人教版高二数学必修四知识点:平面向量
高中数学必修4平面向量知识点总结
因此, AB DC .
③ 正确.∵ a =b ,∴ a , b 的长度相等且方向相同; 又 b = c ,∴ b , c 的长度相等且方向相同, ∴ a , c 的长度相等且方向相同,故 a = c . ④ 不正确.当 a // b 且方向相反时,即使 | a |=| b | ,也不能得到 a =b ,故 | a |=| b | 且 a // b 不是 a = b 的充要条件,而是必要不充分条件.
4 向量的模与平方的关系: a a a2 | a |2
5 乘法公式成立:
ab
ab
a2 b2
2
2
a b;
2
ab
a 2 2a b b 2
2
2
a 2a b b
6 平面向量数量积的运算律:
①交换律成立: a b b a
②对实数的结合律成立:
ab
ab a b
R
③分配律成立: a b c a c b c c a b
(5) 若 a x1, y1 , b x2 , y2 ,则 a b x1 x2 y1 y2
若 a b ,则 x1 x2 y1 y2 0
3 向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示
和性质
运 几何方法
坐标方法
运算性质
算 类
型
向 1 平行四边形法则 量 2 三角形法则 的 加 法
a 的相反向量
关于相反向量有: ( i) ( a) = a ; (ii) a +( a )=( a )+ a =0 ;
(iii) 若 a 、 b 是互为相反向量,则 a = b , b = a , a + b = 0 ②向量减法: 向量 a 加上 b 的相反向量叫做 a 与 b 的差, 记作: a b a ( b) 求两个向量差的运算,叫做向量的减法
人教版高数必修四第6讲:平面向量的概念及线性运算(学生版)
平面向量的基本概念与线性运算____________________________________________________________________________________________________________________________________________________________________1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.一、平面向量的概念:1、平面向量:________________________________________________________2、向量的模长:________________________________________________________3、零向量:____________________________________________________________4、单位向量:__________________________________________________________5、平行向量:_________________________________________________________6、相等向量:_________________________________________________________7、相反向量:__________________________________________________________二、平面向量的基本运算:一般地,λa+μb叫做a,b的一个线性组合(其中λ,μ均为系数).如果l =λa+μb,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC u u u r 叫做位移AB u u u r与位移BC u u u r 的和,记作____________________2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD u u u r =BC u u ur ,根据三角形法则得AB u u u r +AD u u u r=________________________平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =u u u r OA ,b =u u u rOB ,则()= OA OB OA OB OA BO BO OA BA -=+-+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .即(7.2)观察图7-13可以得到:起点相同的两个向量a 、b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.图7-7ACBaba +bab图7-9A一般地,实数λ与向量a的积是一个向量,记作λa,它的模为||||||aaλ=λ(7.3)若||λ≠a0,则当λ>0时,λa的方向与a的方向相同,当λ<0时,λa的方向与a的方向相反.由上面定义可以得到,对于非零向量a、b,当0λ≠时,有λ⇔=a b a b∥(7.4)一般地,有0a= 0, λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a, b及任意实数λμ、,向量数乘运算满足如下的法则:()()111=-=-a a a a , ;()()()()2a a aλμλμμλ== ;()()3a a aλμλμ+=+ ;()()a b a bλλλ+=+4 .题型1平面向量的基本概念例1给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a|=|b|,则a=b;③若AB→=DC→,则A、B、C、D四点构成平行四边形;④在ABCD中,一定有AB→=DC→;⑤若m=n,n=p,则m=p;aAa-bBbO图7-13⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号)例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA u u u r相等的向量; (2)找出向量DC u u u r的负向量;(3)找出与向量AB u u u r平行的向量.练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出 (1)与EF u u u r 相等的向量;(2)与AD u u u r共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC u u u r 相等的向量; (2)OC u u u r 的负向量; (3)与OC u u u r题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.练习:1. 如图,已知a ,b ,求a +b .2.填空(向量如图F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 ADCB图7-5Obbaa(1)(2)第1题图所示):(1)a +b =_____________ , (2)b +c =_____________ , (3)a +b +c =_____________ . 3.计算:(1)AB u u u r+BC u u u r +CD u u u r ; (2)OB u u u r +BC u u u r +CA u u u r .例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .练习:1.填空:(1)AB u u u r AD -u u u r=_______________,(2)BC u u u r BA -u u u r=______________, (3)OD u u u r OA -u u u r=______________.2.如图,在平行四边形ABCD 中,设AB u u u r = a ,AD u u u r= b ,试用a , b 表示向量AC u u u r 、BD u u u r 、DB u u u r.例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB u u u r =a ,AD u u u r=b ,试用a , b 表示向量AO u u u r 、OD u u u r.练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).BbOaAba(1)(2)图7-142.设a , b 不共线,求作有向线段OA u u u r ,使OA u u u r =12(a +b ).