D , f (﹣x )=(4x +4﹣x )log 2|x |=f (x )为偶函数,且在区间(0,1)上,f (x )<0,符合题意 故选:D21.(2022·全国·高三专题练习)已知某函数的部分图象大致如图所示,则下列函数中最合适的函数是( )A .()()sin x xf x e e -=+ B .()()sin x xf x e e -=- C .()()cos x xf x e e -=-D .()()cos x xf x e e -=+【答案】D 【分析】根据特殊值排除A 、C ,再判断函数的奇偶性即可排除B ; 【详解】解:对于A :()()sin x x f x e e -=+,()()000sin sin 20f e e =+=>,故A 错误; 对于B :()()sin x xf x e e -=-,则()()()()sin sin x x x x f x e e e e f x ---=-=--=-,故()()sin x x f x e e -=-为奇函数,故B 错误;对于C :()()cos x x f x e e -=-,则()()000cos cos01f e e =-==,故C 错误;对于D :()()cos x x f x e e -=+,()()000cos cos 20f e e =+=<,且()()()cos x xf x e e f x --=+=,即()()cos x xf x e e -=+为偶函数,满足条件;故选:D22.(2022·全国·高三专题练习)已知函数()y f x =的图象如图所示,则此函数可能是( )A .()sin ln f x x x =⋅B .()sin ln f x x x =-⋅C .()sin ln f x x x =⋅D .()sin ln f x x x =⋅【答案】A 【分析】由图象对称性确定奇偶性,再由函数值的正负排除错误选项,得出正确结论. 【详解】图象关于原点对称,为奇函数,选项BCD 中定义域都是{|0}x x >,不合,排除, 选项A 是奇函数. 故选:A . 【点睛】思路点睛:本题考查由函数图象选择函数解析式,可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.23.(2022·浙江·高三专题练习)已知函数()f x 的大致图象如下,下列选项中e 为自然对数的底数,则函数()f x 的解析式可能为( )A .x x eB .1x x e +C .2x x e e --D .x xx x e e e e--+-【答案】D 【分析】分析各选项中函数的奇偶性,结合特殊值法可得出合适的选项. 【详解】由图可知,函数()f x 为奇函数. 对于A 选项,函数()x x f x e =的定义域为R,()()x xx xf x f x e e ---=≠-=-, 函数()xxf x e =不是奇函数,排除A 选项; 对于B 选项,函数()1x x f x e +=的定义域为R,()()11x xx x f x f x e e --+-=≠-=-,函数()1xx f x e +=不是奇函数,排除B 选项; 对于C 选项,由0x x e e --≠可得0x ≠,即函数()2x x e ef x -=-的定义域为{}0x x ≠, ()()2x x f x f x e e --==--,函数()2x x e e f x -=-为奇函数,()22221f e e-=<-, C 选项不满足要求;对于D 选项,由0xxe e --≠可得0x ≠,即函数x x x xe ef xe e的定义域为{}0x x ≠,()()x xx x e e f x f x e e --+-==--,函数x x x xe ef xe e为奇函数,当0x >时,()1x xx x e e f x e e--+=>-,满足题意.故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.二、多选题24.(2022·全国·高三专题练习)函数()||()af x x a R x=+∈的图象可能是( )A .B .C .D .【答案】ABD 【分析】根据题意,分0a =、0a >以及0a <三种情况讨论函数的图象,分析选项即可得答案.【详解】 解:根据题意,当0a =时,()||f x x =,(0)x ≠,其图象与选项A 对应,当0a >时,,0(),0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩,在区间(0,)+∞上,()a f x x x =+,其图象在第一象限先减后增,在区间(,0)-∞上,()f x 为减函数,其图象与选项B 对应,当0a <时,,0(),0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩,在区间(0,)+∞上,()f x 为增函数,在区间(,0)-∞上,()[()]a af x x x x x-=-+=-+-,其图象在第二象限先减后增,其图象与选项D 对应, 故选:ABD .25.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.26.(2022·全国·高三专题练习)如图所示的四个容器高度都相同.将水从容器项部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中正确的是( )A .B .C .D .【答案】BCD 【分析】根据几何体的形状判断每增加一个高度需要的水是越多那么增加的比较平缓,每增加一个高度需要的水越少,那么增加的比较快,比较图象判断选项. 【详解】对于第一幅图,不难得知水面高度的增加应是均匀的,因此A 不正确;对于第二幅图,随着时间的增加,越往上,增加同一个高度,需要的水越多,因此趋势愈加平稳,所以B 正确;对于第三幅图,开始是下面窄,上面宽,增加同一个高度需要的水越多,因此趋势愈加平稳,过了一半以后,越往上面越窄,增加同一个高度需要的水越少,因此趋势越快,所以C 正确;对于第四幅图,开始下面宽,上面窄,随着时间的增加,越往上,增加同一个高度,需要的水越少,因此趋势越快,过了一半以后,越往上面越宽,增加同一个高度,需要的水水越多,因此趋势越平稳,所以D 正确. 故选:BCD 【点睛】本题考查根据实际问题判断函数的图象,重点考查理解能力,属于中档题型. 27.(2022·全国·高三专题练习)已知函数f(x)的局部图象如图所示,则下列选项中不可能是函数f(x)解析式的是()A.y=x2cos x B.y=x cos x C.y=x2sin x D.y=x sin x【答案】ABCD【分析】根据图象判断函数为奇函数,且当x>0,f(x)>0,利用排除法进行判断即可.【详解】由图象知函数为奇函数,则排除A,D,两个函数为偶函数,当x>0时,f(x)>0,排除B,C,故ABCD都不成立,故选:ABCD.三、填空题28.(2022·全国·高三专题练习)在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图像只有一个交点,则a的值为________.【答案】1 2【分析】在同一平面直角坐标系内,作出函数图象,找出符合题意的临界条件,求出a的值,【详解】在同一平面直角坐标系内,作出函数y=2a与y=|x-a|-1的大致图象,如图所示.由题意,可知2a=-1,则a=1 2 -.故答案为:1 2 -【点睛】本题考查函数的图象,考查学生数形结合思想,属于基础题.。

