数控技术的发展及行业新技术.ppt

合集下载

数控发展趋势

数控发展趋势

数控发展趋势一数控技术简介数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;数控技术的应用不但给传统制造业带来了性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业IT、汽车、轻工、医疗等的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势;从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面;数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;二数控技术国内外现状1 开放结构的发展数控技术从发明到现在,已有近50年的历史;按照电子器件的发展可分为五个发展阶段:电子管数控,晶体管数控,中小规模IC数控,小型计算机数控,微处理器数控;从体系结构的发展,可分为以硬件及连线组成的硬数控系统、计算机硬件及软件组成的CNC数控系统,后者也称为软数控系统:从伺服及控制的方式可分为步进电机驱动的开环系统和伺服电机驱动的闭环系统;数控系统装备的机床大大提高了加工精度、速度和效率;人类发明了机器,延长和扩展人的手脚功能:当出现数控系统以后,制造厂家逐渐希望数控系统能部分代替机床设计师和操作者的大脑,具有一定的智能,能把特殊的加工工艺、管理经验和操作技能放进数控系统,同时也希望系统具有图形交互、诊断功能等;首先就要求数控系统具有友好的人机界面和开发平台,通过这个界面和平台开放而自由地执行和表达自己的思路;这就产生了开放结构的数控系统;机床制造商可以在该开放系统的平台上增加一定的硬件和软件构成自己的系统;目前,开放系统有两种基本结构:1CNC+PC主板:把一块PC主板插入传统的CNC机器中,PC板主要运行实时控制,CNC主要运行以坐标轴运动为主的实时控制;2PC+运动控制板:把运动控制板插入PC机的标准插槽中作实时控制用,而PC机主要作非实时控制;开放结构在90年代初形成;对于许多熟悉计算机应用的系统厂家,往往采用第2方案;但目前主流数控系统生产厂家认为数控系统最主要的性能是可靠性,象PC机存在的死机现象是不允许的;而系统功能首先追求的仍然是高精高速的加工;加上这些厂家长期已经生产大量的数控系统:体系结构的变化会对他们原系统的维修服务和可靠性产生不良的影响;因此不把开放结构作为主要的产品,仍然大量生产原结构的数控系统;为了增加开放性,主流数控系统生产厂家往往采用1方案,即在不变化原系统基本结构的基础上增加一块PC板,提供键盘使用户能把PC和CNC联系在一起,大大提高了人机界面的功能比较典型的如FANUC的150/160/180/210系统;有些厂家也把这种装置称为融合系统fusionsystem;由于它工作可靠,界面开放,越来越受到机床制造商的欢迎;2 软件伺服驱动技术伺服技术是数控系统的重要组成部分;广义上说,采用计算机控制,控制算法采用软件的伺服装置称为“软件伺服”;它有以下优点:1无温漂,稳定性好;2基于数值计算,精度高;3通过参数对设定,调整减少;4容易做成ASIC电路;70年代,美国GATTYS公司发明了直流力矩伺服电机,从此开始大量采用直流电机驱动;开环的系统逐渐由闭环的系统取代;但直流电机存在以下缺点:1电动机容量、最高转速、环境条件受到限制;2换向器、电刷维护不方便;交流异步电机虽然价格便宜、结构简单,但早期由於控制性能差,所以很长时间没有在数控系统上得到应用;随着电力电子技术的发展,1971年,德国西门子的发明了交流异步机的矢量控制法;1980年,德国人Leonhard为首的研究小组在应用微理器的矢量控制的研究中取得进展,使矢量控制实用化;从70年代末,数控机床逐渐采用异步电机为主轴的驱动电机;如果把直流电机进行“里翻外”的处理,即把电驱绕组装在定子,转子为永磁部分,由转子轴上的编码器测出磁极位置,这就构成了永磁无刷电机;这种电机具有良好的伺服性能;从80年代开始,逐渐应用在数控系统的进给驱动装置上;为了实现更高的加工精度和速度,90年代,许多公司又研制了直线电机;它由两个非接触元件组成,即磁板和线卷滑座:电磁力直接作用于移动的元件而无需机械连接,没有机械滞后或螺距周期误差,精度完全依赖于直线反馈系统和分级的支承,由全数字伺服驱动,刚性高,频响好,因而可获得高速度;但由于它的推力还不够大,发热,漏磁及造价也影响了它的广泛应用;对现代数控系统,伺服技术取得的最大突破可以归结为:交流驱动取代直流驱动、数字控制取代模拟控制、或者把它称为软件控制取代硬件控制;这两种突破的结果产生了交流数字驱动系统,应用在数控机床的伺服进给和主轴装置;由于电力电子技术及控制理论、微处理器等微电子技术的快速发展,软件运算及处理能力的提高,特别是DSP的应用,使系统的计算速度大大提高,采样时间大大减少;这些技术的突破,使伺服系统性能改善、可靠性提高、调试方便、柔性增强;大大推动了高精高速加工技术的发展;3 CNC系统的连网数控系统从控制单台机床到控制多台机床的分级式控制需要网络进行通信;网络的主要任务是进行通信,共享信息;这种通信通常分三级:1工厂管理级;一般由以太网组成;2车间单元控制级;一般由DNC功能进行控制;通过DNC功能形成网络可以实现对零件程序的上传或下传:读、写CNC的数据:PLC数据的传送;存贮器操作控制;系统状态采集和远程控制等;更高档次的DNC还可以对CAD/CAM/CAPP以及CNC的程序进行传送和分级管理;CNC与通信网络联系在一起还可以传递维修数据,使用户与NC生产厂直接通信:进而,把制造厂家联系一起,构成虚拟制造网络;3现场设备级;现场级与车间单元控制级及信息集成系统主要完成底层设备单机及I/0控制、连线控制、通信连网、在线设备状态监测及现场设备生产、运行数据的采集、存储、统计等功能,保证现场设备高质量完成生产任务,并将现场设备生产运行数据信息传送到工厂管理层,向工厂级提供数据;同时也可接受工厂管理层下达的生产管理及调度命令并执行之;因此,现场级与车间级是实现工厂自动化及CIMS系统的基础;传统的现场级大多是基于PLC的分布式系统;其主要特点是现场层设备与控制器之间的连接是一对一,即一个I/0点对设备的一个测控点;所谓I/0接线方式为传递4-20ma模拟量信息或24VDC开关信息;这种系统的缺点是:信息集成能力不强、系统不开放、可集成性差、专业性不强、可靠性不易保证、可维护性不高;现场总线是以单个分散的、数字化、智能化的测量和控制设备作为网络节点,用总线相连接,实现相互交换信息,共同完成自动控制功能的网络系统与控制系统;因此,现场总线是面向:工厂底层自动化及信息集成的数字网络技术;现场总线技术的主要特点为:它是数控系统通信向现场级的延伸、数字化通信取代4-20ma模拟信号、应用现场总线技术,要求现场设备智能化可编程或可参数化:它集现场设备的远程控制、参数化及故障诊断为一体:由于现场总线具有开放性、互操作性、互换性、可集成性,因此是实现数控系统设备层信息集成的关键技术;它对提高生产效率、降低生产成本非常重要;目前在工业上采用的现场总线有PROFIBUS-DP,SERCOS,JPCN-1,Deviconet,CAN,hterbus—S,Marco等;有的公司还有自己的总线,比如FANUC的FSSB,I/OLINK相当于JPCN—1,YASKAWA的MOTIONLINK等;目前比较活跃的是Prof主bus-DP,为了允许更快的数据传送速度,它由0SI的七层结构省去3-7层构成;西门子最新推出802D的伺服控制就是由PROFIBOUS-DP控制的;4功能不断发展和扩大WIDTH=200 align=right BBCOLOR=e5ebba