例7 平行四边形OADB 的对角线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,用a 、b 表示OM →、ON →、MN →.练习:练习:在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.题型3 共线向量例8 设两个非零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线. 题型4 向量共线的应用例4 如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为________.练习:如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.一、选择题1.在下列判断中,正确的是( ) ①长度为0的向量都是零向量; ②零向量的方向都是相同的; ③单位向量的长度都相等; ④单位向量都是同方向; ⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤D .①③⑤2.向量(AB →+MB →)+(BO →+BC →)+OM →等于( ) A .BC → B .AB → C .AC →D .AM →3.若a 、b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同4.已知下列各式:①AM →+MB →+BA →;②AB →+CA →+BD →+DC →;③OA →+OC →+BO →+CO →.其中结果为零向量的个数为( )A .0B .1C .2D .3二、填空题5.等腰梯形ABCD 两腰上的向量AB →与DC →的关系是________. 6.如图所示,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+BC →=________.三、解答题7.如图所示,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形.在图中所示的向量中:(1)分别写出AO →,BO →相等的向量; (2)写出与AO →共线的向量; (3)写出与AO →的模相等的向量; (4)向量AO →与CO →是否相等?8.梯形ABCD 中,AB ∥CD ,AB =2CD ,M 、N 分别是CD 和AB 的中点,若AB =a ,AD =b ,试用a 、b 表示BC 和MN ,则BC =________,MN =______._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.把平面上一切单位向量平移到共同始点,那么这些向量的终点构成的图形是( ) A .一条线段 B .一段圆弧 C .两个孤立的点D .一个圆2.把所有相等的向量平移到同一起点后,这些向量的终点将落在( ) A .同一个圆上 B .同一个点上 C .同一条直线上 D .以上都有可能4.有下列说法:①时间、摩擦力、重力都是向量; ②向量的模是一个正实数; ③相等向量一定是平行向量; ④共线向量一定在同一直线上. 其中,正确说法的个数是( ) A .0 B .1 C .2D .35.下列说法错误的是( )A .作用力与反作用力是一对大小相等、方向相反的向量B .向量可以用有向线段表示,但有向线段并不是向量C .只有零向量的模等于0D .零向量没有方向6.如图所示,圆O 上有三点A 、B 、C ,则向量BO →、OC →、OA →是( ) A .有相同起点的相等向量 B .单位向量 C .模相等的向量 D .相等的向量9.a 、b 、a +b 为非零向量,且a +b 平分a 与b 的夹角,则( ) A .a =b B .a ⊥b C .|a |=|b |D .以上都不对 10.△ABC 中,D 、E 、F 分别是边AB 、BC 、AC 的中点,则下面结论正确的是( )A .AE →=AD →+F A →B .DE →+AF →=0C .AB →+BC →+CA →≠0D .AB →+BC →+AC →≠012.在四边形ABCD 中,AC →=AB →+AD →,则四边形ABCD 一定是( ) A .矩形 B .菱形 C .正方形 D .平行四边形二、填空题12.若D 、E 、F 分别是△ABC 的三边AB 、BC 、AC 的中点,则与向量EF →相等的向量为________. 16.根据右图填空: b +c =________; a +d =________; b +c +d =________; f +e =________; e +g =________.三、解答题17.某人从A 点出发,向东走到B 点,然后,再向正北方向走了60m 到达C 点.已知|AC →|=120m ,求AC →的方向和A 、B 的距离.18.两个力F 1和F 2同时作用在一个物体上,其中F 1=40N ,方向向东,F 2=403N ,方向向北,求它们的合力.能力提升一、选择题1.若a 为任一非零向量,b 为其单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b . 其中正确的是( )A .①④⑤B .③C .①②③⑤D .②③⑤2.如图四边形ABCD 、CEFG 、CGHD 都是全等的菱形,则下列关系不一定成立的是( )A .|AB →|=|EF →| B .AB →与FH →共线C .BD →=EH → D .DC →与EC →共线3.如图所示,在菱形ABCD 中,∠BAD =120°,则下列说法中错误的是()A .图中所标出的向量中与AB →相等的向量只有1个(不含AB →本身)B .图中所标出的向量中与AB →的模相等的向量有4个(不含AB →本身)C .BD →的长度恰为DA →长度的3倍D .CB →与DA →不共线4.四边形ABCD 中,若AB →与CD →是共线向量,则四边形ABCD 是( )A .平行四边形B .梯形C .平行四边形或梯形D .不是平行四边形也不是梯形1.已知向量a 表示“向东航行1km ”向量b 表示“向南航行1km ”则a +b 表示( )A .向东南航行2kmB .向东南航行2kmC .向东北航行2kmD .向东北航行2km2.在平行四边形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,BD →=d ,则下列各式中不成立的是( )A .a +b =cB .a +d =bC .b +d =aD .|a +b |=|c |3.已知正方形ABCD 的边长为1,AB →=a 、BC →=b 、AC →=c ,则|a +b +c |等于( )A .0B .3C . 2D .2 2 4.下列命题中正确的个数为( )①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 、b 之一的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点;④若a 、b 均为非零向量,则|a +b |与|a |+|b |一定相等.A .0B .1C .2D .3二、填空题5.若|AB →|=|AD →|,且BA →=CD →,则四边形ABCD 的形状为________.6.已知A 、B 、C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =90°,则|a +b |=________.6.已知在菱形ABCD 中,∠DAB =60°,若|AB →|=2,则|BC →+DC →|=________.三、解答题8.一位模型赛车手摇控一辆赛车,沿直线向正东方向前行1m ,逆时针方向旋转α度,继续沿直线向前行进1m ,再逆时针旋转α度,按此方法继续操作下去.(1)按1100的比例作图说明当α=60°时,操作几次赛车的位移为零.(2)按此法操作使赛车能回到出发点,α应满足什么条件?请写出其中两个.9.如图所示,在△ABC 中,D 、E 、F 分别是AB 、BC 、CA 边上的点,已知AD →=DB →,DF →=BE →,试推断向量DE →与AF →是否为相等向量,说明你的理由.7.如图所示,在△ABC 中,P 、Q 、R 分别为BC 、CA 、AB 边的中点,求证AP →+BQ →+CR →=0.8.轮船从A 港沿东偏北30°方向行驶了40n mile(海里)到达B 处,再由B 处沿正北方向行驶40n mile 到达C 处.求此时轮船关于A 港的相对位置.9.已知下图中电线AO 与天花板的夹角为60°,电线AO 所受拉力F 1=24N ;绳BO 与墙壁垂直,所受拉力F 2=12N.求F 1和F 2的合力.。