届高三数学一轮复习-函数的图像及其应用(共58张PPT)

届高三数学一轮复习-函数的图像及其应用(共58张PPT)

考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
(2)伸缩变换:
f(ωx) . y=f(x)―0―<AA>―<1―,1,―横横―坐坐―标―标不―不变―变,―,纵―纵―坐坐―标标―伸缩―长―短为―为原―原来―来的―的―AA倍―倍→ y= Af(x) .
(3)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x) ; y=f(x)―关―于―y―轴―对―称→y= f(-x); y=f(x)―关―于―原――点―对―称→y= -f(-x) . (4)翻折变换: y=f(x)―去将―掉―y轴y―轴右―左边―边的―图―图, ―象―保翻―留折―y到轴―左―右边―边―去图→y= f(|x|) ; y=f(x)―将―x―轴―下―方保―的 留―图x―轴象―上翻―方―折图―到―上―方―去→y= |f(x)| .
⊥AB交AB于E,当l从左至右移动(与线段
AB有公共点)时,把四边形ABCD分成两部分,设AE=x,
左侧部分的面积为y,则y关于x的图象大致是

高考中所有的函数图像大汇总

高考中所有的函数图像大汇总

高考中所有的函数图像大汇总 专项二 高考用到的函数图像总结高考中用到的函数图像是指:一次函数图像、反比例函数图像、二次函数图像、幂函数图像(五种)、对勾(也称对号)函数图像、指数函数图像、对数函数图像、简单的三角函数图像、简单的三次函数图像一、一次函数图像(1)函数)0(≠+=k b kx y 叫做一次函数,它的定义域是R ,值域是R ; (2)一次函数的图象是直线,这条直线不能竖直,所以一次函数又叫线性函数;(3)一次函数)0(≠+=k b kx y 中,k 叫直线的斜率,b 叫直线在y 轴上的截距; 0>k 时,函数是增函数,0<k 时,函数是减函数;注意截距不是距离的意思,截距是一个可正可负可为零的常数 (4)0=b 时该函数是奇函数且为正比例函数,直线过原点;0≠b 时,它既不是奇函数,也不是偶函数; (5)作一次函数图像时,一般先找到在坐标轴上的两个点,然后连线即可 二、反比例函数图像 (一)反比例函数的概念1.()可写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可写成xy=k 的形式,用它可迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x 轴、y 轴无交点.(二)反比例函数及其图象的性质函数解析式:(),自变量的取值范围:越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图1 图2 三、二次函数图像(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减对称性函数的图象关于x=-b2a对称(2)我们在做题的时候,作比较详细的二次函数图像,需要作出开口方向、对称轴所在位置、与两个坐标轴的交点位置、顶点所在位置,而不能随手一条曲线,就当做二次函数的图像了。

专题11 函数的图象(学生版)高中数学53个题型归纳与方法技巧总结篇

专题11 函数的图象(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等)高中数学53个题型归纳与方法技巧总结篇专题11函数的图象.2.图像的变换(1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的;②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的;③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的;④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的;(2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称;函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称;②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y f x -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到.【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称.(5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称.(6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称.(7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图)题型二:由图象选表达式题型三:表达式含参数的图象问题题型四:函数图象应用题题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin12xf x x=++的图象可能是()A.B.C.D.例2.(2022·陕西·汉台中学模拟预测(理))函数2lnxyx=的图象大致是()A.B.C.D.例3.(2022·天津·二模)函数sine xx xy=的图象大致为()A.B.C.D.例4.(2022·全国·模拟预测)已知函数()) ln sinf x x x=-⋅则函数()f x的大致图象为()A.B.C.D.例5.(2022·全国·模拟预测)函数()22 e xx xf x-=的图象大致是()A.B.C.D.例6.(2022·河北·模拟预测)函数4cos3()cos(ππ)33xf x x x=---≤≤的部分图象大致为()A.B.C.D.【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y关于x的函数图象如图所示,则实数x,y满足的关系式可以为()A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式()A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是()A .()()2211--=xxe x y e B .()21sin -=xxex y e C .()()2211-+=xxex y e D .()21cos -=xxex y e 例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为()A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x=-例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是()A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x=+D .()cos sin f x x x x=+例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象()A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x 【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为()A .B .C .D .(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是()A .B .C .D .(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是()A .B .C .D .(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是()A .B .C .D .(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为()A .B .C .D .(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是()A .B .C .D .(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是()A .B .C .D .(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是()A .B .C .D .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|PA |2,则y =f (x )的图象大致为()A .B .C .D .例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是()A .B .C .D .例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是()A .B .C.D.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧→→),则小明到O点的直线距离y与他从A点出发后运的小路顺时针方向匀速走了一圈(路线为AB BO OA动的时间t之间的函数图象大致是()A.B.C.D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A .B .C .D .【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为()A .e 1e 1,65--⎛⎫⎪⎝⎭B .e 1e 1,64--⎛⎫⎪⎝⎭C .e 1e 1,86--⎛⎫⎪⎝⎭D .()0,e 1-例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是()A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足()A .0m >且0n >B .0m <且0n >C .01m <<且0n =D .10m -<<且0n =例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为()A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x xx x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________.例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9;③关于x 的方程()3f x kx =+最多有5个实数根.其中,所有正确结论的序号是____.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.2.利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案3.利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。

