节能灯磁环选用指南

合集下载

EMI吸收磁环磁珠的应用及选型

EMI吸收磁环磁珠的应用及选型
发生, 大部分实际应用中都是将线缆直接通过 吸收磁环,所以在选择吸收磁环时主要 看内径大小,能
EMI吸收磁环磁珠的应用及选 型
zso123
文做一些简要的阐述: 原理: 当电子设备环境周围有高频干扰 源时(一般指频率大于100MHz以上), 这些
干扰信号是通过空间辐射的,而不通过 线缆。如果仅在线缆上做滤波处理只能 滤掉几十兆Hz的干扰,而对100 MHz以上 就不起作
用了。EMI吸收磁环磁珠就能为这一问题 得到有效的处理,磁环磁珠能吸收空间 信号,把电场能量转换为热能而有效的 损耗。吸收磁环
磁珠对电子设备本身的电路不会造成任 何影响,仅在有高频干扰时才会工作。 选型: 一般选择磁环时要看磁环在2
5MHz和100MHz两个频率点的阻抗值,阻 抗越大,吸收的作用也越大。但如果线 缆束的尺寸也要考虑,一般线缆在通过 吸收磁环

磁环选取计算公式

磁环选取计算公式

磁环选取计算公式磁环是一种常见的磁性元件,广泛应用于电子、通信、电力等领域。

在磁环的选取过程中,需要根据具体的应用场景和要求,计算出合适的磁环尺寸和参数。

本文将介绍磁环选取的计算公式及其应用。

一、磁环的基本参数在进行磁环选取计算之前,需要了解磁环的基本参数。

磁环的主要参数包括内径、外径、高度、材料、磁导率等。

其中,磁导率是磁环的重要参数之一,它决定了磁环的磁性能。

磁导率的单位是H/m,常见的磁导率有铁氧体、镍锌铁氧体、钴铁氧体等。

二、磁环选取计算公式1. 磁环的磁场强度计算公式磁环的磁场强度是指在磁环内部产生的磁场强度。

磁环的磁场强度计算公式如下:H = (N * I) / L其中,H为磁场强度,单位为A/m;N为磁环匝数;I为磁环电流,单位为A;L为磁环平均磁路长度,单位为m。

2. 磁环的磁通量计算公式磁通量是指磁场通过磁环的总量。

磁环的磁通量计算公式如下:Φ = B * A其中,Φ为磁通量,单位为Wb;B为磁场强度,单位为T;A为磁环的横截面积,单位为m²。

3. 磁环的磁场能量计算公式磁场能量是指磁场在磁环中的能量。

磁环的磁场能量计算公式如下:W = (1/2) * Φ * H其中,W为磁场能量,单位为J;Φ为磁通量,单位为Wb;H为磁场强度,单位为A/m。

4. 磁环的磁场能量密度计算公式磁场能量密度是指单位体积内的磁场能量。

磁环的磁场能量密度计算公式如下:w = W / V其中,w为磁场能量密度,单位为J/m³;W为磁场能量,单位为J;V为磁环的体积,单位为m³。

三、磁环选取计算实例下面以一个具体的磁环选取实例来说明磁环选取计算公式的应用。

假设需要选取一个内径为10mm,外径为20mm,高度为5mm的铁氧体磁环,使其在电流为1A时,产生的磁场强度为1000A/m。

根据上述公式,可以计算出磁环的匝数、磁通量、磁场能量和磁场能量密度。

1. 计算磁环的匝数假设磁环的平均磁路长度为0.02m,根据磁场强度计算公式可得:H = (N * I) / LN = H * L / I = 1000 * 0.02 / 1 = 20因此,磁环的匝数为20。

磁环如何选择?EMC抗干扰相关名词解释

磁环如何选择?EMC抗干扰相关名词解释

磁环如何选择?EMC抗干扰相关名词解释磁环如何选择,磁环怎么选型我一般都会先了解下客户磁环用途,使用频率等等。

这里我简单分析下,如:碰到干扰时,一般使用非晶磁环,锰锌磁环或者镍锌磁环,当然这3种磁环使用的频率段各不相同。

高频干扰时则选择镍锌磁环,多大的线用多大的磁环,内孔一定要注意,线粗和磁环内孔一定要刚好,太大穿不进去,太小会漏磁,还有注塑模具要比磁环尺寸稍为要大些,但不要差距太大,这样在注塑时不容易把模具损坏。

还有就是性能不强时,线径又那么大,那么外径和内孔不变,但长度要选长一点的磁环。

一般选型磁环优先选择外径要大,内孔要小,长度要长,这样的磁环尺寸截面积越大效果越好。

磁环如何选择?下面我再介绍下夹扣式磁环又是如何选型,夹扣式磁环相对来说,比其它磁环型号要好很多,用起来方便,快捷,它是由两片式磁芯和塑胶壳组装而成,又被称为组装式磁环。

选用此类型号,它可以直接扣在干扰线上,无须注塑,在内径大的情况下,可以反复多绕1~2圈,绕的越多,阻抗效果越好。

目前我司这类规格已有适合1MM到19MM 线缆夹扣式磁环供客户选择。

1.1电磁环境electromagneTIc environment存在于给定场所的所有电磁现象的总和。

1.2电磁噪声electromagneTIc noise一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。

1.3无用信号unwanted signal,undesired signal可能损害有用信号接收的信号。

1.4干扰信号interfering signal损害有用信号接收的信号。

1.5电磁骚扰electromagneTIc disturbance任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害作用的电磁。