高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC u u u r u u u r ,∴ ||||AB DC u u u r u u u r且//AB DC u u u r u u u r ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则,//AB DC u u u r u u u r 且||||AB DC u u u r u u u r,因此,AB DC u u u r u u u r.③ 正确.∵ a r =b r ,∴ a r ,b r的长度相等且方向相同;又b r =c r ,∴ b r ,c r的长度相等且方向相同,∴ a r ,c r 的长度相等且方向相同,故a r =c r .④ 不正确.当a r //b r 且方向相反时,即使|a r |=|b r |,也不能得到a r =b r,故|a r |=|b r |且a r //b r 不是a r =b r的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b r =0r这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想.例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r解:①原式= ()AB BC CD AC CD AD u u u r u u u r u u u r u u u r u u u r u u u r②原式= ()0DB BD AC AC AC u u u r u u u r u u u r r u u u r u u u r③原式= ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k解:∵c r∥d r∴由向量共线的充要条件得:c r=λd r (λ R) 即 k a r +b r =λ(a r +k b r ) ∴(k λ) a r+ (1 λk ) b r = 0r又∵a r 、b r不共线∴由平面向量的基本定理 1010k k k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质向 量 的 加 法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定0a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有22a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算。
必修4平面向量知识要点
必修4平面向量知识要点1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作baCBAa b C C -=A -AB =B为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
【高中数学必修四】2.3.1平面向量基本定理
e1 e2
a
将三个向量的起点移到同一点:
e1
O
A
a
C
e2
B
平面向量基本定理:
观察如图三个不 共线向量e1 、 a、 e2
e1 e2
a
将三个向量的起点移到同一点:
e1
O
A
M
a
C
e2
B
平面向量基本定理:
观察如图三个不 共线向量e1 、 a、 e2
e1 e2
a
将三个向量的起点移到同一点:
e1
O
A
M
a
N
e1
O
A
M
a
N
C
e2
B
显然: a OM ON
想一想:
确定一对不共线向量e1, e2 后, 是否平面内任意一个向 量都可以用
1 e1 2 e2来表示呢 ?
讨论:
⑴ 当a与e1或e2 共线时,可令
1或2为0即可使结论成立.
a
e1 e2
e1 e2
a
讨论:
⑵ 改变a的位置如下图两种情 况时, 怎样构造平行四边形 ?
2.3.1
平面向量基本定理
复习
1.数乘定义? 2.平面向量共线定理?
a b
复习
3.同起点的三个向量终点共线的充要条件 : o
A
P
B
OP OA 1 OB R
问题:如果e1 , e2 是同一平面内的两个不 共线的向量, a 是这一 平面内的任一向量,那 么 a 与 e1 , e2 之间有什么关系呢? » 创设情境、提出问题 怎样探求这种关系?
C
e2
人教版高中数学【必修四】[知识点整理及重点题型梳理]_平面向量的实际背景及基本概念_基础
人教版高中数学必修四知识点梳理重点题型(常考知识点)巩固练习平面向量的实际背景及基本概念【学习目标】1.了解向量的实际背景.2.理解平面向量的含义,理解向量的几何表示的意义和方法.3.掌握向量、零向量、单位向量、相等向量的概念,会表示向量.4.理解两个向量共线的含义.【要点梳理】要点一:向量的概念1.向量:既有大小又有方向的量叫做向量.2.数量:只有大小,没有方向的量(如年龄、身高、长度、面积、体积和质量等),称为数量.要点诠释:(1)本书所学向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移.(2)看一个量是否为向量,就要看它是否具备了大小和方向两个要素.(3)向量与数量的区别:数量与数量之间可以比较大小,而向量与向量之间不能比较大小.要点二:向量的表示法1.有向线段:具有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2.向量的表示方法:a b c等.(1)字母表示法:如,,,(2)几何表示法:以A为始点,B为终点作有向线段AB(注意始点一定要写在终点的前面).如果用一条有向线段AB表示向量,通常我们就说向量AB.要点诠释:(1)用字母表示向量便于向量运算;(2)用有向线段来表示向量,显示了图形的直观性.应该注意的是有向线段是向量的表示,不是说向量就是有向线段.由于向量只含有大小和方向两个要素,用有向线段表示向量时,与它的始点的位置无关,即同向且等长的有向线段表示同一向量或相等的向量.要点三:向量的有关概念1.向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度).要点诠释:a .(1)向量a的模||0(2)向量不能比较大小,但||a是实数,可以比较大小.2.零向量:长度为零的向量叫零向量.记作0,它的方向是任意的.3.单位向量:长度等于1个单位的向量.要点诠释:(1)在画单位向量时,长度1可以根据需要任意设定;(2)将一个向量除以它的模,得到的向量就是一个单位向量,并且它的方向与该向量相同.4.相等向量:长度相等且方向相同的向量.要点诠释:在平面内,相等的向量有无数多个,它们的方向相同且长度相等.要点四:向量的共线或平行方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量).规定:0与任一向量共线.要点诠释:1.零向量的方向是任意的,注意0与0的含义与书写区别.2.平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.3.共线向量与相等向量的关系:相等向量一定是共线向量,但共线向量不一定是相等的向量.【典型例题】类型一:向量的基本概念例1.下列各题中,哪些是向量?哪些不是向量?(1)密度;(2)浮力;(3)风速;(4)温度.【思路点拨】抓住向量的两个特征:长度和方向进行辨析.【解析】浮力和风速既有大小又有方向,所以是向量,其他的量只有大小没有方向,不是向量.故(2)(3)是向量,(1)(4)不是向量.【总结升华】实际问题中的一些量,如温度、电量等,尽管它们有正、负之分,但没有方向,故表示数量,而向量是一个既有大小又有方向的量,如位移、速度、加速度、力等.向量和数量是有本质区别的两个概念.举一反三:【变式1】下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力【答案】A例2.(2015春山东梁山县期中)下列说法:①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量.其中,说法错误的是________.【答案】①②③⑤⑥【解析】①平行向量不一定相等,因此①不正确;②不相等的向量可能平行,因此②不正确;③共线向量不一定相等,因此③不正确;④相等向量一定共线,正确;⑤长度相等的向量不一定是相等向量,因此⑤不正确;⑥平行于同一个向量的两个向量是共线向量,不一定正确.例如:给出不共线的非零向量a ,b ,它们都与0平行,此时a ,b 不共线.综上可得:说法错误的是①②③⑤⑥.故答案为:①②③⑤⑥举一反三:【平面向量的实际背景及基本概念402589例2】【变式1】判断下列命题的正误:(1)零向量与非零向量平行;(2)长度相等方向相反的向量共线;(3)若向量a 与向量b 不共线,则a 与b 都是非零向量;(4)若两个向量相等,则它们的起点、方向、长度必须相等;(5)若两个向量的模相等,则这两个向量不是相等向量就是相反向量。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