BORDERCOLIRIGHT=006600BORDER=1>快速移动速度m/min分辨率μm2401100101NC技术经过50年的发展,已经成为制造技术发展的基础;这里以FANUC最先进的CNC控制系统15i/150i为例说明系统功能的发展;这是一台具有开放性,4通道、最多控制轴数为24轴、最多联动轴数为24轴、最多可控制4个主轴的CNC系统;其快速移动速度与分辨率关系如右表;它的技术特点反映了现代NC发展的特点:开放性:系统可通过光纤与PC机连接,采用Window兼容软件和开发环境;功能以高速、超精为核心,并具有智能控制;特别适合于加工航空机械零件,汽车及家电的高精零件,各种模具和复杂的需5轴加工的零件;15i/150主具有高精纳米插补功能;即使系统的设定编程单位为1μm,通过纳米插补也可提供数字伺服以1nm为单位的指令,平滑了机床的移动量,提高了加工表面光洁度,大大减少加工表面的误差;当分辨率为时,快速可达240m/min速度;系统还具有高速高精加工的智能控制功能:1预计算出多程序段刀具轨迹,并进行预处理;2智能控制,计及机床的机械性能,可按最佳的进率和最大的允许加速度工作,使机床的功能得到最大的发挥;以便降低加工时间,提高效率,同时提高加工精度;3系统可在分辨率为1nm时工作,适用于控制超精机械;高级复杂的功能:15i/150i可进行各种数学的插补,如直线、圆弧、螺旋线、渐开线、螺旋渐开线、样条等插补;也可以进行NURBS非均匀有理B样条插补;采用NURBS插补可以人人减少NC程序的数据输入量,减少加工时间,特别适用模具加工;NURBS插补不需任何硬件;强力的联网通信功能;适应工厂自动化需要,支持标准FA网络及DNC的连接;1工厂干线或控制层通信网络:由PC机通过以太网控制多台15i/150i组成的加工单元,可以传送数据、参数等;2设备层通信网络:15i/150i采用I/0LINK与日本标准JPCN-1相对应的一种现场总线;3通过RS-485接口传送I/0信号:或且也可采用PRELLBUS—DP符合欧洲1标准EN50170以12Mbps进行高速通信;具有高速度内装的PMC有的厂商称为PLC,以减少加工的循环的时间:1梯形图和顺序程序由专用的PMC处理器控制,这种结构可进行快速大规模顺序控制;2基本PMC指令执行时间为:;最大步数:32,000步;3可以用C语言编程;32位的C语言处理器可作为实时多任务运行;它与梯形图计算的PMC处理器并行工作;4可在PC机上进行程序开发;先进的操作:性和维修性;(1)具有触摸面板,容易操作;2可采用存储卡来改变输入输出三数控发展趋势1、高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体;高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力;为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会CIRP将其确定为21世纪的中心研究方向之一;在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工;近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联系方式拼装,使构件的强度、刚度和可靠性得到提高;这些都对加工装备提出了高速、高精和高柔性的要求;从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右;目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床;美国CINCINNATI公司的HYPERMACH机床速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min;加工薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12000r/mm和1g;在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~μm,并且超精密加工精度已开始进入纳米级μm;在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h 以上,表现出非常高的可靠性;为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大;2、轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高;一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢件时,5轴联动加工可比3轴联动加工发挥更高的效益;但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出很多,加之编程技术难度较大,制约了5轴联动机床的发展;当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头构造大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小;因此促进了复合主轴头类5轴联动机床和复合加工机床含5面加工机床的发展在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工;德国DMG公司展出DMUVOUTION系列加工中心,可5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制;3、智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等;为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题;目前许多国家对开放式数控系统进行研究,如美国的NGCThe Next Generation Work-Station/Machine Control、欧共体的OSACAOpen System Architecture for Control within Automation Systems、日本的OSECOpen System Environment for Controller,中国的ONCOpen Numerical Control System等;数控系统开放化已经成为数控系统的未来之路;所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象数控功能,形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品;目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心;网络化数控装备是近两年国际着名机床博览会的一个新亮点;数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元;国内外一些着名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山骑马扎克MAZAK公司展出的“CYBERPRODUCTION Center”智能生产控制中心,简称CPC;日本大尉Okuma机床公司展出“IT plaza”信息技术广场,简称IT广场;德国西门子Siemens公司展出的Open Manufacturing Environment开放制造环境,简称OME等,反映了数控机床加工向网络化方向发展的趋势;4、重视新技术标准、规范的建立如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范OMAC、OSACA、OSEC的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临;我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定;数控标准是制造业信息化发展的一种趋势;数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何how加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要;为此,国际上正在研究和制定一种新的CNC系统标准ISO14649STEP-NC,其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化;STEP-NC的出现可能是数控技术领域的一次,对于数控技术的发展乃至整个制造业,将产生深远的影响;首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上;而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向;其次,STEP-NC数控系统还可大大减少加工图纸约75%、加工程序编制时间约35%和加工时间约50%;目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划;参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构;美国的STEP Tools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型Super Model,其目标是用统一的规范描述所有加工过程;目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证;。

