单晶材料制备方法介绍共36页文档

合集下载

单晶制备方法综述

单晶制备方法综述

单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。

单晶整个晶格是连续的,具有重要的工业应用。

因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。

本文主要对单晶材料制备的几种常见的方法进行介绍和总结。

单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。

单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。

一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。

从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。

二者速率的差异在10-1000倍。

从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。

1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。

后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。

因此,这种方法又被称为维尔纳也法。

1.1 基本原理焰熔法是从熔体中生长单晶体的方法。

其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。

1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。

此方法主要用于制备宝石等晶体。

2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。

2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。

单晶材料的制备

单晶材料的制备
2.初始退火后,在较低温度下回复退火,以 减少晶粒数目,并帮助晶粒在后期退火时更
3.在液氮温度附近冷辊轧,然后在640℃退火10s, 并在水中淬火,得到用于再结晶的铝,此时样品 还有2mm大小晶粒和强烈的织构,再通过一温度梯 度退火,然后加热至640℃,可得到约1m长的晶体。
4.采用交替施加应变和退火的方法,可得到宽 2.5cm的高能单晶铝带,使用的应变缺乏以使新晶 粒成核,退火温度为650℃。
晶体生长的目的之一是制备成分准确,尽可能无杂质、无缺陷(包括 晶体缺陷)的单晶体。
晶体生长是一种技艺,也是一门正在迅速开展的科学。
国际上——结晶学 萌芽于17世纪 丹麦学者 晶面角守恒定律
晶体生长大局部工作是从20世纪初期才开始的 1902年 焰熔法 1905年 水热法 1917年 提拉法 1952年 Pfann 开展了区熔技术
四、烧结生长
烧结这个词通常仅用于非金属中晶粒的长大。 烧结就是加热压实的多晶体。
烧结时晶粒长大的推动力主要是由以下因素引 起的:
(1)剩余应变。 (2)取向效应。 (3)晶粒维度效应。〔即利用晶粒大小的差作为
实例:应变退火法制备铝单晶
背景
用应变退火法仔细制备的单晶缺陷较少。由于 铝的堆垛层错能和孪晶晶界能都高,应变退火 法有助于制备无孪生的晶体。取向差小的铝晶 体一般是用应变退火法制备的。
应变退火法制备铝单晶的工艺
1.先在550℃使纯度为99.6%的铝退火,以消 除应变的影响并提供大小符合要求的晶粒, 再使无应变的晶粒较细的铝变形以产生 1%~2%d 的应变,然后将温度从450℃升至 550 ℃ ,按25/d的速度退火。最后在600℃ 退火1h。〔假设初始的晶粒尺寸在0.1mm时, 效果特别好。〕
1、固—固生长方法

单晶硅的制备PPT课件

单晶硅的制备PPT课件
第13页/共54页
单晶工艺流程简介
(3)引晶生长:当硅 熔体的温度稳定之后, 将籽晶慢慢浸入硅熔体 中引晶生长是将籽晶快 速向上提升,使长出的 籽晶的直径缩小到一定 大小(4-6mm)由 于位错线与生长轴成一 个交角,只要缩颈够长 ,位错便能排出晶体表 面,产生低位错的晶体 。
第14页/共54页
单晶工艺流程简介
第26页/共54页
熔体中的对流
相互相反旋转的晶体(顺时针)和坩埚所产生的强制对 流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。 所生长的晶体的直径越大(坩锅越大),对流就越强烈,会 造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂 质分布不均匀等。
实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体 和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相 对运动,有利于在固液界面下方形成一个相对稳定的区域, 有利于晶体稳定生长。
冶金级硅(反应后蒸馏纯 化三氯硅烷) Si + 3Hcl → SiHcl3 +H2 ↑
MGS 98℅
三氯硅烷还原成硅 2SiHcl3 +2H2 →2 Si + 6Hcl
第6页/共54页
直拉法(cz法)制备单晶硅
直拉法即切克劳斯基 法(Czochralski简称 Cz法)
它是通过电阻加热, 将装在石英坩埚中的多 晶硅熔化,并保持略高 于硅熔点的温度,将籽 晶浸入熔体,然后以一 定速度向上提拉籽晶并 同时旋转引出晶体。
用太 空 中 单 晶 硅 的 应
单 晶 硅 太 阳 能 电 池 板
第2页/共54页
AMD 处 理 器
其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。 由于太阳能具有清洁、环保、方便等诸多优势,近三十年来,太阳能 利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展, 成为世界快速、稳定发展的新兴产业之一。