(完整版)高中数学必修4平面向量知识点总结
高中数学必修 4 知识点总结平面向量知点一 .向量的基本看法与基本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不可以比大小,但向量的模能够比大小.②零向量:度 0 的向量,0,其方向是随意的,0与随意愿量平行零向量 a =0|r ra |=0因为0的方向是随意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚能否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向同样或相反的非零向量随意一平行向量都能够移到同一直上方向同样或相反的向量,称平行向量作a∥ b因为向量能够行随意的平移( 即自由向量 ) ,平行向量能够平移到同向来上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个因素,起点能够随意取,在必划分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向同样的向量相等向量平移后能够重合, a b 大x1x2小相等,方向同样(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特色是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法例;当两向量是首尾连结时,用三角形法例.向量加法的三角形法例可推行至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时一定“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量还是零向量a 的相反向量对于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向同样;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是随意的②数乘向量知足互换律、联合律与分派律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:假如e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,此中不共线的向量e1 , e2叫做表示这一平面内全部向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有差别,向量平行是向量相等的必需条件(3)向量平行与直线平行有差别,直线平行不包含共线(即重合),而向量平行则包含共线(重合)的状况(4)向量的坐标与表示该向量的有向线条的始点、终点的详细地点没关,只与其相对地点有关学习本章主要建立数形转变和联合的看法,以数代形,以形观数,用代数的运算办理几何问题,特别是办理向量的有关地点关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量能否垂直等 因为向量是一新的工具,它常常会与三角函数、数列、不等式、解几等联合起来进行综合考察,是知识的交汇点例 1 给出以下命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,此中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不必定同样.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur所以, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向同样;r r r r 又 b = c ,∴ b , c 的长度相等且方向同样,r r r r ∴ a , c 的长度相等且方向同样,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即便 | a |=| b | ,也不可以获得 a =b ,故 | a |=| b | r r r r 且 a // b 不是 a =b 的充要条件,而是必需不充足条件.r r⑤ 不正确.考虑 b = 0 这类特别状况.综上所述,正确命题的序号是②③.评论:本例主要复习向量的基本看法.向量的基本看法许多,因此简单忘记.为此,复习一方面要建立优秀的知识构造, 另一方面要擅长与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的随意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向同样的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一直量 r r r rr a 可表示成 a xi yj ,因为 a 与r rr 数对 (x,y)是一一对应的,所以把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),此中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标同样,坐标同样的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详细地点没关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法例 r rx,y 21 y)2a bb a量 2 三角形法例a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法例r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 知足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,务实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数目积1 两个向量的数目积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数目积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数目积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式建立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数目积的运算律:①互换律建立: rrr r a b b a②对实数的联合律建立: r r r r r r Ra ba b a b③分派律建立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)联合律不建立: r r rr r r;a b ca b cr r r rr r(2)消去律不建立 a ba c不可以获得 b crr不可以获得r r r r (3) a b =0a = 0 或b =07 两个向量的数目积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其余任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:假如a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数目积的性质例 1判断以下各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时建立;r r r r r r r r r(5)( a b )c a(b c ) 对随意 a,b , c 向量都建立;(6)对随意愿量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182评论:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按以下条件务实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115评论:此例展现了向量在座标形式下的基本运算。
高中人教版数学必修4 2.2.1平面向量基本定理
我们把不共线的向量e1 、 e2叫做表 这一平面内所有向量的一组基底。
平面向量基本定理
注意:① e1 , e2 均为非零向量
②.任意向量a都能被表示 1、零向量能否被表示? 2、与基底的其中一个向 量共线的向量能否被表示? ③.基底唯一吗? ④.若 e1 , e2共线,还能表示向量a吗?