2024版数控车床ppt课件完整版

2024版数控车床ppt课件完整版
排除方法
根据故障诊断结果,采取相应的维修措施,如更 换损坏部件、调整参数等。
预防性保养措施建议
保持机床清洁
定期清理切屑、擦拭机床,避免 灰尘、油污等对机床造成损害。
定期检查
定期对机床各部位进行检查,及 时发现并处理潜在问题。
加强润滑
根据机床润滑要求,定期加注润 滑油或润滑脂,确保机床各部件 得到充分润滑。
数控车床网络化技术
介绍数控车床网络化技术的实现方式及在智 能制造中的应用前景。
数控车床自动化技术
分析数控车床自动化技术的现状与发展方向, 如自动上下料、自动换刀等。
数控车床绿色制造技术
探讨数控车床绿色制造技术的意义及实现途 径,如节能减排、环保型切削液等。
07 总结与展望
课程重点内容回顾
数控车床基本概念、分类及 应用领域
数控编程步骤
包括分析零件图样、确定加工工艺过程、 数学处理、编写零件加工程序、程序校 验与首件试切等。
常用编程指令介绍
准备功能指令
如G00(快速定位)、G01(直 线插补)、G02/G03(圆弧插补) 等,用于控制刀具的运动轨迹。
辅助功能指令
如M03(主轴正转)、M05(主 轴停止)、M08(冷却液开)等,
参数调整方法 根据加工过程监控结果,可以适时调整进给速度、主轴转 速等参数,以提高加工效率和保证加工质量。
异常处理措施 在加工过程中如遇到异常情况,如刀具磨损、工件变形等, 需要及时采取相应措施进行处理,避免影响加工质量和机 床安全。
加工后质量检测与评估
1 2 3
质量检测方法 加工完成后需要对工件进行质量检测,常用的检 测方法包括尺寸测量、表面粗糙度检测、形位公 差检测等。
复杂曲面零件加工编程