第四章 单晶材料制备

第四章 单晶材料制备

Si气相外延
为获得平整的表面,衬底必须严格 抛光并防止表面有颗粒或化学物质 的沾污;在外延生长前,反应管内 在高温下用干燥氯化氢进行原位抛 光,以减少缺陷。
HgI2晶体的气相外延生长
将纯化后的HgI2原料放在真空度为10-3Pa的 玻璃生长安瓿两端的源区, 在生长安瓿中间长晶区的平台上放上籽晶。
3.蒸发法
蒸发法生长晶体的基本原理是将溶剂不断蒸发减少,从 而使溶液保持在过饱和状态,晶体便不断生长。这种方法 比较适合于溶解度较大而溶解度温度系数很小或为负值的 物质。蒸发法生长晶体是在恒温下进行的。
图4.5所示是蒸发法生长晶体的一种比较简单的装置。 在晶体生长过程中还应注意以下几点:
(1)晶体态溶液中最好能做到既能自转也能公转,以避免 晶体发育不良。
W+3Cl2=WCl6
许多硫属化物(例如氧化物、硫化物和碲化物)以及某 些磷属化物(例如氮化物、磷化物、砷化物和锑化物)可以 用卤素输运剂从热端输运到冷端从而生长出适合单晶研 究用的小晶体。在上述蒸气输运中,所用的反应通式为:
需要指出的是,蒸气输运并不局限于二元化合物, 碘输运法也能小长出ZnIn2S4、HgGa2S4和ZnSiP2等化合 物小晶体。
在超高真空条件下,由装有各种所需组分的 炉子加热而产生的蒸气,经小孔准直后形成的 分子束或原子束,直接喷射到适当温度的单晶 基片上,同时控制分子束对衬底扫描,就可使 分子或原子按晶体排列一层层地“长”在基片 上形成薄膜。
4.1.3 气相生长晶体的质量
对于气相生长,如果系统的温场设计比较合理,生 长条件掌握比较好,仪器控制比较灵敏精确的话,长出 的晶体质量是很好的,外形比较完美,内部缺陷也比较 少,是制作器件的好材料。但是如果生长条件选择不合 适,温场设计不理想等,生长出的晶体就不完美,内部 缺陷如位错、枝晶、裂纹等就会增多,甚至长不成单晶 而是多晶。因此,严格选择和控制生长条件是气相生长 晶体的关键。

单晶制备方法综述概要

单晶制备方法综述概要

课程论文题目单晶材料的制备方法综述学院材料科学与工程学院专业材料学姓名刘聪学号S150********日期2015.11.01成绩单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。

单晶整个晶格是连续的,具有重要的工业应用。

因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。

本文主要对单晶材料制备的几种常见的方法进行介绍和总结。

单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。

单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。

一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。

从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。

二者速率的差异在10-1000倍。

从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。

1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。

后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。

因此,这种方法又被称为维尔纳也法。

1.1 基本原理焰熔法是从熔体中生长单晶体的方法。

其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。

1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。

此方法主要用于制备宝石等晶体。

2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。

单晶材料制备.

单晶材料制备.
(3)在液氮温度附近冷滚轧,继之在640℃退 火10s,并在水中淬火,制备了用于再结晶的铝, 此时样品中含有2mm大小的晶粒和强烈的织构, 再通过一个温度梯度退火,然后加热到640℃, 可得到约1m长的晶体。
现代材料制备技术
应变退火法制备铝单晶的几种工艺
(4)采用交替施加应变和退火的方法,很容易 制取宽25cm的高纯单晶铝带,使用的应变不足 以使新晶粒成核,而退火温度为640℃。
现代材料制备技术
液相-固相平衡之定向凝固法
通过控制过冷度实现定向凝固以获得单晶的方法 是由布里奇曼(Bridgman)首先使用并为斯托克 巴杰(Stockbarger)所发展的,通常也称BS法 或定向凝固法。
现代材料制备技术
定向凝固法原理
本质上,定向凝固法是 借助在一个温度梯度内 进行结晶,从而在单一 的固-液界面上成核。
现代材料制备技术
应变退火法制备铝单晶的几种工艺
(1)先在550℃使纯度为99.6%的铝退火,以 消除原有应变的影响和提供要求的晶粒大小,再 使无应变的晶粒较细的铝变形以产生1~2%的应 变,然后将温度从450℃升至550℃,按25℃/天 的速度退火。在一些场合,最后再要在600℃退 火1h。
现代材料制备技术
1.2 单晶制备方法
(3)气相-固相平衡的晶体生长。 主要包括:
a.升华法 b.溅射法
现代材料制备技术
固相-固平衡-应变退火生长
应变退火法常用来制备铝单晶,也就是先产生临 界应变量,然后再进行退火,使晶粒长大以产生 单晶。若初始的晶粒尺寸在0.1mm时,效果特别 好。退火期间,有时在试样表面优先成核,这就 影响了单晶的生长,通常认为铝晶核是在靠着表 面氧化膜的位错堆积处开始的,在产生临界应变 后腐蚀掉约100um厚的表面层,有助于阻止表面 成核。