思考
o
1 ( a b ) 2
M
A
B
如果e1 , e2是同一平面内的两个不 共线向量, 那么对于这一平面内的 任意向量a , 有且只 有一对实数a1 , a2 , 使a a1e1 a2 e2 .
平面向量基本定理
对基本定理的理解 注意三点: ① 基底中两向量不共线 ② 表达形式的唯一确定性 ③ 可表示平面内任一向量
平面向量基本定理
1.复习:
⑴向量共线充要条件 向量b与非零向量a共线的充要条件是
有且只有一个实数,使得b a.
当 当 当
| 倍; 0 时, b 与 a 同向, 且 | b | 是 |a的 | | 倍 | ; 0 时, b 与 a 反向, 且 | b | 是 |a的 0 时, b 0 ,且 | b | 0 。
例1
且 AB a , AD b,用a、 b表示MA 、 MB、 MC、 MD ?
如图所示,平行四边形 ABCD的两条对角线相交于点 M,
D M
A B
C
例2. O A, O B 不共线,
AP t AB(t R ), 用O A , OB 表 示O P O
P
B
A
解:
AP t AB OP OA AP OA t AB OA t (OB OA) OA tOB tOA (1 t )OA tOB
高中数学必修4第二章:平面向量2.2平面向量的线性运算
向量的表示:AB或a
有向线段
向量
向量的大小 (长度、模)
向量的方向
单位向量 与零向量
相等向量与 平行向量 相反向量 (共线向量)
既有大小又有方向的量叫向量; 向量不能比较大小,但向量的模可以比较大小。
新课导入
大三通之前,由 于大陆和台湾没有直 航,因此要从台湾去 上海探亲,乘飞机要 先从台北到香港,再 从香港到上海,这两 次位移之和是什么?
解:(1)OA OC OB;
(2)BC FE AD;
E
D
FO
C
(3)OA FE 0.
A
B
(1)向量加法交换律: a b b a
D
a
C
b
b a+b
A
a
B
(2)向量加法结合律:
(a+b)+c a (b c)
D
c
C
D
c
C
(a + b) + c
a+b
a + (b + c) b
b+c b
B
B
A
a
-c.
通法提炼 两个向量的减法可以转化为向量的加法来进行.例如, 作a-b,可以先作-b,然后作a+-b即可,也可以直接 用向量减法的三角形法则,把两向量的起点重合,则差向 量就是连接两个向量的终点,指向被减向量的终点的向量.
如图,已知不共线的两个非零向量a,b,求作向量a- b,b-a,-a-b.
2(2008安徽)若 AB (2,4), AC (1, 3),
则BC ( B )
A.(1,1) C.(3,7)
B.(-1,-1) D.(-2,-4)
人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)
填要点·记疑点
单位向量
xi+yj
有序数对(x,y)
a=(x,y)
2.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a+b= ,即两个向量和的坐标等于这两个向量相应坐标的和.
(x,y)
(x2-x1,y2-y1)
(x1+x2,y1+y2)
反思与感悟 选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.要充分利用平面几何知识,将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析,从而解决问题.
反思与感悟 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.
跟踪训练3 如图,已知△ABC是等边三角形.
解 (1)∵△ABC为等边三角形,∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,
∵∠DBC=120°,
解 ∵E为BC的中点,∴AE⊥BC,
当堂测·查疑缺
1
2
3
4
1.等边△ABC中, 与的夹角是( )A.30° B.45° C.60° D.120°
D
1
2
3
4
2.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中能作为平面内所有向量的一组基底的序号是_________.(写出所有满足条件的序号)解析 对于③4e2-2e1=-2e1+4e2=-2(e1-2e2),∴e1-2e2与4e2-2e1共线,不能作为基底.
思考2 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i、j为基底,向量a如何表示?
人教版数学必修四2.3.1平面向量基本定理及坐标表示
则
对于该平面内的任一向量 a ,
j o iB
x
有且只有一对实数x、y,可使
a xi +y j
这里,我们把(x,y)叫做向量的(直角)坐标,
记作
a (x, y)①来自①式叫做向量的坐标表示。
向量的坐标表示:
y
a
j
o
i
a xi y j
(1 )i _(1_,0_)_; ( 2 ) j _(0_,_1)_; ( 3 )0 _(0_,_0_) .
x
a ( x, y )
例1.如图,分别用基底 i ,j 表示向量 a、b 、c 、d ,并 求出它们的坐标。
A2
解:如图可知
a AA1 AA2 2i 3 j a (2,3)
同理
A
A1
b 2i 3 j (2,3); c 2i 3 j (2, 3); d 2i 3 j (2, 3).
• 2. 掌握平面向量的正交分解及其坐标表示.