数控技术的发展与应用

数控技术的发展与应用

数控技术的发展与应用随着现代制造业的飞速发展,提高生产效率、降低成本、改进质量已成为企业竞争的关键因素。

而数控技术无疑是制造业的重要一环,其应用夯实了生产制造的基础,推动了产业向智能化、高效化方向发展。

一、数控技术的发展历程数控技术是从20世纪50年代发展起来的,它通过先进的电子计算技术,将物理运动与机床操作控制联系起来。

在未使用数控技术之前,人们生产制造依靠的是人工控制,由于工作量大、难以保证精度、低效率等问题,使生产效率和质量无法有效提高。

而数控技术的发展则彻底解决了这些问题,通过开发出计算机辅助设计和制造软件,可以准确地控制机床的动作和位置,保证制造的产品高质量、高精度和快速生产。

此外,现代数控技术还有很多其他的功能特性,包括数据传输、图像处理等。

二、数控技术的应用领域1. 机械加工行业数控技术的应用最早的领域是在机械加工行业中,其中数控机床是数控技术的最佳代表之一。

数控机床实现了对机床运行参数的控制,实现了切削、打孔、铣削、加工等操作。

相较于传统机床,数控机床更高效、更节省时间、更成本优化。

2. 汽车制造业汽车制造业是数控技术的重要应用领域,该领域需要生产极精密的零部件,而数控技术的精度能够满足这些要求。

应用数控技术生产的汽车零部件不仅精度和质量高,而且制造成本也降低了很多,大大促进了整个汽车工业的快速发展。

3. 航空制造业航空制造业是数控技术的另一个应用领域。

在航空工业生产过程中,要求零件的加工精度非常高,耐磨、坚硬度的要求也比较高,使用数控技术可以更加精细、快速地实现零件的加工和组装,提高了生产效率和质量。

三、数控技术的未来发展趋势随着科技的不断发展,各种数控技术在机械加工、汽车制造、航空制造等领域中得到广泛应用。

未来的数控技术发展方向主要包括以下几方面:1. 高端化:未来数控技术将更趋于高端化和智能化,能够具备人工智能、大数据处理、云计算等新技术的支持,为制造提供更加精密、高效的解决方案。

1.1 数控技术的发展

1.1 数控技术的发展

数控技术的发展一、数控技术的基本概念自从上20世纪中叶数控技术创立以来,它给机械制造业带来了革命性的变化,数控技术是提高产品质量、提高劳动生产率必不可少的物质手段;是国家的战略技术,基于它的相关产业是体现国家综合国力水平的重要基础性产业。

机床数控技术:“用数字化信息对机床运动及其加工过程进行控制的一种方法”。

数控机床是采用了数控技术的机床。

数控机床是一个装有程序控制系统的机床,该系统能够逻辑地处理具有使用代码,或其它符号编码指令规定的程序。

二、数控技术的产生1.世界上第一台数控机床世界上第一台数控机床于1952年诞生,美国麻省理工学院为一台立式铣床装上了一套采用电子管元件的数控装置,成功地实现了同时控制三轴的运动,而这台机床则被认为是世界上第一台数控机床。

2.数控技术发展的几个重要阶段第一代数控(1952-1959年):采用电子管构成的硬件数控系统;第二代数控(1959-1965年):采用晶体管电路为主的硬件数控系统;第三代数控(1965年开始):采用小、中规模集成电路的硬件数控系统;第四代数控(1970年开始):采用大规模集成电路的小型通用电子计算机数控系统;第五代数控(1974年开始):用微型计算机控制的系统;第六代数控(1990年开始):采用工控PC机的通用CNC系统。

三、数控技术的发展趋势数控技术不仅给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业的发展起着越来越重要的作用。

尽管十多年前就出现了高精度、高速度的趋势,但是科学技术的发展是没有止境的,高精度、高速度的内涵也在不断变化,目前正在向着精度和速度的极限发展。

从目前世界上数控技术发展的趋势来看,主要有如下几个方面:1.机床的高速化、精密化、智能化、微型化发展随着汽车、航空航天等工业轻合金材料的广泛应用,高速加工已成为制造技术的重要发展趋势。