函数图像

函数图像

S = x2(x>0)
1、列表:
x s
0 0 0.5 0.25 1 1 1.5 2 2.5 3 …
2、描点:
s
5
2.25
4 6.25
9 …
4
用平滑曲线去
3、连线:
3
用空心圈表示 不在曲线的点
连接画出的点
2 1 -1 0 -1 1 2 3 4 5x
-5
-4 -3
-2
归纳 函数的图象的意义:
一般地,对于一个函数,如果把自变量 与函数的每对对应值分别作为点的横坐标和 纵坐标,那么坐标平面内由这些点组 成的图形就是这个函数的图象。
x/分
巩固练习:
1、画出下列函数的图象 (1)y = -2x -1 ( 2) y =
3 x
(3)y = x²+2
2、选择:
(1)你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些 水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石 子放入瓶中(如图1),瓶中水面的高度随石子的增多而上升,乌 鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度, 乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了 水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的 高度为y,下面能大致表示上面故事情节的图象是( ).
x/分
应用举例
问题3:菜地离玉米地多远?小明从菜地走 到玉米地用了多少时间?
y/千米
解:由纵坐标看出,菜地离玉米地0.9千米,由横坐标看出, 小明从菜地到玉米地用了12分钟。
2
C A B
D
1.1
O
0 15 25 37 55
E
80
x/分
应用举例

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)祖π数学之高分速成新人教八年级下册基础知识3 函数的表示1.函数的表示方法可以用解析式法、列表法和图像法。

解析式法是用公式表示函数,列表法是将函数的定义域和值域列成表格,图像法是用函数的图像来表示函数。

2.描点法画函数图形的一般步骤是先确定定义域和值域,然后选择若干个自变量值,计算出相应的函数值,最后在平面直角坐标系中标出这些点,连接起来就是函数的图形。

题型1】图像法表示函数1.2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进。

官兵们坐车以某一速度匀速前进,但中途被阻停下。

为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往。

根据函数的图像,可以判断出官兵们行进的距离S与行进时间t之间的关系。

2.故事中的乌鸦喝水问题可以用函数的图像来表示。

设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,可以画出函数的图像来表示乌鸦喝水的情景。

3.在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止。

设点E运动的路程为x,△BCE的面积为y。

根据函数的图像,可以求出当x=7时,点E应运动到哪个位置。

4.在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B-C-D作匀速运动。

根据函数的图像,可以求出△ABP的面积S与点P运动的路程x之间的函数图像。

5.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,加快了骑车速度。

根据XXX到学校剩下的路程s关于时间t的函数图像,可以判断出符合XXX行驶情况的图像。

6.XXX每天坚持体育锻炼,星期天从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家。

根据XXX离家的距离y(米)与时间t(分钟)之间关系的函数图像,可以判断出当天XXX的运动情况。

7.小以400米/分叶的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地。

函数图象选择题的几种解法

函数图象选择题的几种解法

).
解:两解析式中有相同的系数b,可根据各图象中 b的取值范围是否吻合进行选择。
由图A得抛物线y=ax2+bx中a>0, b<0,双曲线 y=b/x中b>0;由图B得抛物线y=ax2+bx中a<0, b<0.双 曲线y=b/x中b>0;由图C得抛物线y=ax2+bx中a>0, b>0, 双曲线y=b/x中b<0; 由图D得抛物线y=ax2+bx 中a<0,b>0,双曲线y=b/x中b>0。
x
)
解:反比例函数的图象是双曲线, 因为 k=-5<0, 所以图象在第二、四象限, 故选 择D.
说明: 如果函数解析式中的系数为固 定值(或取值范围确定), 可直接根据该函
数的性质进行判断.
二、排除法
例2. (潍坊市) 已知二次函数 y=ax2+bx+c, 如果a>b>c, 且a+b+c=0, 则它的图象可能是( )
三、分类讨论法
例3. (哈尔滨市)下列各图中,能表示 函数y=k(1-x)和y=k/x (k≠0)在同一平 面直角坐标系中的图象大致是( )
解:y=k(1-x)即y=-kx+k,分k>0和k<0两种情 况讨论,
当k>0,双曲线y=k/x在第一、三象限, 直线y=-kx+k必过二、四象限,与y轴的交点 在正半轴上,此时无正确选项;
四、借助动面探究函数图像
例7.(山东省临沂市)矩形ABCD中, AD=8cm,
AB=6cm. 动点E从点C开始沿边CB向点以
2cm/s的速度运动, 动点F从点C同时出发沿边
CD向点D以1cm/s的速度运动至点D停止. 如