一、平面向量基本定理:
e e 如果
1、
是同一平面内的两个不共线
2
a 向量,那么对于这一平面内的任一向量
有且只有一对实数 1 、2 , 使
a 1e1 2e2
e e 我们把不共线的向量 、 叫做表示 12
这一平面内所有向量的一组基底。
平面向量基本定理:
向量的正交分解。
探索1: 以O为起点, ( P 3,2)为终点的向量
能否用坐标表示?如何表示?
y
P(3,2)
a
o
x
我们分别取与x轴、y轴方向相同的两个 单位向量作为基底。
4
3
P(3,2)
2
2j 1 j
-2
2
高中数学必修4知识点总结:第二章 平面向量
高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量〔共线向量〕:方向一样或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向一样的向量.17、向量加法运算:⑴三角形法那么的特点:首尾相连. ⑵平行四边形法那么的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,那么()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法那么的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,那么()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,那么()1212,x x y y AB =--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向一样;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,那么()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,那么当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量根本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,baC BAa b C C -=A -AB =B有且只有一对实数1λ、2λ,使1122a e e λλ=+.〔不共线的向量1e 、2e 作为这一平面内所有向量的一组基底〕22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.〔当时,就为中点公式。
必修4知识点总结:第二章_平面向量
高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
必修4平面向量知识点总结
平面向量基础知识复习平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示. 注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB u u u r按向量(1,3)a =-r平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是||ABAB ±u u u ru u u r ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r 、b r 叫做平行向量,记作:a r∥b r , 规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r);④三点A B C 、、共线 AB AC ⇔u u u r u u u r、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a r 的相反向量记作a -r .举例2 如下列命题:(1)若||||a b =rr,则a b =rr.(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若AB DC =u u u r u u u u r,则ABCD 是平行四边形.(4)若ABCD 是平行四边形,则AB DC =u u u ru u u u r.(5)若a b =rr ,b c =r r ,则a c =r r .(6)若//a b r r ,//b c r r 则//a c r r.其中正确的是 . 结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB u u u r,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如a r ,b r ,c r等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j r r为基底,则平面内的任一向量a r 可表示为(,)a xi yj x y =+=r r r ,称(,)x y 为向量a r 的坐标,(,)a x y =r 叫做向量a r的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同. 三、平面向量的基本定理定理 设12,e e r r 同一平面内的一组基底向量,a r是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+r r r . (1)定理核心:1122a λe λe =+r r r ;(2)从左向右看,是对向量a r 的分解,且表达式唯一;反之,是对向量a r 的合成.(3)向量的正交分解:当12,e e r r 时,就说1122a λe λe =+r r r为对向量a r 的正交分解.举例3 (1)若(1,1)a =r,(1,1)b =-r,(1,2)c =-r ,则c =r. 结果:1322a b -r r.(2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =r ,2(1,2)e =-rB.1(1,2)e =-r ,2(5,7)e =rC.1(3,5)e =r ,2(6,10)e =rD.1(2,3)e =-r ,213,24e ⎛⎫=- ⎪⎝⎭r(3)已知,AD BE u u u r u u u r 分别是ABC △的边BC ,AC 上的中线,且AD a =u u u r r ,BE b =u u u r r ,则BC u u u r 可用向量,a b r r 表示为 . 结果:2433a b +rr .(4)已知ABC △中,点D 在BC 边上,且2CD DB =u u u r u u u r ,CD rAB sAC =+u u u r u u u r u u u r,则r s +=的值是 . 结果:0.四、实数与向量的积实数λ与向量a r 的积是一个向量,记作a λr,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅r r;(2)方向:当0λ>时,a λr 的方向与a r 的方向相同,当0λ<时,a λr 的方向与a r的方向相反,当0λ=时,0a λ=r r ,注意:0a λ≠r.五、平面向量的数量积1.两个向量的夹角:对于非零向量a r ,b r ,作OA a =u u u r r ,OB b =u u u r r ,则把(0)AOB θθπ∠=≤≤称为向量a r ,b r的夹角.当0θ=时,a r ,b r 同向;当θπ=时,a r ,b r 反向;当2πθ=时,a r,b r 垂直.2.平面向量的数量积:如果两个非零向量a r ,b r ,它们的夹角为θ,我们把数量||||cos a b θr r 叫做a r与b r 的数量积(或内积或点积),记作:a b ⋅rr ,即||||cos a b a b θ⋅=⋅r r r r .规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =u u u r ,||4AC =u u u r ,||5BC =u u u r ,则AB BC ⋅=u u u r u u u r_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭r ,10,2b ⎛⎫=- ⎪⎝⎭r ,c a kb =+r r r ,d a b =-r r r ,c r 与d r 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =r ,||5b =r ,3a b ⋅=-rr ,则||a b +=r r ____. (4)已知,a b r r 是两个非零向量,且||||||a b a b ==-r r r r ,则a r 与a b +rr 的夹角为____. 结果:30o .平面向量基础知识复习3.向量b r 在向量a r上的投影:||cos b θr ,它是一个实数,但不一定大于0.举例5 已知||3a =r ,||5b =r ,且12a b ⋅=r r ,则向量a r 在向量b r 上的投影为______. 结果:125.4.a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的模||a r 与b r 在a r上的投影的积.5.