高速加工具有缩短加工时间、提高加工精度和表面质量等优点,在模具制造等领域的应用也日益广泛。

数控系统发展简史及趋势

数控系统发展简史及趋势

数控系统发展简史及趋势数控系统是指利用计算机和数字化控制技术来实现机床自动化加工的一种控制方式。

自数控系统问世以来,它对传统机床行业的发展产生了深刻影响,也为制造业的发展提供了可靠保障。

本文将从数控系统的起源、发展历程、技术进步和未来趋势等方面进行阐述。

一、数控系统的起源1952年,美国MIT(麻省理工学院)的工程师JohnT.Parsons发明了一种数控机床,这个发明被视为数控技术的开端。

随着计算机技术的发展,数控系统的应用范围和功能不断提升。

20世纪70年代中期,计算机在工业企业中的广泛应用,为数控系统的大规模应用和普及奠定了基础。

二、数控系统的发展历程1、数控技术从单轴到多轴数控技术最初只能控制机床的一条轴线,即只能实现二维切削。

随着技术的不断发展,数控机床可以控制多轴,实现更加复杂的三维切削。

2、数控技术从线性插补到圆弧插补线性插补只能做直线运动,无法实现曲线运动。

圆弧插补技术的引入,实现了机床刀具在曲线轨迹上的运动,使机床切削更加精确。

3、数控技术从手动编程到自动编程最初的数控机床是由计算机控制的,由于计算机的高昂成本,编程需要手工完成。

手工编程容易出错且速度较慢。

自动编程技术的问世,极大地提高了编程效率和准确性。

4、数控技术从毛坯到定位最初的数控机床需要通过感应头或机械手动装夹工件。

现在的数控机床一般都配备有自动定位系统,可直接从机器库中提取工件,省去了人工操作。

5、数控技术从加工到修磨最初的数控技术只能加工,无法进行修磨等后续工序。

现在的数控机床可以实现自动修磨等后续工序,使加工效率和精度得到了进一步提高。

三、数控系统技术进步1、高速化高速化是当前数控技术研究的热点之一。

数控机床高速化可以使加工效率更高,缩短加工时间,提高机床使用寿命。

2、智能化智能化是指数控机床的自动控制功能更完善化,机床能够自主判断工件状态,并调整加工参数,以最大限度地提高加工质量和效率。

3、柔性化柔性化是指数控机床的生产能力更加具有弹性,能满足多品种、小批量的生产需求,提高企业应对市场的能力。

数控技术现状及发展趋势

数控技术现状及发展趋势

数控技术现状及发展趋势
一、数控技术现状
数控技术是一种高新技术,目前在多个行业都有应用。

数控技术不但
可以提高企业的生产效率,还有利于提高产品的质量,减少在生产过程中
出现的工序误差,减少停机时间,不仅有利于提高企业的经济效益,还能
有效节省能源,环保的特点也被广泛开发运用。

数控技术在实际的应用中,已经发展出多种功能。

比如提高自动化水平,便于机器的智能化操作,利用计算机的高精度控制功能,实现了机器
的复杂加工;还可以利用运动控制程序,检测机器的运动状态,避免出现
误操作;还可以实时检测机器的状态,使用户更容易掌握机器的运行状况;此外,数控技术还可以控制安全系统,避免机器出现意外状况。

更重要的是,数控技术还可以利用物联网技术,连接到云系统,把机
器的状态和数据上传到云端,方便用户的监控和管理,从而增加了机器的
可靠性及其生产能力。

二、数控技术的未来发展趋势
数控技术未来的发展趋势主要有以下几点:
1.发展智能化:研发更先进的智能化技术,朝着自动化智能化方向发展,如计算机视觉技术、人工智能、语音识别等。

2.先进的传动技术:研发更先进的传动技术。

数控机床的现状和发展趋势

数控机床的现状和发展趋势

我国数控机床的现状和发展数控机床是数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。

数控机床具有广泛的适应性,加工对象改变时只需要改变输入的程序指令;加工性能比一般自动机床高,可以精确加工复杂型面,因而适合于加工中小批量、改型频繁、精度要求高、形状又较复杂的工件,并能获得良好的经济效果。

因而了解和提升数控机床对我国的制造业的发展至关重要。

一.国内外数控机床的发展(1)我国数控机床的发展我国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。

建国初期在1958—1979年间为第一阶段,第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,主要存在的问题是盲目性大,缺乏实事求是的科学精神。

改革开放,从1979年至今为第二阶段。

在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国家(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。

在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、多轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。

至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。

(2)国外数控技术的发展数控机床的起源1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。

数控机床和数控技术的发展及未来趋势

数控机床和数控技术的发展及未来趋势

Science &Technology Vision 科技视界在工业国家,科学技术和生产力主要是体现在制造业中。

人们的衣食住行、办公生活的各个方面都与制造业息息相关。

制造行业作为各行各业的基础和生产力的一种表现形式,对于综合国力和国际地位的提高有着至关重要的地位。

在高新技术生产和尖端的工业制造中,数控机床和数控技术是最重要的生产设备和技术[1]。

在制造业发达的工业国家,数控技术及其设备被列为国家的战略物资,并且在“高精尖”的数控关键技术上,对我国实行封锁和限制政策。

因此,对数控技术的大力发展,提高工业制造水平俨然成为我国加速发展经济,提升综合国力的重要途径。

1数控机床和数控技术的产生随着社会的发展与制造业对生产设备要求的不断提高,数控机床作为一种以数字指令形式控制机床运行的新型加工设备应运而生。

其发展历程大致如下:1940年,位于美国密歇根州的一家飞机制造企业为了加工飞机的叶片,对生产设备的加工轨迹进行设计,并进行了数据的分析处理,这是早期的数控思想的萌芽。

1948年,美国首先提出使用脉冲信号对机床的运动轨迹进行控制,并于1952年由Parsons 公司和M.I.T 合作,率先研制出世界上的第一台数控机床。

它采用的是电子管元件,体积庞大。

但作为世界上的第一台综合计算机、自动控制、伺服驱动以及测量技术等新型机床,开辟了数字化加工的新时代。

1959年,数控机床的硬件发生改变,晶体管元件和印刷电路板取代了之前的电子管元件和硬接线板,机床的体积大大缩小,并且在这一时期出现了带有自动换刀装置的数控机床(加工中心),数控机床进入另一个时代。