单晶制备方法-文档(最新整理)

单晶制备方法-文档(最新整理)

直拉法制单晶硅和区熔法晶体生长第一节概述多晶硅是单质硅的一种形态。

熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。

多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。

例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。

在化学活性方面,两者的差异极小。

多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。

多晶硅由很多单晶组成的,杂乱无章的。

单晶硅原子的排列都是有规律的,周期性的,有方向性。

当前生长单晶主要有两种技术:其中采用直拉法生长硅单晶的约占80%,其他由区溶法生长硅单晶。

采用直拉法生长的硅单晶主要用于生产低功率的集成电路元件。

例如:DRAM,SRAM,ASIC电路。

采用区熔法生长的硅单晶,因具有电阻率均匀、氧含量低、金属污染低的特性,故主要用于生产高反压、大功率电子元件。

例如:电力整流器,晶闸管、可关断门极晶闸管(GTO)、功率场效应管、绝缘门极型晶体管(IGBT)、功率集成电路(PIC)等电子元件。

在超高压大功率送变电设备、交通运输用的大功率电力牵引、UPS电源、高频开关电源、高频感应加热及节能灯用高频逆变式电子镇流器等方面具有广泛的应用。

直拉法比用区溶法更容易生长获得较高氧含量(12`14mg/kg)和大直径的硅单晶棒。

根据现有工艺水平,采用直拉法已可生产6`18in(150`450mm)的大直径硅单晶棒。

而采用区溶法虽说已能生长出最大直径是200mm的硅单晶棒,但其主流产品却仍然还是直径100`200mm的硅单晶。

区熔法生长硅单晶能够得到最佳质量的硅单晶,但成本较高。

若要得到最高效率的太阳能电池就要用此类硅片,制作高效率的聚光太阳能电池业常用此种硅片。

单晶制备方法综述

单晶制备方法综述

单晶制备方法综述单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。

单晶整个晶格是连续的,具有重要的工业应用。

因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。

本文主要对单晶材料制备的几种常见的方法进行介绍和总结。

单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。

单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。

一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。

从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。

二者速率的差异在10-1000倍。

从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。

1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。

后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。

因此,这种方法又被称为维尔纳也法。

1.1 基本原理焰熔法是从熔体中生长单晶体的方法。

其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。

1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。

此方法主要用于制备宝石等晶体。

2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。

2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。

单晶材料制备

单晶材料制备

单晶材料制备单晶是由结构基元(原子,原子团,离子),在三维空间内按长程有序排列而成的固态物质。

或者说是由结构基元在三维空间内,呈周期排列而成的固态物质。

如水晶,金刚石,宝石等。

单向有序排列决定了它具有以下特征:均匀性、各向异性、自限性、对称性、最小内能和最大稳定性。

单晶材料的制备又称晶体生长,是物质的非晶态,多晶态,或能够形成该物质的反应物,通过一定的物理或化学手段转变为单晶状态的过程。

首先将结晶的物质通过熔化或溶解方式转变成熔体或溶液。

再控制其热力学条件生成晶相,并让其长大。

随着晶体生长学科理论和实践的快速发展,晶体生长手段也日新月异。

生长块状单晶材料多用熔体法,常温溶液法,高温溶液法及其它。

一、熔体法生长晶体此法为最常用方法,是从结晶物质的熔体中生长晶体。

适用于光学半导体,激光技术上需要的单晶材料。

(一)晶体生长的必要条件。

根据晶体生长时体系中存在的——由熔体(m)向晶体(C)自发转变时——两相间自由焓的关系:Gm(T)>Gc(T),即△G=Gc(T)-Gm(T)≈△He-Te△Se-△T△Se=△T△Se<0。