磁环(铁芯)选用要点

磁环(铁芯)选用要点

磁環(鐵芯)選用要點Ferrite分類MnZnNiZnNiZnCu用途:High Frequency Swithcing Mode Power Supplies製造商:TDK、EPCOS型式:EFD15材質:MnZn錳鋅居里點,至少要高於200℃μi:2200± 25 % @T = 25 °CBS:390mT @T=100℃飽和磁通密度Bs:最大磁通密度Bm:Ae:15mm2AL:780 + 30/– 20 %Frequency range:25K~500KHz(要有最低和最高)ROHSCurie Temperature:>210℃Pv(Core lss):390kW/m3 @300kHz,100mT,100℃(Pcv)Bs儘量高,Br儘量低,才能達到小體積大功率選用高磁導率的CORE,使激磁電感盡量大,讓磁化電流盡可能低UP TO 500KHz(500K以下)名詞解釋:鐵損是由於在鐵芯中的變更磁場所造成,這個損失與操作頻率及總流動的磁通量有關,總鐵損由三個成份組成,磁滯損,渦流損及殘留損.這些損失因磁性材料不同而異,在如高功率及高頻率切換調整器和RF的設計需要小心選擇鐵芯種類以降低鐵損使電感的表現最佳.■ CURIE TEMPERATURE 居禮溫度The temperature above which a ferrite core loses its magnetic properties. The core's permeability typically increases dramatically as thecore temperature approaches the curie temperature which causes theinductance to increase. The permeability drops to near unity at the curie temperature which causes the inductance to drop dramatically. The curie point is the temperature at which the initial permeability has dropped to 10% of its original value at room temperature.在此一溫度以上鐵氧磁體鐵芯失去磁性質,鐵芯的磁導率一般在接近居禮溫度時會急速上升因而電感值亦上升,於居禮溫度時,導磁率約降至一,因而使電感值急速下降,當初導磁率下降為在室溫下之初導磁率的10%時,其溫度稱之為居禮溫度.■ DCR ( DC RESISTANCE ) 直流電阻The resistance of the inductor winding measured with no alternating current. The DCR is most often minimized in the design of aninductor. The unit of measure is ohms, and it is usually specified as a maximum rating.電感線圈在非交流電下量得之電阻.在電感設計中,直流電阻愈小愈好,其量測單位為歐姆,通常以其最大值為標註.■ DISTRIBUTED CAPACITANCE 分佈電容值In the construction of an inductor, each turn of wire or conductor acts as a capacitor plate. The combined effects of each turn can be represented as a single capacitance known as the distributed capacitance. This capacitance is in parallel with the inductor. This parallel combination will resonate at some frequency which is called theself-resonant frequency (SRF). Lower distributed capacitances for a given inductance value will result in a higher SRF value and vice versa. (Also see SRF.)在電感的結構中,每一圈的繞線或導體有如電容電板一般的作用.其每圈結合起來的效果,有如單一之電容值,稱之分佈電容值.與電感並聯的.如此並聯的結合使得電感在某頻率下會產生諧振,稱之自我共振頻率(SRF),在一定電感值下,較低的分佈電容值會有較高之自我共振,反之亦然.■ EDDY CURRENT LOSSES 渦流損Eddy current losses are present in both the magnetic core and winding of an inductor. Eddy currents in the winding (or conductor)contribute to two main types of losses: losses due to proximity effects and skin effects. As for the core losses, an electric field around the flux lines in the magnetic field is generated by alternating magnetic flux. This will result in eddy currents if the magnetic core material haselectrical conductivity. Losses result from this phenomenon since the eddy currents flow in a plane that is perpendicular to the magnetic flux lines.渦流損同時會出現在電感中的繞線及磁性鐵芯中,在繞線(導體)中的渦電流會促進兩種形式的損失:鄰近效應之損失及表面效應之損失,至於鐵損,可視為在一磁場中之磁力線周圍的一電場,是由交互的磁通量所產生,如果此磁性鐵芯具有導電性,則形成渦電流,因渦電流在一垂直於磁力線方向的平面流動,損失因而產生.■ FERRITE CORE 鐵氧磁體鐵芯Ferrite is a magnetic material which consists of a mixed oxide of iron and other elements that are made to have a crystalline molecular structure. The crystalline structure is created by firing the ferrite material at a very high temperature for a specified amount of time and profile. The general composition of ferrites is xxFe2O4where xx represents one or several metals. The most popular maetal combinations are manganese and zinc (MnZn)and nickel and zinc (NiZn). These metals can be easily magnetized.鐵氧磁體是一種磁性材料,組成包含鐵及其他元素的氧化物而具有結晶分子的構造.這種結晶構造可在高溫及特定的方式下燒結鐵氧磁體材料一段特定時間而得,其一般的組成為xx Fe2O4,其中xx代表一種或好幾種金屬,最為常見的金屬組合為錳和鋅(MnZn)及鎳和鋅(NiZn),這些金屬都很容易被磁化.■ IMPEDANCE 阻抗值The impedance of an inductor is the total resistance to the flow of current, including the AC and DC component. The DC component of theimpedance is simply the DC resistance of the winding. The AC component of the impedance includes the inductor reactance. Thefollowing formula calculates the inductive reactance of an ideal inductor (i.e., one with no losses) to a sinusoidal AC signal.一電感的阻抗值是指其在電流下所有的阻抗的總和,包含了交流及直流的部份,直流部份的阻抗值僅僅是繞線的直流電阻,交流部份的阻抗值則包括電感的電抗,下列的方程式用來計算一理想電感(沒有能量損失)在一正弦波交流訊號下的電抗:Z = XL = 2πfLL is in henries and f is in hertz. This equation indicates that higher impedance levels are achieved by higher inductance values or at higherfrequencies. Skin Effect and Core Losses also add to the impedance of an inductor. (Also see Skin Effect and Core Losses.)L的單位為亨利而f的單位為赫茲,此方程式說明一較高的阻抗值可由較高的電感值或在較高的頻率下得到,此外,表面效應及鐵損亦會增加一電感的阻抗值.(亦參閱表面效應及鐵損)初始導磁率:直流初導磁率是指在直流狀態下其磁化曲線於原點時所得之切線斜率(圖例2),其可以下列方程式表示之:有何意義磁通密度越高,loss越大頻率越高,core loss越高CORE LOSS與溫度非呈線性頻率高到一定時,初始導磁率驟降。

磁环选取计算公式

磁环选取计算公式

磁环选取计算公式磁环选取计算公式是指针对磁环材料的特性和使用环境的要求,通过计算得出磁环的相关参数,包括直径、厚度、磁场强度等,以确保磁环能够满足具体的应用需求。

在实际工程中,磁环选取计算公式常常具有非常重要的作用,能够有效提高磁环的使用效率和可靠性。

下面将介绍磁环选取计算公式的相关参考内容。

1. 磁环的直径计算公式如果已知磁环的材料特性、工作环境和使用条件等参数,我们可以通过以下公式来计算磁环的直径:D = 2 × [(H + Hc) × t] / μ0 × N其中,D表示磁环的直径,H表示工作环境的磁场强度,Hc表示磁环的居里温度,微软表示真空中的磁导率,N表示磁环的匝数,t表示磁环的厚度。

该公式可以帮助我们计算出磁环的直径。

2. 磁环的厚度计算公式在实际应用中,有时需要根据磁场强度的要求,选取更薄或更厚的磁环。

如果已知其他参数,可以通过以下公式来计算磁环的厚度:t = [(H + Hc) × D / (2 × μ0 × N)] - D其中,t表示磁环的厚度,其他参数与上公式类似。