1965年小规模的集成电路应用于数控装置,不仅使机床的体积更小、能耗低、可靠性高,而且价格也更低,这促进了数控机床的产量发展。

19世纪60年代末期,出现了多台机床由一台计算机直接控制的系统(DNC),以及使用小型计算机控制数控系统的形式(CNC),使数控机床进入采用小型计算机控制的第四代。

数控技术在智能制造中的应用及发展

数控技术在智能制造中的应用及发展

一、数控技术的定义和基本原理1.1 什么是数控技术数控技术是一种以数字信号为控制指令,对机床、自动化装置和其他生产设备进行自动化控制的技术,它将数字化的信息传输到机床上,从而实现机床的自动加工。

数控技术的应用领域非常广泛,不仅可以用于金属加工,还可以用于木工、陶瓷等材料的加工。

1.2 数控技术的基本原理数控技术的基本原理是通过计算机控制系统,将数字化的加工程序信息传输到机床上,从而实现工件的自动加工。

数控技术的核心是数控系统,它包括数控设备和数控编程两部分。

数控设备主要包括数控机床、数控工作台等,而数控编程则是将人工编制的加工工艺通过计算机编程软件转化为机床可执行的加工程序。

二、数控技术在智能制造中的应用2.1 数控技术在智能制造中的地位智能制造是当前制造业的发展趋势,其核心是通过信息技术、自动化技术和智能化技术实现制造过程的智能化。

而数控技术作为智能制造的核心技术之一,其应用在智能制造中具有重要的地位。

数控技术不仅可以提高生产效率,降低生产成本,还可以实现个性化定制和灵活生产。

2.2 数控技术在智能制造中的应用案例数控技术在智能制造中的应用案例非常丰富。

例如在汽车制造领域,数控技术可以实现汽车零部件的精密加工,提高汽车的制造质量和性能;在航空航天领域,数控技术可以实现飞机零部件的高精度加工,保障飞机的飞行安全;在家居设计领域,数控技术可以实现家具等产品的个性化定制,满足消费者个性化需求。

三、数控技术在智能制造中的发展趋势3.1 数控技术在智能制造中的发展现状当前,随着智能制造的不断发展,数控技术在智能制造中的应用越来越广泛。

在工业机器人、3D打印、柔性制造系统等领域,数控技术已经成为智能制造的重要支撑技术。

3.2 数控技术在智能制造中的发展趋势未来,随着人工智能、大数据、云计算等技术的不断发展,数控技术在智能制造中的应用将更加广泛。

智能数控机床将会实现智能化的生产调度和过程监控,柔性制造系统将会实现高度自动化和个性化定制,工业机器人将会实现更加智能、灵活的生产。

数控ppt课件

数控ppt课件
刀具选择与安装
根据加工需求选择合适的刀具, 并进行精确安装。
加工参数设定
设置主轴转速、进给速度等加工参 数。
程序编写与调试
根据加工工艺流程,编写加工程序 并进行调试。
数控加工工艺的流程
首件试切
进行首件试切,检查加工质量和 工艺参数是否符合要求。
批量加工
经过首件试切验证合格后,开始 批量加工。
数控加工工艺的优化
05
数控技术的发展趋势与未 来展望
数控技术的未来发展方向
智能化
高效化
数控技术将进一步融会人工智能、大数据 和物联网技术,实现更高程度的自动化和 智能化。
追求更高的加工效率和更短的加工周期, 提升生产效益。
复合化
绿色化
具备多种加工功能,满足复杂零件的加工 需求。
重视环保和可持续发展,下落能耗和减少 废弃物排放。
03
数控技术的起源
数控技术起源于20世纪中 叶,最初是由美国科学家 开发,用于加工军事装备 。
数控技术的发展
随着计算机技术的不断发 展,数控技术也不断完善 和进步,从20世纪70年代 开始广泛应用于工业生产 。
数控技术的趋势
未来数控技术将朝着智能 化、网络化、复合化等方 向发展,进一步提高加工 精度和效率。
除了上述领域外,数控技术还 广泛应用于电子、模具、医疗
器械等众多领域。
02
数控机床的组成与工作原 理
数控机床的组成
伺服系统
伺服系统由伺服电机和控制系 统组成,用于实现机床的精确 运动控制。
冷却系统
冷却系统用于下落切削进程中 的温度,提高加工精度和刀具 寿命。
数控装置
数控装置是数控机床的核心部 分,用于生成加工程序,并控 制机床的各个运动部件。