最全一次函数图像专题(带解析)完整版.doc

最全一次函数图像专题(带解析)完整版.doc

2018/06/10一.选择题(共15小题)1.(2016•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=03.已知函数y=3x+1,当自变量x增加m时,相应函数值增加()A.3m+1 B.3m C.m D.3m﹣14.在一次函数y=kx+b中,k为()A.正实数B.非零实数 C.任意实数 D.非负实数5.(2017•台湾)如图的坐标平面上有四直线L1、L2、L3、L4.若这四直线中,有一直线为方程式3x﹣5y+15=0的图形,则此直线为何?()A.L1B.L2C.L3D.L46.(2017•清远)一次函数y=x+2的图象大致是()A .B .C .D .7.(2017•滨州)关于一次函数y=﹣x+1的图象,下列所画正确的是()A .B .C .D .8.(2016•台湾)如图,有四直线L1,L2,L3,L4,其中()是方程式13x﹣25y=62的图象.A.L1B.L2C.L3D.L49.(2016•贵阳)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0 B.x<0 C.x>2 D.x<210.(2015•芜湖)关于x的一次函数y=kx+k2+1的图象可能正确的是()A .B .C .D .11.(2017•乐山)若实数k,b满足kb<0且不等式kx<b的解集是x >,那么函数y=kx+b的图象只可能是()A .B .C .D .12.(2015•江津区)已知一次函数y=2x﹣3的大致图象为()1A. B.C.D.13.(2014•河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.14.(2017•达州)函数y=kx+b的图象如图所示,则当y<0时x的取值范围是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣115.(2016•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.二.填空题(共10小题)16.(2017•丽水)已知一次函数y=2x+1,当x=0时,函数y的值是_________.17.已知一次函数y=(k﹣1)x|k|+3,则k=_________.18.当m=_________时,函数y=(m﹣3)x2+4x﹣3是一次函数.19.已知2x﹣3y=1,若把y看成x的函数,则可表示为_________.20.已知函数y=(m﹣1)+1是一次函数,则m=_________.21.若函数y=(m﹣)+m是一次函数,则m的值是_________.22.已知函数是一次函数,则m=_________,此函数图象经过第_________象限.23.根据图中的程序,当输入数值x为﹣2时,输出数值y为_________.24.在函数y=﹣2x﹣5中,k=_________,b=_________.25.购某种三年期国债x元,到期后可得本息和为y元,已知y=kx,则这种国债的年利率为(用含k的代数式表示)_________.三.解答题(共5小题)26.已知函数是一次函数,求k和b的取值范围.27.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?28.已知是y关于x的一次函数,并且y的值随x值的增大而减小,求m的值.29.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.30.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.答案与评分标准一.选择题(共15小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。

函数图像

函数图像
b 3a, b 0
例6、 甲 、 乙 二 人 沿 同 一 方向 去B地 , 途 中 都 用 两 种 不 同的 速 度
v1与v2 (v1 v2 ).甲 前 一 半 的 路 程 用 速 度v1, 后 一 半 的 路 程 用 速 度v2;







使

速度v

1






使

速度v
第八讲 函数的图象
一、 知识要点:
1.函数的图象
在平面直角坐标系中,以函数y=f(x)中的x为横坐标, 函数值y为纵坐标的点(x,y)的集合,就是函数y=f(x)的图 象.图象上每一点的坐标(x,y)均满足函数关系y=f(x), 反过来,满足y=f(x)的每一组对应值x、y为坐标的点(x,
y),均在其图象上 。

cos
logcos x (0 x logcos x (1 x)
1)

x(0 x

1 x
(1

x)
1)
y
o
x
返回
1 (3) log x y log y x log x y log x y log x y 1 y x或y 1 ( x, y 0且x, y 1)
2
y x 2 4 | x | 3 | x |2 4 | x | 3
y
-3
-2
-1
–4 –3 –2 –1
|
|
|
|
o
1 234
|
|
|
|
- –1
x
返回
(2) y cos |logcos x| (0 );

高考数学复习考点题型解题技巧专题讲解06 函数图像辨析

高考数学复习考点题型解题技巧专题讲解06 函数图像辨析

高考数学复习考点题型解题技巧专题讲解 第6讲 函数图像识别辨析专项突破高考定位函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已经成为各省市高考命题的一个热点。