结晶时, △Se>0,只有△T<0 。

熔体单晶体生长的必要条件是:体系温度低于平衡温度。

体系温度低于平衡温度的状态称为过冷。

△T的绝对值称为过冷度。

过冷度作为熔体晶体生长的驱动力。

一般情况:该值越大,晶体生长越快。

当值为零时,晶体生长停止。

(二)晶体生长的充分条件晶体生长是发生在固-液(或晶-液)界面上。

通常为保证晶体粒生长只需使固-液界面附近很小区域熔体处于过冷态,绝大部分熔体处于过热态(温度高于Te )。

已生长出的晶体温度又需低于Te。

就是说整个体系由熔体到晶体的温度由过热向过冷变化。

过热与过冷区的界面为等温区。

此面与晶体生长界面间的熔体为过冷熔体。

且过冷度沿晶体生长反方向逐渐增大。

晶体的温度最低。

这种由晶体到熔体方向存在的温度梯度是热量输运的必要条件。

热量由熔体经生长面传向晶体,并由其转出。

太阳能单晶的制备及操作方法

太阳能单晶的制备及操作方法

7/30/2023
24
3.2.3 高纯氩气(见下图)
7/30/2023
25
3.2.4 籽晶(见下图)
7/30/2023
26
• 3.2.5 掺杂剂
• 3.2.6 辅助工具:用于装拆炉取晶棒的不 锈钢手推车和装拆热场用的专用工具。
7/30/2023
27
3.2.7 劳防用品(见下图)
一次性洁净塑料手套 套
7/30/2023
15
3.1.4 复拉料(见下图)
7/30/2023
16
3.1.5 边皮料(见下图)
7/30/2023
17
• 3.1.6 废电路片(见下图) • 3.1.7 太阳能电池废片(见下图) • 3.1.8 集成电路废片(见下图)
7/30/2023
18
3.2 辅助材料
• 3.2.1 石英坩埚(见下图)
• 5.3.1煅烧分新老石墨二种:
• 5.3.1.1 新石墨的煅烧无确定的时间,应 经过多次煅烧经确认符合使用要求后方 可投入正常使用。煅烧的具体方法,参 照专门制定的有关煅烧的操作规程。
7/30/2023
43
• 5.3.1.2 老石墨因已使用过,只因耽搁时 间过长,只需将所含水分烧尽即可,一 般只需煅烧1-2小时即可。
7/30/2023
53
• 5.4.1.14 装料时如发现手套破裂应及时更 换。
• 5.4.1.15 装料时一旦有料掉在外面不能再 放入埚内,以免造成沾污。
• 5.4.1.16 料装完后用吸尘器吸除装料时散 落在外面的硅屑与杂物。
• 5.4.1.17 将埚位降至最低熔料位置。
• 5.4.1.18 用丝光毛巾或无尘纸蘸少许无水 乙醇擦净炉盖,炉盖上部及隔离阀的密 封处,以保证下一步的抽空顺利进行。