该公式可以帮助我们计算出磁环的厚度。

3. 磁环的容限计算公式在实际选配磁环时,有时需要考虑容限问题。

容限是指在一定范围内,磁环的实际参数与计算值之间允许存在的误差范围。

计算公式如下:Fd = 2 × [σ(H + Hc) × t] / μ0 × N其中,Fd表示容限的上限,σ表示磁环的短斜率,其他参数与前两个公式类似。

该公式可以帮助我们根据容限需求计算出磁环的参数。

4. 磁环的热稳定性计算公式在高温环境下使用磁环时,有时需要考虑热稳定性问题。

计算公式如下:ΔHc/ΔT = (αM/2) × (Hc/μm)其中,ΔHc/ΔT表示热稳定性的系数,αM表示磁环的热膨胀系数,μm表示磁环的平均磁导率。

该公式可以帮助我们选择合适的磁环材料,以提高磁环在高温环境下的稳定性。

磁环选取计算公式

磁环选取计算公式

磁环选取计算公式磁环选取是指在电机、变压器等设备中设计合适的磁环尺寸以获得所需的磁性能。

磁环选取的主要目的是保证设备的高效率、稳定性和可靠性。

本文将介绍磁环选取的一般步骤和计算公式。

磁环选取的一般步骤如下:1.确定材料:选择适合应用的磁环材料,通常使用的材料有铁氧体、钕铁硼等。

材料的选择应考虑其磁导率、饱和磁强度和矫顽力等指标。

2.磁环尺寸初步估算:根据设备的特定要求,初步估算磁环的外径、内直径和高度等尺寸。

可以参考类似设备的经验数据或者使用一些简化的计算公式。

3.磁环截面积计算:根据设备的工作条件和需求,计算磁环的横截面积。

一般来说,磁环的横截面积越大,磁能就越大,但也会增加材料的成本和重量。

4.磁环回路长度计算:计算磁环内部的磁通回路长度。

根据设备的特点,选择合适的磁环形状(如环形、矩形等),并测量长度。

5. 磁通密度计算:根据设备的磁场要求,计算磁环的磁通密度。

磁通密度是指通过单位截面积的磁通量,通常用特斯拉(Tesla)或高斯(Gauss)表示。

6.磁场计算:根据磁通密度和磁环形状,计算磁场分布情况。

可以使用有限元软件或者磁场计算公式进行计算。

7.磁环材料选择:根据设备的特定要求,选择合适的磁环材料。

考虑到材料的性能和成本等因素,进行综合评估。

8.磁环尺寸优化:根据初步估算结果和磁环材料的选择,对磁环的尺寸进行优化。

优化的目标是尽可能满足设备的性能要求,同时尽量减小材料的成本和体积。

对于磁环选取中的磁通密度和磁通回路长度的计算,可以使用以下公式进行估算:磁通密度(B)=磁通量(Φ)/磁环横截面积(A)磁通回路长度(l)=磁环的周长其中,磁通量可以通过磁感应强度(B)和磁环横截面积(A)的乘积计算得到。

磁环选取的计算公式较为复杂,需要通过实际应用经验和一定的工程计算方法进行估算。

一些专业软件工具也可以辅助磁环选取的计算工作。

在进行磁环选取时,还需要考虑磁环的接口设计、焊接和组装工艺等方面的因素,以保证磁环的性能和可靠性。

磁环选择方法

磁环选择方法

制作巴伦的磁环选择方法(大全)制作巴伦的磁环应该怎么选?磁环应该选择高频的,导磁率(不要很高的)100比较合适!现在高频磁环比较难找。

过去大家都到北京协会总部去买,大约5元一只,不知现在还有没有。

也有的火腿使用一般磁环绕制,只要芯线绞的比较紧密也能用,但频率高、功率大时会发热。

MTV推荐的空心巴仑也是很好的解决办法-。

磁环是高频铁氧体,具有高导磁(u大)和低损耗的特点。

磁芯类型一般有NXO镍锌铁氧体和MXO锰锌铁氧体两系列。

大直径的高频磁环,用粗芯线也可以大功率到1000瓦以上!广大无线电爱好者在制作巴伦,功率合成器(分配器)时经常在选择磁环,导线等问题大伤脑筋,且这些问题如果处理不当,必定效果不理想。