在高考中经常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。

考点解析(1)知图选式的方法 (2)知式选图的方法(3)同一坐标系中辨析不同函数图像的方法(4)解决需要我们利用图像所提供的信息来分析解决问题这类题目的常用方法 定性分析法,也就是通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征来分析解决问题;定量计算法,也就是通过定量的计算来分析解决问题;函数模型法,也就是由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 题型解析类型一、由解析式判定图像例1-1(含参型).(2022·全国·高三专题练习)函数()3log 01a y x ax a =-<<的图象可能是()A .B .C .D .【答案】B 【分析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3loga f x x ax =-,必有30x ax -≠,则0x ≠且x ≠, 即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛⎝⎭上,()0g x '<,则()g x 在区间⎛ ⎝⎭上为减函数,在区间⎫+∞⎪⎪⎝⎭上,()0g x '>,则()g x 在区间⎫+∞⎪⎪⎝⎭上为增函数,0g =,则()g x 存在极小值3g a =-=⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A ,故选:B. 知式选图的方法(1)从函数的定义域,判断图像左右的位置;从函数的值域,判断图像上下的位置; (2)从函数的单调性(有时可借助导数判断),判断图像的变化趋势; (3)从函数的奇偶性,判断图像的对称性; (4)从函数的周期性,判断图像的循环往复; (5)从函数的极值点判断函数图像的拐点.练.(2021•重庆模拟)函数()(kx f x e lnx k =⋅为常数)的图象可能是()A .B .C .D .【解答】解:令()0kx f x e lnx =⋅=,解得1x =,即函数()f x 有且只有一个零点,故D 不可能,()(1)kxe f x kxlnx x'=+,令y xlnx =,则1y lnx '=+,令0y '>,则1x e>,即函数y 在1(e,)+∞上单调递增,令0y '<,则1x e<,即函数y 在1(0,)e上单调递减,∴当1x e =时,y 取得最小值,为1e -,即1[xlnx e∈-,)+∞,且0x →时,0xlnx →,x →+∞时,xlnx →+∞,故当0k e 剟时,()0f x '…,()f x 单调递增,选项A 可能,当k e >时,()f x '存在两个零点1x ,2x ,且12101x x e<<<<,()f x ∴在1(0,)x 和2(x ,)+∞上单调递增,在1(x ,2)x 上单调递减,选项B 可能,当0k <时,()f x '存在唯一零点0x ,且01x >,()f x ∴在0(0,)x 上单调递增,在0(x ,)+∞上单调递减,选项C 可能,故选:ABC . 练.函数()mf x x x=-(其中m ∈R )的图像不可能是() A . B .C .D .【答案】C【解析】易见,0(),0m x x m xf x x m x x x x ⎧->⎪⎪=-=⎨⎪--<⎪⎩,① 当0m =时()=f x x ()0x ≠,图像如A 选项;②当0m >时,0x >时()m f x x x =-,易见,my x y x==-在()0,+?递增,得()f x 在()0,+?递增; 0x <时()m f x x x =--,令x t -=,得(),0mf t t t t=+>为对勾函数, 所以()f t在)+∞递增,(递减,所以根据复合函数单调性得()f x在(,-∞递减,()递增,图像为D ; ③当0m <时,0x <时()m f x x x =--,易见,my x y x=-=-在(),0-?递减,故()f x 在(),0-?递减;0x >时()m m f x x x x x-=-=+为对勾函数, 所以()f x在(递减,)+∞递增,图像为B. 因此,图像不可能是C. 故选:C. 【点睛】本题考查了利用对勾函数单调性来判断函数的图像,属于中档题.例1-2(原导混合型)(2021·重庆市南坪中学校高二月考)函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为()A .B .C .D .【答案】A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误,故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象. .同一坐标系中辨析不同函数图像的方法解决此类问题时,常先假定其中一个函数的图像是正确的,然后再验证另一个函数图像是否符合要求,逐项进行验证排查.练.函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为()A .①④B .②③C .③④D .①②③【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+. 由①②中函数()g x 的图象得0ac bc >⎧⎨<⎩, 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a <,所以()f x 的图象开口向下,此时①②均不符合要求; 若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->,又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得0ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->,又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求;若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .类型二、由图像判定解析式例2-1(2019·甘肃·兰州五十一中高一期中)若函数()y f x =的图象如图所示,则函数()f x 的解析式可以为()A .21()xf x x+=B .()2ln 2()x f x x+=C .33()xf x x+= D .ln ()x f x x=【答案】A 【分析】根据函数图象的基本特征,利用函数定义域、值域、奇偶性等排除可得答案. 【详解】选项B 根据图象可知:函数是非奇非偶函数,B 排除; 选项C 根据图象x 趋向于-∞,函数值为负,与C 矛盾故排除; 选项D 函数图象在第三象限,0x <,与D 的定义域矛盾,故排除; 由此可得只有选项A 正确; 故选:A. 【点睛】本题考查函数图象判断解析式,此类问题主要利用排除法,排除的依据为函数的基本要素和基本性质,如定义域、值域、零点、特殊点、奇偶性、单调性等,属于中等题. 例2-2.函数y =f (x )的图象如图所示,则函数y =f (x )的解析式可能为()A .ln 1xy x =+ B .cos 1xy x =+ C .1xe y x =+D .1x y x =+【答案】C【分析】结合函数的图象,从函数的定义域,0x =和0x >时判断.【详解】由()y f x =图象得函数的定义域为{}1,x x x ≠-∈R ∣,排除A ;由()00f >,排除D ;由0x >时,()0f x >,排除B .故选:C.例2-3(2020·浙江·台州市黄岩中学高三月考)某函数的部分图像如下图,则下列函数中可作为该函数的解析式的是()A .sin 2sin 2xxy e =B .cos2cos 2xxy e =C .cos2cos 2xx y e =D .cos cos xxy e =【答案】C 【分析】利用函数值恒大于等于0,排除选项A 、B 、D ,则答案可得.【详解】当x ∈R 时,函数值恒大于等于0,而A 选项中,当,02x π⎛⎫∈- ⎪⎝⎭时,sin 2sin 20xxy e=<,故排除A ;当x ∈R 时,函数值恒大于等于0,而B 选项中,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,cos2cos20x xy e =<,故排除B ;当x ∈R 时,函数值恒大于等于0,而D 选项中,当3,22x ππ⎛⎫∈ ⎪⎝⎭时,cos cos 0x xy e =<,故排除D ; 因此,C 选项正确; 故选:C . 【点睛】本题考查由函数图象判断函数的解析式,考查运算求解能力、数形结合思想,体现了数学运算的核心素养,破解此类问题的技巧:一是活用性质,常利用函数的单调性与奇偶性来排除不适合的选项;二是利用特殊点排除不适合的选项,从而得出合适的选项.本题属于中等题.例2-4(2019·全国·高三月考(理))已知函数()y f x =图象如下,则函数解析式可以为()A .()()()sin 2ln 1f x x x π=+B .()()2sin 222xxx x f x π-=-C .()()()sin 222x x f x x π-=-D .()()()sin 222x x f x x π-=+【答案】C 【分析】根据图象可知函数()y f x =为偶函数,且定义域为R ,然后分析各选项中各函数的定义域与奇偶性,结合排除法可得出正确选项. 【详解】由图象可知,函数()y f x =的定义域为R ,且为偶函数.对于A 选项,()()()sin 2ln 1f x x x π=+的定义域为{|0}x x ≠,不合乎题意; 对于B 选项,令220xx--≠,得0x ≠,则函数()()2sin 222xxx x f x π-=-的定义域不为R ,不合乎题意;对于C 选项,函数()()()sin 222x x f x x π-=-的定义域为R ,且()()()()()()sin 222sin 222x x x x f x x x f x ππ---=--=-=,该函数为偶函数,合乎题意; 对于D 选项,函数()()()sin 222x x f x x π-=+的定义域为R ,且()()()()()()sin 222sin 222x x x x f x x x f x ππ---=-+=-+=-,该函数为奇函数,不合乎题意. 故选:C. 【点睛】本题考查根据函数图象选择解析式,一般要分析函数的定义域、奇偶性、单调性、零点与函数值符号,结合排除法求解,考查推理能力,属于中等题. 总结:知图选式的方法(1)从图像的左右、上下分布,观察函数的定义域、值域 (2)从图像的变化趋势,观察函数的单调性;(3)从图像的对称性方面,观察函数的奇偶性; (4)从图像的循环往复,观察函数的周期性.类型三、读图提取性质求参例3-1.若函数()2()mx f x e n =-的大致图象如图所示,则()A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B 【分析】 令()0f x =得到1ln x n m=,再根据函数图象与x 轴的交点和函数的单调性判断. 【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x mn =>, 当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C ,故选:B练.已知常数a 、b 、R c ∈,函数()2bx cf x x a+=-的图象如图所示,则a 、b 、c 的大小关系用“<”可以表示为_______.【答案】b c a <<【解析】若0a <,则函数()f x 的定义域为R ,不合乎题意, 若0a =,则函数()2bx cf x x +=的定义域为{}0x x ≠,不合乎题意,若0a >,则函数()2bx cf x x+=的定义域为{x x ≠,合乎题意. 由图可知()00c f a==-,可得0c =,则()2bx f x x a =-,当0x <<20x a -<,则20x x a <-,则()20bxf x x a=>-,所以0b <. 因此,b c a <<. 故答案为:b c a <<.例3-2.(2021·全国·高三专题练习)已知函数()()4cos xx f ex ωϕ+=(0ω>,0ϕπ<<)的部分图象如图所示,则ωϕ=()A .12B .1C .2D .2π【答案】C 【分析】由函数零点代入解析式待定系数ϕ、ω. 【详解】由图象可知,由(0)0f =得cos 0ϕ=,又0ϕπ<<,解得2ϕπ=.则()4cos 4sin 2x xx x ee f x πωω⎛⎫+ ⎪⎝⎭==-, 法一:由(1)0f =得sin 0ω=,解得()k k Z ωπ=∈, 又当(0,1)x ∈,(0,)x ωω∈时,恒有()0f x <, 即sin 0x ω>恒成立,故0ωπ<≤,1k ∴=,即ωπ=,则2ωϕ=. 法二:由sin 0x ω=,解得()k x k Z πω=∈,故两相邻零点的距离为πω,由图象可知1πω=,则ωπ=,则2ωϕ=. 故选:C. 【点睛】已知函数图象待定解析式,一是从函数的特征点入手,代入点的坐标从而待定系数,如函数的零点、极值点、与纵轴的交点、已知横纵坐标的点等等;二是从函数的特征量入手,找到等量(不等量)关系待定系数(范围),如函数的周期、对称轴、切线斜率、图象上两点间的距离、相关直线所成角等等. 练.已知函数sin()()xx f x a ωϕπ+=(0,0,)a R ωϕπ><<∈,在[]3,3-的大致图象如图所示,则a ω可取A .2πB .πC .2πD .4π【答案】B【解析】()f x 为[]3,3-上的偶函数,而x y a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k Z πϕπ=+∈. 因为0ϕπ<<,故2ϕπ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a a π==,所以12a =. 综上()21k aωπ=+,k ∈N ,故选B .类型四、实际情景提取图像例4-1.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线12,l l 之间,12l l //,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于点E 、D ,设弧FG 的长为x (0)x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是()A .B .C .D .【答案】D【解析】依题意,正ABC 的高为1,则其边长BC =,如图,连接OF ,OG ,过O 作ON ⊥l 1于N ,交l 于点M ,过E 作EH ⊥l 1于H ,因OF =1,弧FG 的长为x (0)x π<<,则F O G x ∠=,又12////l l l ,即有1122FON FOG x ∠=∠=,于是得cos cos 2xOM OF FON =⋅∠=,1cos 2x EH MN ON OM ==-=-,2cos )sin 6032EH xEB ==-,因此,2cos )22x xy EB BC CD EB BC =++=+=-=,即()2xf x=,0πx<<,显然()f x在(0,)π上单调递增,且图象是曲线,排除选项A,B,而2312432fππ⎛⎫==<=⎪⎝⎭⎭,C选项不满足,D选项符合要求,所以函数()y f x=的图像大致是选项D.故选:D练.已知P是圆22(1)1x y-+=上异于坐标原点O的任意一点,直线OP的倾斜角为θ,若||OP d=,则函数()d fθ=的大致图象是A.B.C.D.【答案】D【解析】π2cos,[0,)2π2cos,(,π)2dθθθθ⎧∈⎪⎪=⎨⎪-∈⎪⎩,所以对应图象是D练。