数控技术的产生以及发展简介

数控技术的产生以及发展简介

04
CATALOGUE
数控技术的未来展望
数控技术的新趋势
智能化
数控技术将进一步融合人工智 能、大数据和物联网技术,实 现更高程度的自动化和智能化

高效化
随着技术的进步,数控机床的 加工效率和精度将得到进一步 提升,缩短产品制造周期。
复合化
数控机床将具备更多功能,能 够完成更复杂的加工任务,实 现一机多用。
02
CATALOGUE
数控技术的发展历程
数控技术的初步成熟
数控技术的初步探索
数控技术的标准化
20世纪中叶,随着计算机技术的兴起 ,人们开始尝试将计算机与机床结合 ,实现加工过程的数字化控制。
随着数控技术的普及,各国开始制定 数控技术的标准,规范了数控机床的 设计、制造和应用。
数控技术的初步应用
在20世纪60年代,数控技术开始应用 于工业生产,主要用于复杂、精密零 件的加工制造。
数控技术还可以应用于生产线上的自动化设备,如机器人、自动化检测设备等, 实现生产过程的自动化和智能化。
数控技术在航空工业的应用
航空工业对材料和零件的精度要求极高,数控技术在这方面 发挥了重要作用。通过数控机床和加工中心,可以对航空材 料进行高精度加工,制造出符合要求的零部件。
数控技术还可以应用于航空工业中的装配和检测环节,提高 装配精度和检测效率,确保飞机的安全性和可靠性。
数控技术的进一步发展
智能数控技术的发展
随着人工智能和物联网技术的融合,智能数控技术逐渐成 为研究热点。智能数控技术能够实现加工过程的自适应控 制和优化,提高加工效率和精度。
五轴联动数控机床的应用
五轴联动数控机床能够实现复杂空间曲面的加工,广泛应 用于航空、能源、造船等领域的关键零部件制造。

数控技术的应用与发展

数控技术的应用与发展

制等方面 , 也出现了许多数控设备。 近几年 , 国的数控技术应用在研究和生产方面 , 我 都取得了 令人瞩 目的成就 , 同时培养出了大批技术开发和应用人才。 但是数 控技术的发展仍有一定的局限性。主要 问题是我 国的数控技术相 对发达国家来说还有一定的差距 , 而且分布相对不平衡 , 甚至有的 企业数控技术仍是空白。 有些企业虽然花资金购买回来数控设备 , 但是由于大部分数控设备档次较低 、 加工对象单一、 忽略数控设备 的维护与保养 、 数控机床的搭配不当 、 目购买等原 因, 盲 最终使得 数控技术在加工领域中不能得到很好的推广和使用 。 另一个问题是我国大多数企业 数控技术方面人员综合 素质 低, 缺少高级编程人 员、 操作人员 、 维修人员等复合 型 、 应用型 的
为 了满 足 复 杂 多变 市 场 的需 要 , 又设 计 出 了具 有 高 速化 、 复合 化 、
加 工质量 、 效率等方 面的问题 。针对 当前数控方 面人才缺乏 , 我 国也作 出了许多努力 , 化人力 资源管 理, 强 大力培养和引入数控 机 床有关的技术人 才, 争取做到 留住有才能的人。
计算机控制 的数控 系统 ( c poesr u e cl o tlMN Mio rcs m r a C nr , C o r oN i o 我 国数控技术在 2 0世纪 8 0年代 曾有过高速发展 阶段 , 尤其是在 19 99年后, 国家向国防工业及关键 民用工业部门投入大量技改资 金, 使数控设备制造市场一派繁荣。当今 , 数控技术已经进入了实 质性阶段 。随着数控技术的不断发展和应用领域的扩大 , 电产 机 品更新换代速度加快 , 对零件的加工精度和质量有了更高的要求 ,
成的专用 的计算装置 ,控制功能都是 由硬件逻辑 电路来实现的。