经常在频率上和网上听到或看到有人抱怨,加了巴伦还不如不加……为了解决这些问题,要从高频变压器问题解决。

本人根据一些资料,总结了一些关于传输线变压器的一些问题和大家共同探讨,有不当之处,请大家予以指正。

将高频传输线绕在具有高导磁率(u)低损耗的铁氧体磁环上就变成传输绝变压器,其电路从表面上看似乎与普通变压器没有多大差别,但实际上它们传递能量的方式是不相同的。

普通变压器信号电压加在初级绕组的1、2端,使初级线圈有电流流过,然后由此产生的磁力线在次级(3、4端)感应出相应的交变电压,能量就是这样由输入端传到负载。

而传榆线变压器的信号电压却加在1、3端,能量在两导线的介质间传播到负载。

传输线变压器能量传输原理如图l-a所示。

出于两根导线是紧靠绕在一起,所以导线任意点的线间电容都是很大的,而且在整个线长上是均匀分布的。

由于导线是绕在高u磁芯上,故导线每一小段Δl的电感量是很大的,而且均匀分布在整个线段上。

这些电容和电感量通常叫分布参数,由线间电容和导线电感组成的电路叫分布参数电路,如图1-b所示。

因此,传输钱可以看成由许多电感、电容组成的耦合链,从而产生了新的传输能量的方式。

当信号电压U1加在图2的输入端(1、3端)时,出于传输线间电容较大,因此信源向电容C1充电,使C1贮能。

磁环的原理磁环的匝数选择

磁环的原理磁环的匝数选择

磁环的原理磁环的匝数选择:在电子设备的电源线或信号线一端或者两端看到的磁环就是共模扼流圈。

共模扼流圈能够对共模干扰电流形成较大的阻抗,而对差模信号没有影响(工作信号为差模信号),因此使用简单而不用考虑信号失真问题。

并且共模扼流圈不需要接地,可以直接加到电缆上。

将整束电缆穿过一个铁氧体磁环就构成了一个共模扼流圈,根据需要,也可以将电缆在磁环上面绕几匝。

匝数越多,对频率较低的干扰抑制效果越好,而对频率较高的噪声抑制作用较弱。

在实际工程中,要根据干扰电流的频率特点来调整磁环的匝数。

通常当干扰信号的频带较宽时,可在电缆上套两个磁环,每个磁环绕不同的匝数,这样可以同时抑制高频干扰和低频干扰。

从共模扼流圈作用的机理上看,其阻抗越大,对干扰抑制效果越明显。

而共模扼流圈的阻抗来自共模电感Lcm=jwLcm,从公式中不难看出,对于一定频率的噪声,磁环的电感越大越好。

但实际情况并非如此,因为实际的磁环上还有寄生电容,它的存在方式是与电感并联。

当遇到高频干扰信号时,电容的容抗较小,将磁环的电感短路,从而使共模扼流圈失去作用。

磁环材料的选择根据干扰信号的频率特点可以选用镍锌铁氧体或锰锌铁氧体,前者的高频特性优于后者。

锰锌铁氧体的磁导率在几千---上万,而镍锌铁氧体为几百---上千。

铁氧体的磁导率越高,其低频时的阻抗越大,高频时的阻抗越小。

所以,在抑制高频干扰时,宜选用镍锌铁氧体;反之则用锰锌铁氧体。

或在同一束电缆上同时套上锰锌和镍锌铁氧体,这样可以抑制的干扰频段较宽。

磁环的尺寸选择磁环的内外径差值越大,纵向高度越大,其阻抗也就越大,但磁环内径一定要紧包电缆,避免漏磁。

磁环的安装位置磁环的安装位置应该尽量靠近干扰源,即应紧靠电缆的进出口。

电子设备辐射和泄漏的电磁波不仅严重干扰其他电子设备正常工作,导致设备功能紊乱、传输错误、还威胁着人类的健康与安全,危害非常大。

因此降低电子设备的电磁干扰(EMI)已经是必须考虑的问题。

o1%q 吸收磁环,又称铁氧体磁环,简称磁环。

emc磁环的主要参数

emc磁环的主要参数

emc磁环的主要参数
EMC磁环的主要参数包括阻抗、直流电阻、额定电流、器件种类、工作频率点阻抗等。

1.阻抗:在满足电路正常工作情况下,在一定干扰频点下,阻抗越大越好。

2.直流电阻:越小越好。

3.额定电流:大于电路工作电流,最好是等于其2倍的工作电流。

4.器件种类:根据电路的工作频率点阻抗要求进行选择。

例如,对于10MHz以下的信号,
可以选择较大的磁珠;对于10MHz以上的信号,应选择较小的磁珠。

5.工作频率点阻抗:满足滤波电路正常工作的情况下,磁珠阻抗值越大,其滤波的插入损
耗越大,滤波效果越好。

电源电路一般选取300~1000Ω左右的磁珠,信号线电路一般会小一些。

此外,磁环的形状决定了其对电磁场的响应特性,常见的磁环形状有环形、方形和长方形等。

同时,磁环的外径、内径和高度是选择的关键参数,外径决定了磁环的封闭效果,内径和高度则与磁环的阻抗匹配和安装方式密切相关。

磁环抗干扰选择

磁环抗干扰选择

Q值越高,损耗越小,效率越高;Q 值越高,谐振器的频率稳定度就越高,因此,能够更准确。

品质因数Q:表征一个储能器件(如电感线圈、电容等)、谐振电路所储能量同每周损耗能量之比的一种质量指标。

元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳。

Q值是衡量电感器件的主要参数。

是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。

电感器的Q值越高,其损耗越小,效率越高。

电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。

降低Q 值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值过大,引起电感烧毁,电容击穿,电路振荡。

铁氧体抗干扰磁心特性铁氧体抗干扰磁心是近几年发展起来的新型的价廉物美的干扰抑制器件,其作用相当于低通滤波器,较好地解决了电源线,信号线和连接器的高频干扰抑制问题,而且具有使用简单,方便,有效,占用空间不大等一系列优点,用铁氧体抗干扰磁心来抑制电磁干扰(EMI)是经济简便而有效的方法,已广泛应用于计算机等各种军用或民用电子设备。

铁氧体是一种利用高导磁性材料渗合其他一种或多种镁、锌、镍等金属在2000℃烧聚而成,在低频段,铁氧体抗干扰磁心呈现出非常低的感性阻抗值,不影响数据线或信号线上有用信号的传输。