函数的图象练习题(含答案)

函数的图象练习题(含答案)
A.(2,7) B.(4,10) C.(3,5) D.(-2,3)
4.下列各点中,在函数y=2x-6的图象上的是( )
A.(-2,3) B.(3,-2) C.(1,4) D.(4,2)
5.一枝蜡烛长20cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度h(cm)与燃烧时间t(时)之间的函数关系的图象大致为(如图所示) ( )
(2)求自变量t的取值范围;
(3)抽水20分钟后蓄水池中还有多少水?
5.弹簧挂上物体后会伸长,测得弹簧的长度y(cm)与所挂物体的质量x(kg) 有如下关系:
x/kg
0
1
2
3
4
5
6
y/cm
12
12.5
13
13.5
14
14.5
15
(1) 请写出弹簧总长y(cm)与所挂物体的质量x(kg)之间的函数关系式,并画出图象。
2.若函数y2x4中,x的取值范围是1x3,则求函数值y的范围。
3.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;
(2)若点(a,2)在这个函数的图象上,求a.
4.一个蓄水池有15m3的水,用每分钟0.5m3的水泵抽水。
(1)求蓄水池水的余量Q(m3)与抽水时间t(分)之间的函数关系式;
6.当x2时,函数ykx2和y2xk的函数值相等,则k。
三、基础训练:
如图所示的是某水库的水位高度随月份变化的图象,请根据图象回答下列问题:
(1)5月份、10月份的水位各是多少米?
(2)最高水位和最低水位各是多少米?在几月份?
(3)水位是100米时,是几月份?
四、提高训练:(每小题12分,共24分)