单晶制备手段

单晶制备手段

单晶制备手段“单晶”的概念由20世纪早期的科学家引入,它可以被定义为一种由单个原子排列成等距布局的结构。

单晶材料因其特殊的结构,具有良好的力学性能、热性能、光学性能和电学性能,具有重要的理论和应用价值。

随着科技的发展,单晶材料在众多的科技领域中发挥着重要的作用,如激光器件、光学元件、磁性材料、能源材料和电子材料等。

因此,单晶制备技术开发变得尤为重要。

单晶制备技术可以大致分为化学的和物理的两类。

化学类的单晶制备技术包括熔融法、水合物分解法、电化学沉积法和合成晶体法。

熔融法是最常用的单晶制备技术,它可以制备出大块、细小、致密、光滑和纯净的单晶材料。

然而,由于材料的体积变大导致部分物质发生稳定的物质结构变化,熔融法制备的单晶结构的二维晶体缺乏一致性和抗蠕变能力,受到了限制。

水合物分解法是一种可以分解硫氢化物和氯化物水合物的技术,这种技术的优势在于可以制备出细小的单晶,在熔融法中很难达到的结果。

电化学沉积法可以制备出高纯度、高品质的单晶材料,具有快速、精细、经济等优势,但受到了单晶规模和形状的限制。

合成晶体法是一种可以制备出大规模单晶材料的技术,可以较好地满足在工业生产中的要求,但也存在着很多缺点,如晶体质量差、结构改变等。

随着科学技术的发展,各种新型的单晶制备技术也不断出现,如超声振荡法、表面自组装法、无模型技术、光趋型技术、低压技术、流动相技术和电磁脉冲技术等。

它们的特点一般是能够快速、定向和可控地合成单晶材料,不仅提高了制备效率,而且控制单晶材料中特定原子的排列变得更容易。

在未来,单晶制备技术将继续发展,不断发展出更多的优质材料,对科技的发展起着不可或缺的作用。

同时,由于单晶制备技术的发展,制备出的材料将得以更快的速度应用到各个领域中,以满足人们的需求。

单晶材料的制备方法介绍

单晶材料的制备方法介绍
结晶性能) 填充度:80-85%;
❖ 水热法生长的水晶:(人工晶体所生长)
ZnO晶体的水热生长
❖ 氧化锌晶体是第三代半导体的核心基础材料之一,它既是一种宽 禁带半导体,也是一种具有优异光电性能的多功能晶体。
❖ 早在上世纪60年代,美国曾采用水热法生长出重达几克的氧化锌 晶体。我国上海硅酸盐研究所在1976年也曾用水热法生长出重60 克、C面上面积达6cm2的氧化锌晶体。但由于应用领域较窄,制 约了研究工作的开展。
❖ 直到1997年,日本和我国香港的科学家首次报道氧化锌薄膜室温 下的光致发光效应后,重新引起了人们对氧化锌晶体研发的重视。 特别是2004年,日本东北大学川崎教授率先研制成功基于ZnO同 质PN结的电致发光LED,ZnO单晶制备研究引起了世界各国研 究的热门课题。
❖ 目前日本已生长出直径达2英寸的大尺寸高质量的氧化锌体单晶。 我国还没有生长出大尺寸的ZnO单晶。
G = H -T S = H ( Te – T) / Te = H T/ Te= -(L/ Te)* T
结晶过程: H 0 , G 0 T Te 过冷度 熔化潜热
T Te 是从熔体中生长晶体的必要条件
❖ 组分分凝
纯材料(纯元素或同成分熔化化合物),熔点和凝固点 是重合的,晶体和熔体具有相同的成分。
3.3.3 助熔剂法
❖ ——又称高温溶液法、熔盐法。
❖ ——在高温下从熔融盐熔剂中生长晶体的方法。
❖ 利用助熔剂法生长晶体的历史已近百年,现在用助熔剂生长 的晶体类型很多,从金属到硫族及卤族化合物,从半导体材 料、激光晶体、光学材料到磁性材料、声学晶体,也用于生 长宝石晶体。
❖ 基本原理: 将晶体原料在高温下溶解于低熔点的助熔剂中 形成饱和溶液,然后通过缓慢降温或在恒定温度下蒸发熔剂 等方法,使熔融液处于过饱和状态,从而使晶体自发结晶或 在籽晶上生长的方法。

如何制备单晶

如何制备单晶

从溶液中将化合物结晶出来,是单晶体生长的最常用 形式。最为普通的程序是通过冷却或蒸发化合物饱和溶液, 让化合物结晶出来。这时,最好采取各种必要的措施,使 其缓慢冷却或蒸发,以求获得比较完美的晶体。实践证明, 缓慢结晶过程往往是成功之路。为了减少晶核生长位置的 数目,最好使用干净、光滑的玻璃杯等容器。旧容器会有 各种刮痕,表面不平整,容易产生过多的成核中心,甚至 容易引起孪晶。相反,如果容器的内壁过于平滑,则会抑 制结晶。因此,如果某种化合物结晶过慢,可以通过轻微 刮花容器内壁来提高结晶的速度。同时,结晶装备应放在 非震动环境中。由于较高温条件下结晶可以减少了化合物 与不必要溶剂共结晶的月二率,因此在高温下结晶通常效 果更好。必须注意,尽量不要让溶剂完全挥发,因为溶剂 完全挥发后,容易导致晶体相互团聚或者沾染杂质,不利 于获得纯相(pure phase)、质量优良的晶体。
离子晶体
离子晶体是由阴、阳离子组成的,离子间的相互 作用是较强烈的离子键。离子晶体的代表物主要 是强碱和多数盐类。离子晶体的结构特点是:晶 格上质点是阳离子和阴离子;晶格上质点间作用 力是离子键,它比较牢固;晶体里只有阴、阳离 子,没有分子。离子晶体的性质特点,一般主要 有这几个方面:有较高的熔点和沸点,因为要使 晶体熔化就要破坏离子键,离子键作用力较强大, 所以要加热到较高温度。硬而脆。多数离子晶体 易溶于水。离子晶体在固态时有离子,但不能自 由移动,不能导电,溶于水或熔化时离子能自由 移动而能导电。
孪晶
孪晶是指:由两个或者两个以上同种晶体构成的 ﹑非平行的规则连生体。又称双晶。在构成孪晶 的两个单晶体间﹐必然会有部分的对应晶面﹑对 应晶棱相互平行﹐但不可能全部一一平行﹐然而 它们必可通过某一反映﹑旋转180°或者反伸 (倒反)的对称操作而达到彼此重合或者完全平 行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档