而在高频段,从10MHz左右开始,阻抗增大,其感抗分量仍保持很小,电阻性分量却迅速增加,当有高频能量穿过磁性材料时,电阻性分量就会把这些能量转化为热能耗散掉。

这样就构成一个低通滤波器,使高频噪音信号有大的衰减,而对低频有用信号的阻抗可以忽略,不影响电路的正常工作。

软磁铁氧体材料的应用及其性能要求对软磁铁氧体,通常希望磁导率μi和电阻率ρ要高,矫顽力Hc和损耗Pc要低。

根据使用的不同,还会对材料的居里温度、温度稳定性、磁导率减落系数、比损耗系数等有不同的要求。

(1)锰锌系铁氧体材料分为高磁导率铁氧体和高频低功耗铁氧体(又称功率铁氧体)两类。

磁环的选型及使用方法

磁环的选型及使用方法

磁环的选型及使用方法吸收磁环,又称铁氧体磁环,简称磁环。

它是电子电路中常用的抗干扰元件,对于高频噪声有很好的抑制作用,一般使用铁氧体材料(Mn-Zn)制成。

这种材料的特点是高频损耗非常大,具有很高的导磁率,最重要的参数为磁导率μ和饱和磁通密度Bs。

使用简单,方便,有效,占用空间不大等一系列优点,用铁氧体抗干扰磁心来抑或民用电子设备。

磁环的选择响(工作信号为差模信号),因此使用简单而不用考虑信号失真问题。

并且共模将整束电缆穿过一个铁氧体磁环就构成了一个共模扼流圈,根据需要,也可以将电缆在磁环上面绕几匝。

匝数越多,对频率较低的干扰抑制效果越好,而对频率较高的噪声抑制作用较弱。

在实际工程中,要根据干扰电流的频率特点来调整磁环的匝数。

通常当干扰信号的频带较宽时,可在电缆上套两个磁环,每个磁环绕不同的匝数,这样可以同时抑制高频干扰和低频干扰。

从共模扼流圈作用的机理上看,其阻抗越大,对干扰抑制效果越明显。

而共模扼流圈的阻抗来自共模而使共模扼流圈失去作用。

根据干扰信号的频率特点可以选用镍锌铁氧体或锰锌铁氧体,前者的高频特性优于后者。

锰锌铁氧体的磁导率在几千---上万,而镍锌铁氧体为几百---上千。

铁氧体的磁导率越高,其低频时的阻抗越大,高频时的阻抗越小。

所以,在抑制高频干扰时,宜选用镍锌铁氧体;反之则用锰锌铁氧体。

或在同一束电缆上同时套上锰锌和镍锌铁氧体,这样可以抑制的干扰频段较宽。

磁环的内外径差值越大,纵向高度越大,其阻抗也就越大,但磁环内径一定要紧包电缆,避免漏磁。

磁环的安装位置应该尽量靠近干扰源,即应紧靠电缆的进出口。

(1)关于匝数匝数越多,抑制低频干扰效果越好,抑制高频噪声作用较弱。

实际使用当中磁环匝数要根据干扰电流的频率特点来调整。

当干扰信号频带较宽时,可以在电缆上套两个磁环,每个磁环绕不同的匝数,这样可以同时一种高频干扰和低频干扰。

并不是阻抗越大,对干扰信号的抑制效果越好,因为实际磁环上存在寄生电容,这个寄生电容与电感并联,但遇到高频干扰信号时,这个寄生电容将磁环的电感短路,失去作用。

磁环的参数及选型

磁环的参数及选型

磁环的参数及选型磁环是一种常用的磁性元件,广泛应用于电子电路和电磁设备中。

本文将从磁环的参数和选型两个方面进行介绍。

一、磁环的参数磁环的参数是选择合适磁环的关键,主要包括材料、尺寸和磁性能。

1. 材料常见的磁环材料有铁氧体、硅钢和铁氧体硅钢混合材料等。

铁氧体磁环具有高磁导率、低磁损耗和良好的磁饱和特性,适用于高频应用;硅钢磁环具有低磁滞损耗、高饱和磁感应强度和低磁导率,适用于低频应用;铁氧体硅钢混合材料综合了两者的优点,适用于中频应用。

2. 尺寸尺寸是磁环的重要参数,决定了其磁性能和适用范围。

磁环的尺寸包括外径、内径、高度和截面形状等。

在选型时,需要根据具体应用场景的电流、磁感应强度和频率要求等因素,选择合适的磁环尺寸。

3. 磁性能磁性能是衡量磁环性能的指标,主要包括磁导率、矫顽力和磁滞损耗等。

磁导率是磁环导磁能力的度量,数值越大表示磁性能越好;矫顽力是磁环去磁化所需的磁场强度,数值越大表示磁环的磁饱和特性越好;磁滞损耗是磁环在磁化和去磁化过程中的能量损耗,数值越小表示磁环的能效越高。

二、磁环的选型在进行磁环选型时,需要根据具体应用需求和制约条件进行综合考虑。

1. 频率不同频率下,磁环的磁性能表现不同。

一般来说,高频应用更适合选择磁导率高的铁氧体磁环,而低频应用更适合选择磁导率低的硅钢磁环。

对于中频应用,可以考虑铁氧体硅钢混合磁环。

2. 磁感应强度磁感应强度是衡量磁环性能的重要参数,通常表示为磁场强度与磁环截面积的比值。

在选型时,需要根据具体应用场景对磁感应强度的要求进行选择,以保证磁环能够满足工作条件下的磁场需求。

3. 温度磁环的工作温度对其性能和寿命有着重要影响。

在选型时,需要考虑磁环材料的热稳定性和热导率,以避免在高温环境下导致磁性能下降或热失控。

4. 成本磁环的成本也是选型的重要考虑因素。

不同材料、尺寸和磁性能的磁环价格差异较大,需要根据项目预算和性能要求进行综合考虑,找到性价比最高的磁环选择。

磁环规格参数

磁环规格参数

磁环规格参数
磁环啊,那可是个神奇的小玩意儿!它的规格参数可真是多了去了。

就像人有高矮胖瘦一样,磁环也有各种各样不同的特性呢!
磁环的外径,这可是个重要的参数啊!它决定了磁环能在多大的空间里发挥作用。

你想想,要是外径不合适,就好像给一个大力士穿上了小一号的衣服,那怎么能施展开拳脚呢?内径呢,也不能小瞧,它就像是磁环的“内心世界”,要和其他组件完美配合才行。

还有磁环的厚度,这可关系到它的磁场强度呢!厚一点的磁环,磁场可能就强一些,就像大力士力气更大;薄一点的呢,也有它的用处,就如同小巧灵活的人也能在某些场合大显身手。

高度呢,也会影响磁环的性能表现。

材质也是关键啊!不同的材质就像不同性格的人,有的坚韧,有的柔软,但都有自己独特的魅力和用途。

这可不是随便选选就行的呀!
磁环的电感量,那可是个神秘又重要的参数呢!它就像磁环的“魔力值”,决定了它能在电路中发挥多大的作用。

这不就跟人的能力似的,能力强的人能解决更难的问题,电感量大的磁环能应对更复杂的电路情况呀!
磁环的居里温度呢,就像是人的耐热极限。

超过了这个温度,磁环的性能可能就会大打折扣,就如同人在高温下也会不舒服一样。

那这些规格参数重要吗?当然重要啦!它们就像磁环的“身份证”,决定了它适合在什么样的场合出现,能发挥多大的作用。

没有合适的规格参数,磁环就像失去了方向的船只,在电子世界的海洋里可就迷失啦!我们在选择磁环的时候,一定要仔细研究这些参数,就像挑选适合自己的鞋子一样,合脚的才是最好的呀!难道不是吗?所以说,可千万别小瞧了这些小小的磁环规格参数,它们可是有着大作用呢!。

节能灯及整流器用磁环的选择

节能灯及整流器用磁环的选择

节能灯及整流器用磁环的选择
现节能灯和电子日光灯的应用已普及,但真正节能和质量好的却不是那幺好做,关健是磁性材料的选择和使用上存在问题,这里主要谈一下脉冲变压器磁环,这是一个不容易掌握的小元件,而且是一个关健元件.在磁性材料生产单位,真正能生产好磁环的也不多,不是他们做不好,而是对小磁环在节能灯内的使用特性不堪了解.而使用者真正理解磁环的又不多,这造成了对小磁环的头痛。

在节能灯和电子整流器里,磁环实际是一个开关变压器,也是一个脉冲变压器,脉冲变压器的磁心结构为环形较多些,常用规格有: T12*6*4,T9*5*3,10*6*4,T10*6*5,T8*4*4等等; 在半桥电路中当选用MOSFET管作开关时,磁环的内径要稍大些,以能缠绕足够的圈数以得到足够的电压来驱动栅极。

选择磁环注意以下几个方面:
1、以选Mn-Zn铁氧体材料为主,磁导率在3000-5000之间.
2、材料的居里温度在120度-150度,当然居里温度越高越好,但磁芯生产有困难。