2015年高考函数的图像专题讲义

2015年高考函数的图像专题讲义

2015年高考函数的图像专题讲义河南省三门峡市卢氏县第一高级中学山永峰图像是函数刻画变量之间的函数关系的一个重要途径,是研究函数性质的一种常用方法,是数形结合的基础和依据。

在今后的高考中将会加大对函数图像的考查力度。

主要以选择题、填空题的形式出现,属于中偏高档题。

主要考查形式有:知图选式、知式选图、图像变换(平移、对称、翻折、伸缩变换),以及自觉的运用图像解题。

因此要注意识图、读图能力的提高以及数形结合思想的灵活运用。

笔者以近几年高考题为载体,结合自己的教学经验整理如下,不足之处敬请斧正![备考方向要明了][归纳·知识整合]1.利用描点法作函数图象其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换:y =f (x )―――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )―――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . (2)伸缩变换:y =f (x )1011ωωωω−−−−−−−−→<<,伸长为原来的倍>1,缩短为原来的 y =f (ωx ); y =f (x )―――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍y =Af (x ). (3)对称变换:y =f (x )―――――→关于x 轴对称 y =-f (x ); y =f (x )―――――→关于y 轴对称 y =f (-x );y =f (x )――――――→关于原点对称y =-f (-x ). (4)翻折变换:y =f (x )――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.[探究] 1.函数y=f(x)的图象关于原点对称与函数y=f(x)与y=-f(-x)的图象关于原点对称一致吗?2.一个函数的图象关于y轴对称与两个函数的图象关于y轴对称有何区别?提示:一个函数的图象关于y轴对称与两个函数的图象关于y轴对称不是一回事.函数y=f(x)的图象关于y轴对称是自身对称,说明该函数为偶函数;而函数y=f(x)与函数y=f(-x)的图象关于y轴对称,是两个函数的图象对称.3.若函数y=f(x)的图象关于点(a,0)(a>0)对称,那么其图象如何变换才能使它变为奇函数?其解析式变为什么?提示:向左平移a个单位即可;解析式变为y=f(x+a).[自测·牛刀小试]1.(教材习题改编)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车行驶的路程s看作时间t的函数,其图象可能是()2.函数y=x|x|的图象经描点确定后的形状大致是()3.函数y=ln(1-x)的图象大致为()4.已知下图(1)中的图象对应的函数为y=f(x),则下图(2)中的图象对应的函数在下列给出的四个式子中,可能是________(填序号).①y=f(|x|);②y=|f(x)|;③y=-f(|x|);④y=f(-|x|).5.(2012·镇江模拟)函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f(x)cos x<0的解集为________.考点一:作函数的图象[例1]分别画出下列函数的图象:(1)y=|lg(x-1)|;(2)y=2x+1-1;(3)y=x2-|x|-2.画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析几何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点,就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论. 强化训练: 1.分别画出下列函数的图象.(1)y =|x 2-4x +3|;(2)y =2x +1x +1;(3)y =10|lg x |. 考点二:识图与辨图[例2] (1)(2012·山东高考)函数y =cos 6x 2x -2-x的图象大致为( )(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )例3:[2014年福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1 A BC D寻找图象与函数解析式之间的对应关系的方法(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性方面,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.利用上述方法,排除错误选项,筛选正确的选项.(2)知式选图:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;结合图像的特殊点(极值点、与坐标轴的交点等)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2019·长郡中学联考)函数f (x )=1-x 2
e x 的图象大致为( )
解析 ∵f (-x )=1-x 2
e -x ≠
f (x )知f (x )的图象不关于y 轴对称,排除选项B ,C ,
又f (2)=1-4e 2=-3
e 2<0,排除A ,选D. 答案 D
2.下列图象是函数y =⎩
⎨⎧x 2
,x <0,
x -1,x ≥0的图象的是( )
解析 其图象是由y =x 2图象中x <0的部分和y =x -1图象中x ≥0的部分组成. 答案 C
3. (2018·浙江卷)函数y =2|x |·sin 2x 的图象可能是( )
解析 设f (x )=2|x |sin 2x ,其定义域为R 且关于坐标原点对称,又f (-x )=2|-
x |
·sin(-2x )=-f (x ),所以y =f (x )是奇函数,故排除选项A ,B ;令f (x )=0,所以
sin 2x =0,所以2x =k π(k ∈Z ),即x =k π
2(k ∈Z ),故排除选项C.故选D. 答案 D
4.(2017·全国Ⅲ卷)函数y =1+x +sin x
x 2的部分图象大致为( )
(1)法一 易知g (x )=x +sin x x 2为奇函数,故y =1+x +sin x
x 2的图象关于点(0,1)对称,排除C ;当x ∈(0,1)时,y >0,排除A ;当x =π时,y =1+π,排除B ,选项D 满足.
法二 当x =1时,f (1)=1+1+sin 1=2+sin 1>2,排除A ,C ;又当x →+∞时,y →+∞,排除B ,而D 满足.
5.函数y =2x 2-e |x |在[-2,2]的图象大致为( )
(2)f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),排除选项A ,B ; 当x ≥0时,f (x )=2x 2-e x ,f ′(x )=4x -e x , 所以f ′(0)=-1<0,f ′(2)=8-e 2>0, 所以函数f (x )在(0,2)上有解,
故函数f (x )在[0,2]上不单调,排除C ,故选D.
6..函数2
2x
y x =-的图像大致是()
分析观察四个选项给出的图像,区别在于函数零点的个数及单调性不同.
解析解法一:当0x ≤时,函数2x
y =单调递增,同时函数2
y x =-单调递增,故函数()f x 在(],0-∞上单调递增,排除,C D ;当0x >时,()f x 存在两个零点122,4x x ==,所以排除选项B .故选A .
解法二:如图2-22所示,有图像可知,函数2x
y =与函数2
y x =的交点有3个,说明函数
22x y x =-的零点有3个,故排除选项,B C ;当0x x <时,22x x >成立,即2
20x y x =-<,
故排除选项D ,故选A .
7. 函数ln cos 2
2y x x π
π⎛⎫=-
<< ⎪⎝⎭的图像是( )
分析 通过函数的定义域、值域、单调性、奇偶性判断函数图像。