国内外数控技术的发展现状与趋势

国内外数控技术的发展现状与趋势

国内外数控技术的发展现状与趋势一、本文概述数控技术,即数控加工编程技术,是现代制造业的核心技术之一,它涉及到计算机编程、机械设计、自动控制等多个领域。

随着科技的飞速发展,数控技术在国内外都取得了显著的进步,广泛应用于航空航天、汽车制造、模具加工等各个行业。

本文将对国内外数控技术的发展现状与趋势进行深入探讨,以期了解数控技术的最新发展动态,为相关领域的从业者提供有益的参考。

本文将回顾数控技术的起源与发展历程,从最初的简单数控系统到现在的高度智能化、网络化数控系统,阐述数控技术在国内外的发展历程和主要成就。

接着,本文将重点分析国内外数控技术的现状,包括数控系统、数控机床、数控编程软件等方面的发展情况,以及数控技术在各个行业的应用现状。

同时,本文还将探讨数控技术发展中的关键问题,如精度与效率、智能化与自动化、开放性与标准化等。

在趋势分析方面,本文将关注数控技术的前沿动态,探讨数控技术的未来发展方向。

随着、大数据、云计算等新一代信息技术的快速发展,数控技术将如何实现与这些技术的深度融合,提高加工精度、效率和智能化水平,将是本文关注的重点。

本文还将分析数控技术在绿色制造、智能制造等领域的应用前景,以及国内外数控技术市场竞争格局的变化趋势。

本文旨在全面梳理国内外数控技术的发展现状与趋势,为相关领域的从业者提供有价值的参考信息,推动数控技术的持续创新与发展。

二、数控技术的历史回顾数控技术,即数字控制技术,其发展历程可以追溯到20世纪40年代末。

初期的数控技术主要应用于军事工业,例如美国为了制造飞机叶片而研发的数控铣床。

随着计算机技术的飞速发展和普及,数控技术也逐步实现了电子化、信息化和智能化。

20世纪50年代,数控技术开始进入商业应用领域,主要用于机床加工和自动化生产线。

此时,数控系统多为硬件连线式,编程复杂,灵活性差。

进入60年代,随着计算机软件技术的发展,数控系统开始采用软件编程,大大提高了编程的灵活性和效率。

我国数控技术发展的分析与研究

我国数控技术发展的分析与研究
未 建 立 自己 的品牌 效 应 , 用 户 信 心 不 足 。 在 可 持 续 发
术 的 应 用 不 但 给 传 统 制 造 业 带 来 了革 命 性 的 变 化 , 使 制造 业 成 为工 业 化 的象 征 , 而 且 随 着 数 控 技 术 的 不 断
发展 和 应 用领 域 的扩 大 , 对 国计 民生 的一些 重 要 行业
够 。二 是 发 展 体 系 不 够 完 问 题 的时 候 多 , 从 系统 的 、 产 业 链 的 角 度 综 合
时期 [ 。
1 数 控 技 术 发 展 水 平 分 析
我 国数 控 技术 经 过 近 5 0年 的 发 展 , 取 得 了 比 较
展 , 机 械 制 造 业 已 经 成 为 我 国 工 业 中 具 有 相 当 规 模 和

其 是 一 些 高 精 尖 的 数 控 装 备 的 技 术 水 平 差 距 有 扩 大
趋 势 。在 技 术水 平 上 , 与 国 外 先 进 水 平 大 约 落 后 至 少
定 技 术 基 础 的 最 大 产 业 之 一 。机 械 制 造 业 中 数 控 技
新 技 术 对 传 统 制 造 产 业 和 新 兴 制 造 业 的 渗 透 形 成 的 机 电一 体 化 产 品 . 即所 谓 的数 字 化 装 备 . 其 技 术 范 围 覆 盖很 多领 域 , 如机 械制 造技 术等 。
机 械 制 造 业 是 为 国 民经 济提 供 技 术 装 备 和 为 人 民生 活 提 供 耐 用 消 费 品 的装 备 产 业 。经 过 多 年 的发
的 发 展 起 着 越 来 越 重 要 的 作 用 。数 控 技 术 是 机 械 制 造
业 中 新 兴 的 综 合 性 技 术 .它 集 微 电 子 和 计 算 机 技 术 、 信 息处 理 技 术 、 精 密检 测 技术 、 自动控 制 技术 、 光 机 电 技术 、 网络 通 讯 等 高 新 技 术 于一 体 . 随 着 微 电 子 和 计 算 机技 术 的 迅 速发 展 . 大 大 加 快 了 数 控 技 术 的 发 展 和 运用 . 使 传 统 的 制 造 业 不 断 发 生 着 巨 大 的 变 化 。 目前 我 国 的 数 控 系 统 正 处 在 由 研 究 开 发 阶 段 向 推 广 应 用 阶段 过 渡 的关 键 时期 , 也 是 由 封 闭 式 开 环 控 制 模 式 向

我国数控机床的创新和发展

我国数控机床的创新和发展

水 平 ,北 京机床研 究所在精 密数控 机床方面 有丰 硕的成果 ,图9 为其研 制的NAM一0 型超精 密车 80
床 , 其 主 轴 回转 精 度 为00 .3tm、 导 轨 直 线 度 为 , t
中的平铺机 、缠绕机 、剪裁机 、机械加工机床等 ; 石材的精密加工设备 ;生活中的制鞋机和服装剪裁 机 、缝纫机 、熨烫整形机及其所形成的柔性生产系
E 意n o i t
清华大学 精密仪器 与机械学 系制造工程研 究所 ( 京 北
1 0 8 ) 王先 逵 0 3 0
我 国数 控 机 床
珠 丝杠 、刀库 、 刀座 、 刀柄等 都是 自已研 制的 ,
这 无 疑 是 一 种 创 新 , 对
我 国 数 控 机 床 的 发 展 起 了 推 动 的 作
动线 ,所 用步 进 电动 机 、液 动 机 、液 压 伺 服 阀 、滚
参蔼
冷 加
2 5
上 p wi E e 0 家i n xr 扇 t 专 Vp re
时机 ,在发展中创新 ,在创新 中求发展 。 在近5 年来 ,我们面临 了多种 多次创新和发 0 展的机 遇 ,其 中主 要 有汽 车 、集成 电路 、计算 机、航 空 、航天等 ,给加工 中心 、精 密和超精 密 机床 、微细加工机床 、高速加 工机 床等数 控机床 的创新和发展带来 了机遇 。直线 电动机 ( 图2 见 ) 的 出现使数控机床 的驱动有了很大的变化 ,影响 很大 ,但我们抓 得不够 ,至今未形成我 国 自已的
为 2 m ( 图8 见 )。 微 尺 度 加 工 零件 尺 寸 很 小 ,立 足 于 微 细加 工方 法 和纳 米 加 工 技
术 ,如光 刻 、电
6 数控 系统的开放性和 性能提高 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档