磁环选择

磁环选择

磁环单圈电感量如何进行计算?如何从磁环单圈电感量确定磁环初始磁导率?小弟,最近看到一个公司提供了样品中,单圈电感量写了个1.0-1.1,和我实际在电桥上测得怎么不一样啊,我绕了5圈,平均一除16.34uH,怎么差这么多?是不是电桥测试设置的问题? 回复1帖2帖sy200704团长 8882009-09-06 15:02相对而言.每个厂的叫法不同,设置不同,测试仪器不同,数值肯定不同.只是一个参考. 回复2帖3帖yjlnmy 团长 9862009-09-11 13:40L=AL*N2 25*1=25UH回复3帖4帖yjlnmy 团长 9862009-09-11 13:41平均一除16.34uH?是什么意思? 磁芯一会有误差 二会有损耗,性能可以会降 回复4帖7帖xulin029营长5122009-09-12 09:38我绕了5圈,测得16.34uH,然后16.34/5=3.268,得出结论单圈电感量3.268uH,厂家给出数据时1.1-1.2. 回复7帖8帖游星营长6852009-09-12 10:18真晕,谁告诉你电感量是这样算的啊,你也不看看我们给你的回复 回复8帖18帖H-power营长760九2011-06-22 23:33公式错了,L=N*N*AL回复18帖25帖 pearlriver连长224二2011-06-26 18:44回复25帖9帖hong0855连长3072009-09-12 10:25已知N 圈感量为Ln,求单匝感量L1,并不是简单的感量/圈数(L1=Ln/N,这是错误的) 回复9帖10帖游星营长6852009-09-12 10:30你就是要算也应该这样算16.34÷【(5-1)×(5-1)】=1.02 回复10帖11帖游星营长6852009-09-12 10:31因为你绕的圈数太少所以误差很大,还不如直接测单圈准确 回复11帖15帖 sy200704团长8882010-07-20 17:12你肯定多绕了一圈。

关于磁环的选用

关于磁环的选用

磁环选用报告影响节能灯质量的,磁环占重要因素,尤其110V直接电路,对磁环的选用特别敏感。

其中的原因我们以下面两副图加以说明:图一中:B为磁感应强度。

BS为饱和磁感应强度。

BM为最高磁感应强度。

H为磁场强度。

Br为剩磁。

He与Hc为矫顽力。

图二中:曲线1为磁导率3K的B与温度的曲线。

曲线2为磁导率2.5K的B与温度的曲线。

不同的磁材会有不同的磁导率,不同的温度特性。

其中温度特性是最重要的,因为一支节能灯在工作中,磁环必须经历常温、高温(高达100℃)、低温,然后在高温当中恒定工作。

但是,不同材料的温度曲线会有很大的差别,磁导率低的会在前半端呈现得比较平坦,磁导率较高的会显得比较陡峭;不同的温度里,饱和磁感应强度BS的变化也会不同,假设在常温下3K材料的BS值为200,但是在100℃时BS值会上升至300.同样在常温下2.5K材料的BS值为200,但是在100℃时BS值才只有250。

温度的变化会引起BS值u、H、HC的变化;BS值的变化会引起节能灯线路工作状态的变化;BS值升高会引起三极管得到的驱动电流降低。

因此,在110V的线路中,如果选取用了BS值在高温时变化比较大的磁环,便会引发灯在高温时,关掉再马上打开,灯便不能启动了;灯管两端灯丝发红,因为灯管不能启动;功率会是额定功率的两倍。

另由于灯管不能正常启动,两端灯丝的温度便会升得很高(将近300℃以上)这样便会把塑料件烧掉。

若选用了BS值随温度变化不大的磁环,即磁导率不高的磁环,便可解决上述问题。

但磁导率的高与低又有另外一个问题需考虑:就是它的损耗问题,一般磁导率高的象5K、10K的磁环,它的损耗都很小,做成成品脉冲变压器后,因为它的磁路阻抗比较小,延迟时间也比较小,它的输出波型可以做得很好,但它适应上述温度问题时就显得力不从心;选用磁导率较低时,它的表面性能虽不及5K、10K的好,但它不会出现灯启动时不能启动的现象。

江门粉末2.5K磁环适宜做110V直接驱动的灯;志通电子3K磁环适宜做220V的灯。

磁环选型攻略及EMC整改技巧

磁环选型攻略及EMC整改技巧

磁环选型攻略及EMC整改技巧如下图所示,本文将从四个方面对磁环进行阐述:一、磁环的应用场景首先,我们来看几张图片:图1:显示屏VGA线图2:适配器连接线图3:USB通信线这三根线都是我们生活中常见的供电线或通信线,它们都有一个特点,就是连接线上都有很突出的一部分,这突出的部分是什么呢?毫无疑问这就是加的磁环。

磁环是电子产品中常用的抗干扰元件,对于高频噪声有很好的抑制作用。

一般使用铁氧体材料(Mn-Zn)制成。

磁环在不同的频率下有不同的阻抗特性,一般在低频时阻抗很小,当信号频率升高时,磁环表现的阻抗急剧升高,在EMC工程设计中,磁环作用显著而被广泛适用。

二、磁环的工作原理图4:磁环等效电路如图4所示,磁环在应用中的等效电路。

L为等效电感,R为线缆的等效直流阻抗,C为绕线之间产生的分布电容,这个分布电容要特别注意,它会降低高频滤波性能。

图5:磁环的阻抗曲线如图5所示,磁环在未饱和的情况下,信号频率越高,其对应的阻抗越高,当频率超过谐振点时,阻抗会呈现下降趋势。

图6:EMC整改常用的扣式磁环扣式磁环与铁氧体的最大区别在于它具有很大的损耗,用这种扣式磁环制作的电感,其特性更接近电阻。

它是一个电阻值随着频率增加而增加的电阻,当高频信号通过铁氧体磁环时,电磁能量以热的形式耗散掉。

三、磁环的分类1、铁氧体磁环一般锰锌环涂绿色;铁氧体磁环主要包括镍锌铁氧体磁环和锰锌铁氧体磁环。

按磁导率可分为两类:一是,镍锌铁氧体磁导率在100-1000之间,被称为低导磁环;二是,锰锌铁氧体磁环材料的磁导率一般在1000以上,被称为高导磁环。

图7:锰锌铁氧体高导率磁环镍锌铁氧体磁环一般用于各种线材,电路板端,电脑设备中抗干扰。

锰锌铁氧体磁环,磁导率很大,这种磁环,通常用来绕制共模电感,抑制电源接口低频共模传导干扰。

图8:共模电感一般共模电感抑制频段在500K-30M之间,滤波频段要比铁粉芯差模电感高。

通常情况下,材料磁导率越低,适用的频率范围越宽;材料磁导率越高,适用的频率范围越窄。

磁环选择方法

磁环选择方法

磁环选择方法制作巴伦的磁环选择方法(大全)制作巴伦的磁环应该怎么选?磁环应该选择高频的,导磁率(不要很高的)100比较合适!现在高频磁环比较难找。

过去大家都到北京协会总部去买,大约5元一只,不知现在还有没有。

也有的火腿使用一般磁环绕制,只要芯线绞的比较紧密也能用,但频率高、功率大时会发热。

MTV推荐的空心巴仑也是很好的解决办法-。

磁环是高频铁氧体,具有高导磁(u大)和低损耗的特点。

磁芯类型一般有NXO镍锌铁氧体和MXO锰锌铁氧体两系列。

大直径的高频磁环,用粗芯线也可以大功率到1000瓦以上!广大无线电爱好者在制作巴伦,功率合成器(分配器)时经常在选择磁环,导线等问题大伤脑筋,且这些问题如果处理不当,必定效果不理想。