向量数量积的性质:设两个非零向量a r,b r ,其夹角为θ,则:(1)0a b a b ⊥⇔⋅=r rr r ;(2)当a r、b r 同向时,||||a b a b ⋅=⋅r r r r ,特别地,22||||a a a a a =⋅=⇔=r r r r r||||a b a b ⋅=⋅r r r r 是a r、b r 同向的充要分条件;当a r 、b r 反向时,||||a b a b ⋅=-⋅r r r r ,||||a b a b ⋅=-⋅r r r r 是a r、b r 反向的充要分条件;当θ为锐角时,0a b ⋅>r r ,且a r、b r 不同向,0a b ⋅>r r 是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<r r ,且a r、b r 不反向;0a b ⋅<r r 是θ为钝角的必要不充分条件.(3)非零向量a r,b r 夹角θ的计算公式:cos ||||a b a b θ⋅=r r r r ;④||||a b a b ⋅≤r r r r .举例6 (1)已知(,2)a λλ=r ,(3,2)b λ=r ,如果a r 与b r 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=u u u r u u u r,若12S <,则OF u u u r ,FQ u u u r 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫ ⎪⎝⎭;(3)已知(cos ,sin )a x x =r ,(cos ,sin )b y y =r ,且满足|||ka b a kb +-r r r r(其中0k >).①用k 表示a b ⋅r r ;②求a b ⋅r r 的最小值,并求此时a r 与b r 的夹角θ的大小. 结果:①21(0)4k a b k k +⋅=>r r ;②最小值为12,60θ=o .六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =u u u r r ,BC b =u u u r r ,则向量AC u u u r 叫做a r与b r 的和,即a b AB BC AC +=+=u u u r u u u r u u u r r r ; 作图:略.注:平行四边形法则只适用于不共线的向量.(2)向量的减法运算法则:三角形法则.运算形式:若AB a =u u u r r ,AC b =u u u r r ,则a b AB AC CA -=-=u u ur u u u r u u u r r r ,即由减向量的终点指向被减向量的终点. 作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ;②AB AD DC --=u u u r u u u r u u u u r ;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r . 结果:①AD u u u r ;②CB u u u r ;③0r;(2)若正方形ABCD 的边长为1,AB a =u u u r r ,BC b =u u u r r ,AC c =u u u r r ,则||a b c ++=r r r. 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-u u u ru u u ru u u ru u u ru u u r,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=u u u r u u u r u u u r r ,设||||AP PD λ=u u u ru u u r ,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=u u u r u u u r u u u r r,则ABC △的内角C 为 . 结果:120o .2.坐标运算:设11(,)a x y =r,22(,)b x y =r ,则(1)向量的加减法运算:1212(,)a b x x y y +=++rr ,1212(,)a b x x y y -=--rr.举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R u u u ru u u ru u u r,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =u u u r ,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =u u r ,2(2,5)F =-u u r ,3(3,1)F =u u r ,则合力123F F F F =++u u r u u r u u r u u r的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==r.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--u u u r,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =u u u r u u u r ,3AD AB =u u u r u u u r ,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-.(4)平面向量数量积:1212a b x x y y ⋅=+rr .举例10 已知向量(sin ,cos )a x x =r,(sin ,sin )b x x =r,(1,0)c =-r. (1)若3x π=,求向量a r 、c r的夹角;(2)若3[,]84x ππ∈-,函数()f x a b λ=⋅r r 的最大值为12,求λ的值.结果:(1)150o ;(2)12或1.(5)向量的模:2222||||a a x y a ==+⇔=r r r(6)两点间的距离:若11(,)A x y ,22(,)B x y ,则||AB 举例12 如图,在平面斜坐标系xOy 中,60xOy ∠=o ,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+u u u r r r,其中12,e e r r 分别为与x 轴、y 轴同方向的单 位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ; (2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=.七、向量的运算律1.交换律:a b b a +=+r r r r ,()()a a λμλμ=r r ,a b b a ⋅=⋅r r r r;2.结合律:()a b c a b c ++=++r rr rr r,()a b c a b c --=-+r rr rrr,()()()a b a b a b λλλ=⋅=⋅rrrr r r;3.分配律:()a a a λμλμ+=+r r r,()a b a b λλλ+=+r r r r ,()a b c a c b c +⋅=⋅+⋅r r r r r r r .举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅rrrrr r r;② ()()a b c a b c ⋅⋅=⋅⋅r rrr r r;③ 222()||2||||||a b a a b b -=-+rrrrrr ;④ 若0a b ⋅=r r ,则0a =r r 或0b =r r ;⑤若a b c b ⋅=⋅r r r r 则a c =r r ;⑥22||a a =r r ;⑦2a b ba a⋅=r r r r r ;⑧222()a b a b ⋅=⋅r r r r ;⑨222()2a b a a b b -=-⋅+r r r r r r .其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅r r r r r r,为什么?八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=r r r rr r r r .举例14 (1)若向量(,1)a x =r ,(4,)b x =r ,当x =_____时,a r与b r 共线且方向相同. 结果:2.(2)已知(1,1)a =r ,(4,)b x =r ,2u a b =+r r r ,2v a b =+rr r ,且//u v r r ,则x = . 结果:4.(3)设(,12)PA k =u u u r,(4,5)PB =u u u r,(10,)PC k =u u u r,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=r r r rr r r r .特别地||||||||AB AC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 举例15 (1)已知(1,2)OA =-u u u r ,(3,)OB m =u u u r ,若OA OB ⊥u u u r u u u r ,则m = .