解析 因为函数)2
2
(cos ln π
π
<
<-=x x y 为偶函数,故排除B 、D ,由值域为)0,(-∞,
排除C ,故选A 。

8.已知函数1
()ln(1)f x x x
=
+-,则()y f x =的图像大致为( )
解析 函数)(x f 的定义域应满足0)1ln(≠-+x x 且01>+x ,得
{}01|≠->x x x 且,故排除选项D 。

又)01()1l n (
≠-><+x x x x 且恒成立(经
典不等式),那么函数)(x f 的值域为)0,(-∞,故选B 。

10.(2019·北京海淀区模拟)已知函数f (x )=⎩⎨⎧e x
,x ≤e ,
ln x ,x >e ,
则函数y =f (e -x )的大致图
象是( )
解析 令g (x )=f (e -x ),则g (x )=⎩⎨⎧e e -x
,e -x ≤e ,
ln (e -x ),e -x >e ,
即g (x )=⎩⎨⎧e e -x
,x ≥0,
ln (e -x ),x <0,
因此g (x )在(0,+∞),(-∞,0)上都是减函数,排除A ,C ; 又e e -0>ln(e -0)=1,排除D ,因而B 项成立. 答案 B
11.函数y =ln|x |x 2+1
x
2在[-2,0]∪(0,2]上的大致图象为( )
解析 当x ∈(0,2]时,函数y =ln|x |+1x 2=ln x +1x 2
,当x =1
e 时,y =0,当x ∈⎝⎛⎭⎫0,1e 时,y =ln x +1x 2<0;x ∈⎝⎛⎦⎤1e ,2时,y =ln x +1x 2>0,所以函数y =ln x +1x 2在(0,2]上只有零点1e ,又函数y =ln|x |
x 2+1
x 2在[-2,0)∪(0,2]上是偶函数. 答案 B
12.下列图象是函数y =⎩
⎪⎨⎪⎧
x 2,x <0,
x -1,x ≥0的图象的是( )
答案:C
13.(2018·全国卷Ⅱ)函数f (x )=e x -e -
x
x 2
的图象大致为()
[解析] ∵y =e x -e -
x 是奇函数,y =x 2是偶函数,
∴f (x )=e x -e -
x
x 2
是奇函数,图象关于原点对称,排除A 选项.
当x =1时,f (1)=e -1
e
>0,排除D 选项.
又e>2,∴1e <12,∴e -1
e >1,排除C 选项.故选B.
[答案] B
14.(2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )
[解析] 令f (x )=-x 4+x 2+2, 则f ′(x )=-4x 3+2x ,
令f ′(x )=0,得x =0或x =±2
2,
则f ′(x )>0的解集为⎝
⎛⎭⎫-∞,-
22∪⎝⎛⎭⎫0,22,f (x )在⎝
⎛⎭⎫-∞,-22,⎝⎛⎭⎫0,2
2上单调递增;f ′(x )<0的解集为⎝
⎛⎭⎫-
22,0∪⎝⎛⎭⎫22,+∞,f (x )在⎝⎛⎭⎫-22,0,⎝⎛⎭
⎫22,+∞上单调递减,结
合图象知选D.
[答案] D
15.函数y =(x 3-x )2|x |的图象大致是( )
解析:选B 易判断函数为奇函数,由y =0得x =±1或x =0.当0<x <1时,y <0;当x >1时,y >0.故选B.
16.函数f (x )=x e -
|x |的图象可能是( )
解析:选C 因为函数f (x )的定义域为R ,f (-x )=-f (x ),所以函数f (x )为奇函数,排除A 、B ;当x ∈(0,+∞)时,f (x )=x e -
x ,因为e -
x >0,所以f (x )>0,即f (x )在x ∈(0,+∞)
时,其图象恒在x 轴上方,排除D ,故选C.
17.(2019·汉中模拟)函数f (x )=⎝⎛⎭
⎫2
1+e x -1·sin x 的图象大致为( )
解析:选A ∵f (x )=⎝⎛⎭⎫21+e x -1·sin x ,∴f (-x )=⎝⎛⎭⎫21+e -x -1·sin(-x )=-⎝⎛⎭⎫2e
x
1+e x -1·
sin x
=⎝⎛⎭⎫21+e x -1·sin x =f (x ),∴函数f (x )为偶函数,故排除C 、D ;当x =2时,f (2)=⎝⎛⎭
⎫2
1+e 2-1·sin
2<0,故排除B ,选A.。

相关文档
最新文档