经常在频率上和网上听到或看到有人抱怨,加了巴伦还不如不加……为了解决这些问题,要从高频变压器问题解决。

本人根据一些资料,总结了一些关于传输线变压器的一些问题和大家共同探讨,有不当之处,请大家予以指正。

将高频传输线绕在具有高导磁率(u)低损耗的铁氧体磁环上就变成传输绝变压器,其电路从表面上看似乎与普通变压器没有多大差别,但实际上它们传递能量的方式是不相同的。

普通变压器信号电压加在初级绕组的1、2端,使初级线圈有电流流过,然后由此产生的磁力线在次级(3、4端)感应出相应的交变电压,能量就是这样由输入端传到负载。

而传榆线变压器的信号电压却加在1、3端,能量在两导线的介质间传播到负载。

传输线变压器能量传输原理如图l-a所示。

出于两根导线是紧靠绕在一起,所以导线任意点的线间电容都是很大的,而且在整个线长上是均匀分布的。

由于导线是绕在高u磁芯上,故导线每一小段Δl的电感量是很大的,而且均匀分布在整个线段上。

这些电容和电感量通常叫分布参数,由线间电容和导线电感组成的电路叫分布参数电路,如图1-b所示。

因此,传输钱可以看成由许多电感、电容组成的耦合链,从而产生了新的传输能量的方式。

当信号电压U1加在图2的输入端(1、3端)时,出于传输线间电容较大,因此信源向电容C1充电,使C1贮能。

磁环的参数及选型

磁环的参数及选型

磁环的参数及选型引言磁环是一种常见的电子元件,广泛应用于电磁感应、电磁传输、电源和电路等领域。

在选择和设计磁环时,我们需要考虑一系列的参数和特性,以确保磁环的性能能够满足特定的应用需求。

本文将介绍磁环的参数及选型的相关知识,以帮助读者更好地理解和应用磁环。

磁环的基本结构磁环通常由铁氧体或其他磁性材料制成,具有环形结构。

它由两个环形部分组成,中间通过一个绝缘材料隔开,形成一个闭合的磁路。

磁环的参数磁导率磁导率是磁环的重要参数之一,表示磁场在磁环中传播的能力。

常见的磁导率单位是亨利/米(H/m)。

磁导率越大,磁场在磁环中传播的能力越强。

矫顽力矫顽力是磁环的另一个重要参数,表示磁环被磁化所需的磁场强度。

矫顽力越大,磁环越难被磁化。

饱和磁感应强度饱和磁感应强度是磁环能够承受的最大磁场强度。

当磁场强度超过饱和磁感应强度时,磁环将失去磁化能力。

剩磁剩磁是磁环去除外部磁场后仍然保留的磁化程度。

剩磁越大,磁环的磁化能力越强。

温度特性磁环的性能会随着温度的变化而变化。

在选型时,需要考虑磁环在特定温度下的性能表现。

磁环的选型在选择磁环时,需要根据具体的应用需求和环境条件进行综合考虑。

以下是一些常见的选型指南:应用需求首先,需要明确磁环在具体应用中的角色和功能。

不同的应用可能对磁环的性能有不同的要求,比如频率范围、功率损耗、磁化能力等。

工作频率工作频率是选择磁环的一个重要因素。

不同的磁环材料对不同频率的磁场有不同的响应特性。

一般来说,高频应用需要选择具有较低矫顽力和较高磁导率的磁环材料。

功率损耗功率损耗是磁环在工作时产生的热量。

在高功率应用中,需要选择具有较低功率损耗的磁环材料,以确保系统的稳定性和可靠性。

环境条件环境条件也是选择磁环的考虑因素之一。

例如,工作温度、湿度、震动等都会对磁环的性能和寿命产生影响。

需要选择适应特定环境条件的磁环材料。

成本考虑最后,成本也是选择磁环的一个重要因素。

不同的磁环材料和规格有不同的价格,需要根据具体的预算和性能需求进行权衡。

基于节能灯磁环素的各项参数以及选择考虑

基于节能灯磁环素的各项参数以及选择考虑

基于节能灯磁环素的各项参数以及选择考虑
在节能灯电子电路中,磁环素有节能灯心脏之称,无论在节能灯电子电路的调试上,或者在生产上,磁环参数的变动都影响较大,可谓牵一发而动全身,受其影响的参数有:节能灯的启动时间,三极管的开关性能,镇流器的工作频率,灯功率等.特别是在110V电压条件下,电路设计时不用倍压电路,对磁环的选用尤其敏感。

下面我分两部分来说明磁环的各项参数以及选择考虑。

 一、各项参数曲线分析
 见下图:
 图一为磁环的磁化曲线;
 图中:
 B为磁感应强度。

 BS为饱和磁感应强度。

 BM为最高磁感应强度。

 H为磁场强度。

 Br为磁场感应强度H=0时的剩余磁通。

 He与Hc为矫顽(磁)力。

 节能灯中,磁环一般都选用可饱和环形磁芯,为使节能灯半桥逆变电路有良好的开关特性,产生良好的震荡波形,要求磁环必须如图所示,有近似于矩型的磁滞回线,在S形的特性曲线中,以a点为起点,从a点到b点,再到c点和d点,最后回到原始的a点,这样就得到一个完整的磁化周期。

这样的磁滞回线有明显的饱和点和饱和段,而且具有良好的对称性。

近似于矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

节能灯磁环选用指南
在节能灯电子电路中,磁环素有节能灯心脏之称,无论在节能灯电子电路的调试上,或者在生产上,磁环参数的变动都影响较大,可谓牵一发而动全身,受其影响的参数有:节能灯的启动时间,三极管的开关性能,镇流器的工作频率,灯功率等.特别是在110V电压条件下,电路设计时不用倍压电路,对磁环的选用尤其敏感.下面我分两部分来说明磁环的各项参数以及选择考虑。