结果:32m =;(2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1)); (3)已知(,)n a b =r向量n m ⊥r r ,且||||n m =r r ,则m =r的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=u u u r u u u r,则实数λ叫做点P 分有向线段12P P u u u u r 所成的比λ,P 点叫做有向线段12P P u u u u r的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P u u u u r,即点P 在线段12PP 上0λ⇔>;(2)P 外分线段12P P u u u u r时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP u u u u r 所成的比为λ,则点P 分有向线段21P P u u u u r所成的比为1λ.举例16 若点P 分AB u u u r 所成的比为34,则A 分BP u u u r 所成的比为 . 结果:73-.3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P u u u u r 所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ. 举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-u u uu ru u u ur ,则点P 的坐标为 . 结果:7(6,)3--;平面向量基础知识复习(2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =u u u u ru u u u r,则a =r. 结果:2或4-.十一、平移公式如果点(,)P x y 按向量(,)a h k =r 平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =r 平移得曲线(,)0f x h y k --=.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a r 把(2,3)-平移到(1,2)-,则按向量a r把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin 2y x =的图象按向量a r 平移后,所得函数的解析式是cos21y x =+,则a =r ________. 结果:(,1)4π-.十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+r r r r r r.(1)右边等号成立条件: a b r r 、同向或 a b r r 、中有0r ||||||a b a b ⇔+=+r r r r;(2)左边等号成立条件: a b r r 、反向或 a b r r 、中有0r ||||||a b a b ⇔-=+r r r r;(3)当 a b r r 、不共线||||||||||a b a b a b ⇔-<+<+r r r r r r.3.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++. 举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔u u u r u u u r u u u r u u u r为△ABC 的重心,特别地0PA PB PC G ++=⇔u u u r u u u r u u u r r 为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔u u u r u u u r u u u r u u u r u u u r u u u r为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔u u u u r u u u r u u u u r u u u r u u u u r u u u r 为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭u u u r u u u ru u u u r u u u u r 所在直线过△ABC 的内心.6.点P 分有向线段12P P u u u u r所成的比λ向量形式设点P 分有向线段12P P u u u u r 所成的比为λ,若M 为平面内的任一点,则121MP MPMP λλ+=+u u u u r u u u u ru u u r ,特别地P 为有向线段12P P u u u u r 的中点122MP MPMP +⇔=u u u u r u u u u ru u u r .7. 向量,,PA PB PC u u u r u u u r u u u r 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+u u u r u u u r u u u r且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+u u u ru u u ru u u r,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 .结果:直线AB .。
人教高中数学必修4PPT课件:平面向量的实际背景及基本概念
√ (5)物理学中的作用力与反作用力是一对共线向量( ) (6)直角坐标平面图上的x轴,y轴都是向量(√ )
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
2.判断下面命题的对错
(1)若a = b,b = c,则a = c。( √) (2)若|a|=0,则a = 0 (×) (3)若|a|=|b|,则a = b (×)
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
说明: 1、向量的几何表示:用有向线段表示。 人教高中数学必修4PPT课件:平面向量的实际背景及基本概念
向量AB的大小,也就是向量AB的长度(或称模),记
作 |AB |。
向量不能比较大小,模可以比较大小。
2、向量的字母符号表示:(1)a , b , c , . . . (2)用表示向量的有向线段的起点和终点字母表示, 例如,AB,CD。 注意字母的顺序
量
长度(模)符 概号 念表示 : AB , a
零向量
单位向量
关系相 平等 行向 (量 共线)向量 用向量表示点的位置:位置向量
CB、DO、FE
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
在平面图形中寻求共线向量、相等向量的方法: (1)在平面图形中找共线向量时,应逐个列举,做到不 重不漏,可先找在同一条直线上的共线向量,然后再 找平行直线上的共线向量,要注意一条线段有一正一 反两个共线向量,而方向相同、长度不等的有向线段 又可以表示不同的共线向量. 对于相等向量,一定是共线向量,因此在找相等向量 时,可以从共线向量中筛选,找出长度相等、方向相 同的共线向量即可.
高中数学必修4平面向量知识点总结.doc
高中数学必修4平面向量知识点总结高中数学必修4平面向量知识点坐标表示法平面向量的坐标表示:在直角坐标系中,分别取与x轴、y 轴方向相同的两个单位向量作为基底。
由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x 轴上的坐标,y叫做在y轴上的坐标。
来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算1、向量的加法:AB+BC=AC设a=(x,y) b=(x ,y )则a+b=(x+x ,y+y )向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x ,y-y )若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=03、向量的乘法设a=(x,y) b=(x ,y )a b(点积)=x x +y y =|a| |b|*cos夹角4、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
人教版高二数学必修四知识点:平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向 ;
当 (1)向量b 与非零向量共线的充要条件是有且仅有一个实数,使得b=.
(2)若=(),b=()则‖b.
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.
4.P分有向线段所成的比:
设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,
0;
1),
b的夹角。
cos.其中|b|cos称为向量b在方向上的投影.
(3).向量的数量积的性质:
若=(),b=()则e·=·e=||cos(e为单位向量);
⊥b·b=0(,b为非零向量);||=;
cos==.
(4).向量的数量积的运算律:
·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.6.主要思想与方法:。