一、各项参数曲线分析
见下图:
图一为磁环的磁化曲线;
图中:
B为磁感应强度.
BS为饱和磁感应强度.
BM为最高磁感应强度.
H为磁场强度.
Br为磁场感应强度H=0时的剩余磁通.
He与Hc为矫顽(磁)力.
节能灯中,磁环一般都选用可饱和环形磁芯,为使节能灯半桥逆变电路有良好的开关特性,产生良好的震荡波形,要求磁环必须如图所示,有近似于矩型的磁滞回线,在S
形的特性曲线中,以a点为起点,从a点到b点,再到c点和d点,最后回到原始的a 点,这样就得到一个完整的磁化周期.这样的磁滞回线有明显的饱和点和饱和段,而且具有良好的对称性.近似于矩型的磁滞回线可使磁环线圈中的电流波形前后沿较陡,能较好的满足三极管的驱动要求.如果S形的磁滞回线在各点上不能完全对称的话,都将严重影响节能灯半桥逆变电路的开关特性,导致损耗加大,三极管温升加剧。

我们用另外一幅图来说明节能灯常用的几种磁环的磁性材料初始磁导率的温度特性曲线.
图二中:曲线1为磁导率3K的B与温度的曲线.由图中可见3K材料比较快的达到第一个峰值,然后快速下降至谷点位置,约80度,后缓慢上升,一直到居里点,约200度.
曲线2为磁导率2.5K的B与温度的曲线.由图中可见2.5K材料的磁导率一直随温度在上升,谷点极其短,并且谷点温度比较高,达到了180度左右,居里温度约210度.
曲线3为磁导率2.3K的B与温度的曲线.由图中可以见2.3K材料随温度变化的B 值变化并不大,谷点约150度,居里温度约220度.由上面三种材料的温度曲线可见,三种材料的居里温度都可以满足节能灯的要求,节能灯壳内最高温度一般不会超过150度.三种曲线综合分析,3K材料稳定性能稍差,2.5K材料的谷点温度偏高,如果遇到节能灯壳内温度超高,达到最大值150度,而磁环在这个时候,B值不但没有降低,还在一直升高的话,必将导致三极管过驱,电流加大,最终导致灾难性的后果.2.3K材料由于其稳定的温度曲线,在节能灯中大受欢迎.若非有特殊要求,一般节能灯都会选用2.3K或者3K的磁环.完美的温度曲线应该是次峰平,几乎看不见,而谷点长,最
好在70-150度,居里温度只要有200度以上就可以了,可惜这样的磁环至今仍没有应用在节能灯上.
二:选择考虑(为提高节能灯的可靠性和安全性,磁环的选用必须适应节能灯的特点和要求)
1、外形和尺寸的选择:
适用于电子节能灯的磁环一般有这些规格,∮10*6*5;∮10*6*3.5;∮10*6*3;∮9*5*3;∮12*6*4;∮13*7*4.当节能灯塑件空间小,或者PCB面积小的时候,可以选用∮9*5*3磁环.不受节能灯塑件空间和PCB面积影响的时候,我们一般选用∮10*6*5;∮10*6*3.5;∮10*6*3这些规格的磁环.当电路中选用MOSFET作为开关管时,我们一般选用∮12*6*4;∮13*7*4这些规格的磁环,由于MOSFET要求栅极驱动电压比较高,所以磁环的次极圈数会比较多,对于磁环而言,就需要有足够大的内径,来绕过这些次极线圈。

2、磁性材料的选择:
不同的磁性材料有着不同的特性和不同的适用范围.大类上来说,我们节能灯一般选用锰锌铁氧体,适用于节能灯的铁氧体有:PC30,PC40和PC50等.在磁环磁性材料的选用上,应重点考虑下面几点要求:
(1)居里温度应足够高,由于节能灯内空间狭小,散热不畅,壳内温度通常都在80度以上,要是工作环境温度过高或者是带罩灯,壳内温度更高,最高可达130-150度.为确保节能灯壳内温度低于磁环居里温度,磁环宜选用居里温度高于200度的磁性材料.
(2)初始磁导率应适中,由于磁性材料的初始磁导率和居里温度是成反比的,初始磁导率越高,居里温度越低,我们的选择空间就留在4K以下这段范围了.当然对于那些壳内温度不高于80度,灯管实际功率低于70%的节能灯,或者是110V输入在电路上没有采取倍压的.为获得较高的驱动信号,可以适当选择初始磁导率高的磁性材料.
(3)电阻率应比较高.当工作频率一定时,磁性材料的涡流损耗与电阻率成反比.为降低磁环的自身损耗,应选用电阻率适当高一些的磁性材料,虽然磁环自身损耗在整个节能灯电路损耗中是微乎其微的,但其产生的不良反应是不容小诩的.
(4)合适的温度系数.对于磁环,我们一般要求其具有负温度系数,即其磁导率或磁芯线圈电感量应随温度升高而下降.在温度0-100度变化时,三极管的集电极电流约增
加15%.在此温度范围内,要是磁环具有负温度系数,刚好与三极管的正温度系数相抵消或大部分抵消,基本保持平衡,就保证了电子节能灯的稳定工作.
(5)饱和磁通密度与磁滞回线.电子节能灯中的磁环应具有较高的饱和磁通密度,以保证磁环次级有足够高的驱动功率,防止电感因容易进入饱和而温升加剧.由于磁环的磁滞损耗与磁滞回线所包围的面积成正比,所以应选用磁滞回线比较狭小的磁环,这样有利于降低功率损耗,磁环必须有如前文讲到的,近似矩形的磁滞回线.并且要求磁滞回线有比较好的对称性,这样能保证电路中两个三极管产生对称的电流波形,防止两个三极管温度偏差.
简单的磁环可靠性试验方法,热试验方法:将磁环测试分档(一般测试磁导率和单圈电感量),记录数据,然后将磁环置于温度100度的烘箱内,烘48小时后从烘箱里拿出来自然存放24小时.再一次测试磁环的参数,如果变化不大,可以选用,如果变化过大,则不可以选用.测试时,磁环最少不得少于100只.这种方法用于判断磁环的一致性是否过关,在长时间的高温下,磁环的参数是不是会产生大的变化,影响节能灯的寿命.
当然其他的和节能灯相近的照明产品,如:电子镇流器.电子变压器等,也都可以参照本选用方法进行选择,除了工作环境,温度等有不同外,电子镇流器,电子变压器与节能灯基本相同。

相关文档
最新文档